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Abstract

We study in this paper a generalized coupon collector problem, which consists in analyzing

the time needed to collect a given number of distinct coupons that are drawn from a set

of coupons with an arbitrary probability distribution. We suppose that a special coupon

called the null coupon can be drawn but never belongs to any collection. In this context,

we prove that the almost uniform distribution, for which all the non-null coupons have the

same drawing probability, is the distribution which stochastically minimizes the time needed

to collect a fixed number of distinct coupons. Moreover, we show that in a given closed

subset of probability distributions, the distribution with all its entries, but one, equal to the

smallest possible value is the one, which stochastically maximizes the time needed to collect a

fixed number of distinct coupons. An computer science application shows the utility of these

results.

Keywords
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1 Introduction

The coupon collector problem is an old problem, which consists in evaluating the time needed
to get a collection of different objects drawn randomly using a given probability distribution.
This problem has given rise to a lot of attention from researchers in various fields since it has
applications in many scientific domains including computer science and optimization, see [2] for
several engineering examples.

More formally, consider a set of n coupons, which are drawn randomly one by one, with
replacement, coupon i being drawn with probability pi. The classical coupon collector problem is
to determine the expectation or the distribution of the number of coupons that need to be drawn
from the set of n coupons to obtain the full collection of the n coupons. A large number of papers
have been devoted to the analysis of asymptotics and limit distributions of this distribution when
n tends to infinity, see [4] or [8] and the references therein. In [3], the authors obtain new formulas
concerning this distribution and they also provide simulation techniques to compute it as well as
analytic bounds of it. The asymptotics of the rising moments are studied in [5].

We suppose in this paper that p = (p1, . . . , pn) is not necessarily a probability distribution,
i.e., we suppose that

∑n

i=1 pi ≤ 1 and we define p0 = 1 −
∑n

i=1 pi. This means that there is a
null coupon, denoted by 0, which is drawn with probability p0, but that does not belong to the
collection. We are interested, in this setting, in the time needed to collect c different coupons

∗This work was partially funded by the French ANR project SocioPlug (ANR-13-INFR-0003), and by the
DeSceNt project granted by the Labex CominLabs excellence laboratory (ANR-10-LABX-07-01).
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among coupons 1, . . . , n, when a coupon is drawn, with replacement, at each discrete time 1, 2, . . .
among coupons 0, 1, . . . , n. This time is denoted by Tc,n(p) for c = 1, . . . , n. Clearly, Tn,n(p) is
the time needed to get the full collection. The random variable Tc,n(p) has been considered in [9]
in the case where the drawing probability distribution is uniform. The expected value E[Tc,n(p)]
has been obtained in [6] when p0 = 0. Its distribution and its moments have been obtained in [1]
using Markov chains.

In this paper, we prove that the almost uniform distribution, denoted by v and defined by
v = (v1, . . . , vn) with vi = (1 − p0)/n, where p0 is fixed, is the distribution which stochastically
minimizes the time Tc,n(p) such that p0 = 1−

∑n

i=1 pi. This result was expressed as a conjecture
in [1] where it is proved that the result is true for c = 2 and for c = n extending the sketch of the
proof proposed in [2] to the case p0 > 0. It has been also proved in [1] that the result is true for
the expectations, that is that E[Tc,n(u)] ≤ E[Tc,n(v)] ≤ E[Tc,n(p)].

We first consider in Section 2, the case where p0 = 0 and then we extend it to one of p0 > 0.
We show moreover in Section 3, that in a given closed subset of probability distributions, the
distribution with all its entries, but one, equal to the smallest possible value is the one which
stochastically maximizes the time Tc,n(p). This work is motivated by the worst case analysis of
the behavior of streaming algorithms in network monitoring applications as shown in Section 4.

2 Distribution minimizing the distribution of Tc,n(p)

Recall that Tc,n(p), with p = (p1, . . . , pn), is the number of coupons that need to be drawn from
the set {0, 1, 2, . . . , n}, with replacement, till one first obtains a collection with c different coupons,
1 ≤ c ≤ n, among {1, . . . , n}, where coupon i is drawn with probability pi, i = 0, 1, . . . , n.

The distribution of Tc,n(p) has been obtained in [1] using Markov chains and is given byP{Tc,n(p) > k} =

c−1
∑

i=0

(−1)c−1−i

(

n− i− 1

n− c

)

∑

J∈Si,n

(p0 + PJ )
k, (1)

where Si,n = {J ⊆ {1, . . . , n} | |J | = i} and, for every J ⊆ {1, . . . , n}, PJ is defined by PJ =
∑

j∈J pj . Note that we have S0,n = ∅, P∅ = 0 and |Si,n| =
(

n

i

)

.
This result also shows as expected that the function P{Tc,n(p) > k}, as a function of p, is

symmetric, which means that it has the same value for any permutation of the entries of p.
We recall that if X and Y are two real random variable then we say that X is stochastically

smaller (resp. larger) than Y , and we write X ≤st Y (resp. Y ≤st X), if P{X > t} ≤ P{Y > t},
for all real numbers t. This stochastic order is also referred to as the strong stochastic order.

We consider first, in the following subsection, the case where p0 = 0.

2.1 The case p0 = 0

This case corresponds the fact that there is no null coupon, which means that all the coupons can
belong to the collection. We thus have

∑n

i=1 pi = 1. For all n ≥ 1, i = 1, . . . , n and k ≥ 0, we

denote by N
(k)
i the number of coupons of type i collected at instants 1, . . . , k. It is well-known

that the joint distribution of the N
(k)
i is a multinomial distribution, i.e., for all k1, . . . , kn ≥ 0

such that
∑n

i=1 ki = k, we haveP{N (k)
1 = k1, . . . , N

(k)
n = kn} =

k!

k1! · · · kn!
pk1

1 · · · pkn

n . (2)

We also denote by U
(k)
n the number of distinct coupon’s types, among 1, . . . , n, already drawn at

instant k. We clearly have, with probability 1, U
(0)
n = 0, U

(1)
n = 1 and, for i = 0, . . . , n,P{U (k)

n = i} =
∑

J∈Si,n

P{N (k)
u > 0, u ∈ J and N (k)

u = 0, u /∈ J}.
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Moreover, it is easily checked that,

Tc,n(p) > k ⇐⇒ U (k) < c.

We then haveP{Tc,n(p) > k} = P{U (k)
n < c}

=
c−1
∑

i=0

P{U (k)
n = i}

=
c−1
∑

i=0

∑

J∈Si,n

P{N (k)
u > 0, u ∈ J and N (k)

u = 0, u /∈ J}.

Using Relation (2), we obtainP{Tc,n(p) > k} =

c−1
∑

i=0

∑

J∈Si,n

∑

k∈Ek,J

k!
∏

j∈J

p
kj

j

kj !
, (3)

where Ek,J is the set of vectors defined by

Ek,J = {k = (kj)j∈J | kj > 0, for all j ∈ J and KJ = k} ,

with KJ =
∑

j∈J kj .

Theorem 1 For all n ≥ 2 and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi = 1, and for all c =
1, . . . , n, we have Tc,n(p

′) ≤st Tc,n(p), where p′ = (p1, . . . , pn−2, p
′
n−1, p

′
n) with p′n−1 = λpn−1 +

(1− λ)pn and p′n = (1− λ)pn−1 + λpn, for all λ ∈ [0, 1].

Proof. The result is trivial for c = 1, since we have T1,n(p) = 1, and for k = 0 since both
terms are equal to 1. We thus suppose now that c ≥ 2 and k ≥ 1. The fact that k ≥ 1 means in
particular that the term i = 0 in Relation (3) is equal to 0. We then haveP{Tc,n(p) > k} =

c−1
∑

i=1

∑

J∈Si,n

∑

k∈Ek,J

k!
∏

j∈J

p
kj

j

kj !
. (4)

To simplify the notation, we denote by Ti(p) the ith term of this sum, that is

Ti(p) =
∑

J∈Si,n

∑

k∈Ek,J

k!
∏

j∈J

p
kj

j

kj !
. (5)

For i = 1, we have S1,n = {{1}, . . . , {n}} and Ek,{j} = {k}. The term T1(p) is thus given by

T1(p) =

n
∑

j=1

pkj .

Consider now the term Ti for i ≥ 2. We split the set Si,n into four subsets depending on wether
the indices n − 1 and n belong to its elements. More precisely, we introduce the partition of the

set Si,n in the four subsets S
(1)
i,n , S

(2)
i,n , S

(3)
i,n and S

(4)
i,n defined by

S
(1)
i,n = {J ⊆ {1, . . . , n} | |J | = i with n− 1 ∈ J and n /∈ J} ,

S
(2)
i,n = {J ⊆ {1, . . . , n} | |J | = i with n− 1 /∈ J and n ∈ J} ,

S
(3)
i,n = {J ⊆ {1, . . . , n} | |J | = i with n− 1 ∈ J and n ∈ J} ,

S
(4)
i,n = {J ⊆ {1, . . . , n} | |J | = i with n− 1 /∈ J and n /∈ J} .
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These subsets can also be written as S
(1)
i,n = Si−1,n−2 ∪ {n − 1}, S

(2)
i,n = Si−1,n−2 ∪ {n}, S

(3)
i,n =

Si−2,n−2 ∪ {n − 1, n}, and S
(4)
i,n = Si,n−2. Using these equalities, the term Ti of Relation (5)

becomes

Ti(p) =
∑

J∈Si−1,n−2

∑

k∈Ek,J∪{n−1}

k!





∏

j∈J

p
kj

j

kj !





p
kn−1

n−1

kn−1!

+
∑

J∈Si−1,n−2

∑

k∈Ek,J∪{n}

k!





∏

j∈J

p
kj

j

kj !





pkn
n

kn!

+
∑

J∈Si−2,n−2

∑

k∈Ek,J∪{n−1,n}

k!





∏

j∈J

p
kj

j

kj !





p
kn−1

n−1

kn−1!

pkn
n

kn!

+
∑

J∈Si,n−2

∑

k∈Ek,J

k!





∏

j∈J

p
kj

j

kj !



 .

Let us now introduce the sets Lk,J defined by

Lk,J = {k = (kj)j∈J | kj > 0, for all j ∈ J and KJ ≤ k} .

Using these sets and, to clarify the notation, setting kn−1 = ℓ and kn = h when needed, we obtain

Ti(p) =
∑

J∈Si−1,n−2

∑

k∈Lk−1,J

k!





∏

j∈J

p
kj

j

kj !





pk−KJ

n−1

(k −KJ)!

+
∑

J∈Si−1,n−2

∑

k∈Lk−1,J

k!





∏

j∈J

p
kj

j

kj !





pk−KJ
n

(k −KJ)!

+
∑

J∈Si−2,n−2

∑

k∈Lk−2,J

k!





∏

j∈J

p
kj

j

kj !





∑

ℓ>0,h>0,ℓ+h=k−KJ

pℓn−1

ℓ!

phn
h!

+
∑

J∈Si,n−2

∑

k∈Ek,J

k!





∏

j∈J

p
kj

j

kj !



 ,

which can also be written as

Ti(p) =
∑

J∈Si−1,n−2

∑

k∈Lk−1,J

k!

(k −KJ)!





∏

j∈J

p
kj

j

kj !





(

pk−KJ

n−1 + pk−KJ

n

)

+
∑

J∈Si−2,n−2

∑

k∈Lk−2,J

k!

(k −KJ)!





∏

j∈J

p
kj

j

kj !



 (pn−1 + pn)
k−KJ

−
∑

J∈Si−2,n−2

∑

k∈Lk−2,J

k!

(k −KJ)!





∏

j∈J

p
kj

j

kj !





(

pk−KJ

n−1 + pk−KJ

n

)

+
∑

J∈Si,n−2

∑

k∈Ek,J

k!





∏

j∈J

p
kj

j

kj !



 .

We denote these four terms respectively by Ai(p), Bi(p), Ci(p) and Di(p). We thus have, for i ≥ 2,
Ti(p) = Ai(p) +Bi(p)−Ci(p)+Di(p). We have already shown that T1(p) = A1(p) +D1(p), so we
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set B1(p) = C1(p) = 0. We then haveP{Tc,n(p) > k} =

c−1
∑

i=1

Ti(p)

= Ac−1(p) +

c−2
∑

i=1

(Ai(p)− Ci+1(p)) +

c−1
∑

i=2

Bi(p) +

c−1
∑

i=1

Di(p). (6)

For i ≥ 1, we have

Ai(p)− Ci+1(p) =
∑

J∈Si−1,n−2

∑

k∈Lk−1,J

k!

(k −KJ)!





∏

j∈J

p
kj

j

kj !





(

pk−KJ

n−1 + pk−KJ

n

)

−
∑

J∈Si−1,n−2

∑

k∈Lk−2,J

k!

(k −KJ)!





∏

j∈J

p
kj

j

kj !





(

pk−KJ

n−1 + pk−KJ
n

)

=
∑

J∈Si−1,n−2

∑

k∈Ek−1,J

k!

(k −KJ)!





∏

j∈J

p
kj

j

kj !





(

pk−KJ

n−1 + pk−KJ
n

)

.

By definition of the set Ek−1,J , we have KJ = k − 1 in the previous equality. This gives

Ai(p)− Ci+1(p) =
∑

J∈Si−1,n−2

∑

k∈Ek−1,J

k!





∏

j∈J

p
kj

j

kj !



 (pn−1 + pn) .

Using the fact that the function x 7−→ xs is convex on interval [0, 1] for every non negative integer
s, we have

p′
k−KJ

n−1 + p′
k−KJ

n = (λpn−1 + (1− λ)pn)
k−KJ + ((1 − λ)pn−1 + λpn)

k−KJ

≤ λpk−KJ

n−1 + (1− λ)pk−KJ

n + (1− λ)pk−KJ

n−1 + λpk−KJ

n

= pk−KJ

n−1 + pk−KJ

n ,

and in particular p′n−1 + p′n = pn−1 + pn. It follows that

Ac−1(p
′) ≤ Ac−1(p),

Ai(p
′)− Ci+1(p

′) = Ai(p)− Ci+1(p),

Bi(p
′) = Bi(p),

Di(p
′) = Di(p),

and from (6) that P{Tc,n(p
′) > k} ≤ P{Tc,n(p) > k}, which concludes the proof.

The function P{Tc,n(p) > k}, as a function of p, being symmetric, this theorem can easily be
extended to the case where the two entries pn−1 and pn of p are any pi, pj ∈ {p1, . . . , pn}, with
i 6= j.

In fact, we have shown in this theorem that for fixed n and k, the function of p, P{Tc,n(p) ≤ k},
is a Schur-convex function, that is, a function that preserves the order of majorization. See [7] for
more details on this subject.

Theorem 2 For every n ≥ 1 and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi = 1, and for all

c = 1, . . . , n, we have Tc,n(u) ≤st Tc,n(p), where u = (1/n, . . . , 1/n) is the uniform distribution.
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Proof. To prove this result, we apply successively and at most n− 1 times Theorem 1 as follows.
We first choose two different entries of p, say pi and pj such that pi < 1/n < pj and next to define
p′i and p′j by

p′i =
1

n
and p′j = pi + pj −

1

n
.

This leads us to write p′i = λpi + (1 − λ)pj and p′j = (1− λ)pi + λpj , with

λ =
pj − 1/n

pj − pi
.

From Theorem 1, vector p′ obtained by taking the other entries equal to those of p, i.e., by taking
p′ℓ = pℓ, for ℓ 6= i, j, is such that P{Tc,n(p

′) > k} ≤ P{Tc,n(p) > k}. Note that at this point vector
p′ has at least one entry equal to 1/n, so repeating at most n− 1 this procedure, we get vector u,
which concludes the proof.

To illustrate the steps used in the proof of this theorem, we take the following example. Suppose
that n = 5 and p = (1/16, 1/6, 1/4, 1/8, 19/48). In a first step, taking i = 4 and j = 5, we get

p(1) = (1/16, 1/6, 1/4, 1/5, 77/240).

In a second step, taking i = 2 and j = 5, we get

p(2) = (1/16, 1/5, 1/4, 1/5, 69/240).

In a third step, taking i = 1 and j = 3, we get

p(3) = (1/5, 1/5, 9/80, 1/5, 69/240).

For the fourth and last step, taking i = 3 and j = 5, we get

p(4) = (1/5, 1/5, 1/5, 1/5, 1/5).

2.2 The case p0 > 0

We consider now the case where p0 > 0. We have p = (p1, . . . , pn) with p1 + · · · + pn < 1 and
p0 = 1− (p1 + · · ·+ pn). Recall that in this case Tc,n(p) is the time or the number of steps needed
to collect a subset of c different coupons among coupons 1, . . . , n. Coupon 0 is not allowed to
belong to the collection. As in the previous subsection we denote, for i = 0, 1, . . . , n and k ≥ 0,

by N
(k)
i the number of coupons of type i collected at instants 1, . . . , k. We then have for all

k0, k1, . . . , kn ≥ 0 such that
∑n

i=0 ki = k, we haveP{N (k)
0 = k0, N

(k)
1 = k1, . . . , N

(k)
n = kn} =

k!

k0!k1! · · · kn!
pk0

0 pk1

1 · · · pkn

n ,

which can also be written asP{N (k)
0 =k0, N

(k)
1 = k1, . . . , N

(k)
n = kn}

=

(

k

k0

)

pk0

0 (1 − p0)
k−k0

(k − k0)!

k1! · · · kn!

(

p1
1− p0

)k1

· · ·

(

pn
1− p0

)kn

. (7)

Note that p/(1− p0) is a probability distribution since

1

1− p0

n
∑

i=1

pi = 1,

6



so summing over all the k1, . . . , kn ≥ 0 such that
∑n

i=1 ki = k − k0, we get, for all k0 = 0, . . . , k,P{N (k)
0 = k0} =

(

k

k0

)

pk0

0 (1 − p0)
k−k0 . (8)

From (7) and (8) we obtain, for all k1, . . . , kn ≥ 0 such that
∑n

i=1 ki = k − k0,P{N (k)
1 = k1, . . . , N

(k)
n = kn | N

(k)
0 = k0} =

(k − k0)!

k1! · · · kn!

(

p1
1− p0

)k1

· · ·

(

pn
1− p0

)kn

. (9)

Recall that U
(k)
n is the number of coupon’s types among 1, . . . , n already drawn at instant k. We

clearly have, with probability 1, U
(0)
n = 0, and, for i = 0, . . . , n,P{U (k)

n = i} =
∑

J∈Si,n

P{N (k)
u > 0, u ∈ J and N (k)

u = 0, u /∈ J}.

Moreover, we have as in Subsection 2.1,

Tc,n(p) > k ⇐⇒ U (k)
n < c.

and so P{Tc,n(p) > k |N
(k)
0 = k0}

=

c−1
∑

i=0

∑

J∈Si,n

P{N (k)
u > 0, u ∈ J and N (k)

u = 0, u /∈ J | N
(k)
0 = k0}.

Using Relation (9), we obtainP{Tc,n(p) > k | N
(k)
0 = k0} =

c−1
∑

i=0

∑

J∈Si,n

∑

k∈Ek−k0,J

(k − k0)!







∏

j∈J

(

pj

1−p0

)kj

kj !






, (10)

where the set Ek,J has been defined in Subsection 2.1.

Theorem 3 For every n ≥ 1 and p = (p1, . . . , pn) ∈ (0, 1)n with
∑n

i=1 pi < 1, and for all

c = 1, . . . , n, we have Tc,n(u) ≤st Tc,n(v) ≤st Tc,n(p), where u = (1/n, . . . , 1/n), v = (v1, . . . , vn)
with vi = (1− p0)/n and p0 = 1−

∑n

i=1 pi.

Proof. From Relation (3) and Relation (10), we obtain, for all k0 = 0, . . . , k,P{Tc,n(p) > k | N
(k)
0 = k0} = P{Tc,n(p/(1− p0)) > k − k0}. (11)

Using (8) and unconditioning, we obtainP{Tc,n(p) > k} =

k
∑

ℓ=0

(

k

ℓ

)

pℓ0(1− p0)
k−ℓP{Tc,n(p/(1− p0)) > k − ℓ}. (12)

Since p/(1−p0) is a probability distribution, applying Theorem 2 to this distribution and observing
that u = v/(1− p0), we getP{Tc,n(p) > k} =

k
∑

ℓ=0

(

k

ℓ

)

pℓ0(1− p0)
k−ℓP{Tc,n(p/(1− p0)) > k − ℓ}

≥
k

∑

ℓ=0

(

k

ℓ

)

pℓ0(1− p0)
k−ℓP{Tc,n(u) > k − ℓ}

=

k
∑

ℓ=0

(

k

ℓ

)

pℓ0(1− p0)
k−ℓP{Tc,n(v/(1− p0)) > k − ℓ}

= P{Tc,n(v) > k},

7



where the last equality follows from (12). This proves the second inequality.
To prove the first inequality, observe that P{Tc,n(p/(1 − p0)) > ℓ} is decreasing with ℓ. This

leads, using (12), to P{Tc,n(p) > k} ≥ P{Tc,n(p/(1− p0)) > k}.

Taking p = v in this inequality givesP{Tc,n(v) > k} ≥ P{Tc,n(u) > k},

which completes the proof.

In fact, we have shown in the proof of this theorem and more precisely in Relation (11) and

using Theorem 2 that for fixed n, k and k0, the function of p, P{Tc,n(p) ≤ k | N
(k)
0 = k0} is a

Schur-convex function, that is, a function that preserves the order of majorization. In particular,
from (12), P{Tc,n(p) ≤ k} is also a Schur-convex function, even when p0 > 0. See [7] for more
details on this subject.

3 Distribution maximizing the distribution of Tc,n(p)

We consider in this section the problem of stochastically maximizing the time Tc,n(p) when p
varies in a closed subset of dimension n. In the previous section the minimization was made on
the set A defined, for every n and for all p0 ∈ [0, 1), by

A = {p = (p1, . . . , pn) ∈ (0, 1)n | p1 + · · ·+ pn = 1− p0}.

According to the application described in the Section 4, we fix a parameter θ ∈ (0, (1−p0)/n] and
we are looking for distributions p which stochastically maximizes the time Tc,n(p) on the subset
Aθ of A defined by

Aθ = {p = (p1, . . . , pn) ∈ A | pj ≥ θ, for every j = 1, . . . , n}.

The solution to this problem is given by the following theorem. We first introduce the set Bθ

defined by the distributions of Aθ with all their entries, except one, are equal to θ. The set Bθ

has n elements given by

Bθ = {(γ, θ, . . . , θ), (θ, γ, θ, . . . , θ), . . . , (θ, . . . , θ, γ)},

where γ = 1 − p0 − (n − 1)θ. Note that since θ ∈ (0, (1 − p0)/n], we have 1 − p0 − (n − 1)θ ≥ θ
which means that Bθ ⊆ Aθ.

Theorem 4 For every n ≥ 1 and p = (p1, . . . , pn) ∈ Aθ and for all c = 1, . . . , n, we have

Tc,n(p) ≤st Tc,n(q), for every q ∈ Bθ.

Proof. Since P{Tc,n(p) > k} is a symmetric function of p, P{Tc,n(q) > k} has the same value
for every q ∈ Bθ, so we suppose that qℓ = θ for every ℓ 6= j and qj = γ.

Let p ∈ Aθ \ Bθ and let i be the first entry of p such that i 6= j and pi > θ. We then define

the distribution p(1) as p
(1)
i = θ, p

(1)
j = pi + pj − θ > pj and p

(1)
ℓ = pℓ, for ℓ 6= i, j. This leads us

to write pi = λp
(1)
i + (1− λ)p

(1)
j and pj = (1− λ)p

(1)
i + λp

(1)
j , with

λ =
p
(1)
j − pi

p
(1)
j − p

(1)
i

=
pj − θ

pj − θ + pi − θ
∈ [0, 1).

From Theorem 1, we get P{Tc,n(p) > k} ≤ P{Tc,n(p
(1)) > k}. Repeating the same procedure from

distribution p(1) and so on, we get, after at most n− 1 steps, distribution q, that is P{Tc,n(p) >
k} ≤ P{Tc,n(q) > k}, which completes the proof.
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To illustrate the steps used in the proof of this theorem, we take the following example. Suppose
that n = 5, θ = 1/20, p0 = 1/10 and q = (1/20, 1/20, 1/20, 7/10, 1/20), which means that j = 4.
Suppose moreover that p = (1/16, 1/6, 1/4, 1/8, 71/240). We have p ∈ Aθ and q ∈ Bθ. In a first
step, taking i = 1 and since j = 4, we get

p(1) = (1/20, 1/6, 1/4, 11/80, 71/240).

In a second step, taking i = 2 and since j = 4, we get

p(2) = (1/20, 1/20, 1/4, 61/240, 71/240).

In a third step, taking i = 3 and since j = 4, we get

p(3) = (1/20, 1/20, 1/20, 109/240, 71/240).

For the fourth and last step, taking i = 5 and since j = 4, we get

p(4) = (1/20, 1/20, 1/20, 7/10, 1/20) = q.

4 Application to the detection of distributed denial of ser-

vice attacks

A Denial of Service (DoS) attack tries to progressively take down an Internet resource by flooding
this resource with more requests than it is capable to handle. A Distributed Denial of Service
(DDoS) attack is a DoS attack triggered by thousands of machines that have been infected by a
malicious software, with as immediate consequence the total shut down of targeted web resources
(e.g., e-commerce websites). A solution to detect and to mitigate DDoS attacks is to monitor
network traffic at routers and to look for highly frequent signatures that might suggest ongoing
attacks. A recent strategy followed by the attackers is to hide their massive flow of requests over
a multitude of routes, so that locally, these requests do not appear as frequent, while globally
each of these requests represent a portion θ of the network traffic. The term “iceberg” has been
recently introduced [10] to describe such an attack as only a very small part of the iceberg can be
observed at each single router. The approach adopted to defend against such new attacks is to
rely on multiple routers that locally monitor their network traffic, and upon detection of potential
icebergs, inform a monitoring server that aggregates all the monitored information to accurately
detect icebergs. Now to prevent the server from being overloaded by all the monitored information,
routers continuously keep track of the c (among n) most recent distinct requests. These requests
locally represent at least a fraction θ of the local stream. Once collected, each router sends them
to the server, and throw away all the requests i that appear with a probability pi smaller than θ.
The sum of these small probabilities is represented by probability p0. Parameter c is dimensioned
so that the frequency at which all the routers send their c last requests is low enough to enable
the server to aggregate all of them and to trigger a DDoS alarm when needed. This amounts
to compute the distribution of the time Tc,n(p) needed to collect c distinct requests among the
n ones. Theorem 3 shows that the distribution p that stochastically minimizes the time Tc,n(p)
is the almost uniform distribution v. This means that if locally each router receives a stream in
which all the frequent requests (that is, those whose probability of occurrence is greater than or
equal to θ) occur with same probability, then the complementary distribution of the time needed
to locally complete a collection of c distinct requests is minimized. As a consequence the delay
between any two interactions between a router and the server is minimized.

Another important aspect of DDoS detection applications is their ability to bound the detection
latency of global icebergs, that is the maximal time that elapses between the presence of a global
iceberg at some of the routers and its detection at the server. This can be implemented through a
timer that will fire if no communication has been triggered between a router and the server, which
happens if locally a router has received less than c requests. Dimensioning such a timer amounts to
determine the distribution of the maximal time it takes for a router to collect c distinct requests.
Theorem 4 shows that the distributions p that stochastically maximizes this time Tc,n(p) are all
the distributions q ∈ Bθ.
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