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Introduction

Increasingly severe regulations concerning noise emission are a real challenge for the conception of any new aircraft. Engine noise, in particular, is the major contributor to overall aircraft noise and much attention remains focused on its reduction. Considerable efforts have been performed during the last decades to reduce jet and fan contributions, leading to the emergence of other noise sources that were previously considered negligible. The contribution of such additional sources was evidenced in the 1970s, the noise emitted by modern turbofan being higher than the sole contribution of the jet [START_REF] Strahle | A review of combustion generated noise[END_REF]. This noise was first labelled excess noise [START_REF] Crighton | The excess noise field of subsonic jets[END_REF], before being associated to the combustion process. At the present time, it is classically referred to as core noise [START_REF] Cumpsty | Core noise from gas turbine exhauts[END_REF] or combustion noise [START_REF] Strahle | Combustion noise[END_REF] and it is separated between direct and indirect noise. Direct noise is related to the pressure fluctuations generated by the unsteady heat fluctuation of the turbulent flame whereas indirect noise comes from the acceleration of entropy of vorticity perturbations, generated by the flame, by the mean flow.

The propagation of acoustic waves in nozzles was first studied in the linear regime by Tsien [START_REF] Tsien | The transfert functions of rocket nozzles[END_REF] with a quasi-one-dimensional nozzle flow assumption. It was later extended to deal with the acceleration of isobaric entropy perturbations by Marble & Candel [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF]. The authors proposed a model to deal with subcritical and supercritical compact nozzles. The compact nozzle hypothesis assumes the nozzle length to be small compared to the entropy and acoustic wavelengths, so that the nozzle can be treated as a discontinuity with the conservation of mass, stagnation temperature and entropy between both extremities. This model is valid for low frequencies solely and does not take the nozzle geometry into account. Analytical developments were also provided for the non-compact supercritical nozzle with a linear velocity profile to illustrate the influence of the frequency on the generated noise. In the same period, different methods have been proposed by Bohn [START_REF] Bohn | Response of a subsonic nozzle to acoustic and entropy disturbances[END_REF] and Bloy [START_REF] Bloy | The pressure waves produced by the convection of temperature disturbances in high subsonic nozzle flows[END_REF] to evaluate the noise generated through non-compact subcritical nozzles. Bohn solved the linearized Euler equations in the frequency domain and especially evidenced the importance of the forcing frequency on the nozzle response by evaluating asymptotic high-frequency reflection and transmission coefficients, whereas Bloy used the method of characteristics to evaluate numerically the pressure fluctuations generated by the acceleration of a temperature disturbance in the time domain. More recently, Stow et al. [START_REF] Stow | Reflection of circumferential modes in a choked nozzle[END_REF] and Goh & Morgans [START_REF] Goh | Phase prediction of the response of choked nozzles to entropy and acoustic disturbances[END_REF] extended the compact solution of Marble & Candel for choked flows [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF] to low frequencies using an effective nozzle length correction through an asymptotic expansion and Moase et al. [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF], Giauque et al. [START_REF] Giauque | Analytical analysis of indirect combustion noise in subcritical nozzles[END_REF] and Duran & Moreau [START_REF] Duran | Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the Magnus expansion[END_REF] generalized the non-compact approach of Marble & Candel to deal with any arbitrary nozzle geometry, without frequency limitation. An extension of the compact model to nonlinear perturbation is proposed by Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] for subcritical and supercritical nozzles without shock.

The compact model of Marble & Candel has been assessed recently through comparisons with the experimental results of the Entropy Wave Generator from DLR [START_REF] Bake | The Entropy Wave Generator (EWG): A reference case on entropy noise[END_REF]. The facility generates entropy fluctuations that are accelerated through a nozzle to produce indirect noise, measured in the downstream section. Experimental pressure time histories are recovered analytically or numerically for instance by Leyko et al. [START_REF] Leyko | Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock[END_REF] in the supercritical regime and Lourier et al. [START_REF] Lourier | Numerical analysis of indirect combustion noise generation within a subsonic nozzle[END_REF] in the subcritical regime. With the help of URANS simulations, Mühlbauer et al. [START_REF] Mühlbauer | Numerical investigation of the fundamental mechanism for entropy noise generation in aero-engines[END_REF] evidenced the relation between the variation of the strength and the distribution of the acoustic sources in the nozzle for different flow regimes and the modification of the generated noise. To end, Giauque et al. [START_REF] Giauque | Thermoacoustic shape optimization of a subsonic nozzle[END_REF] used the quasi-one-dimensional nozzle flow equations to link the entropy source term with the local velocity gradient and provide a formula to evaluate rapidly the entropy source distribution throughout the nozzle.

The linear approaches used in most of the studies above are legitimate for mid-to high-frequency excitations which, having small wavelengths, are subject to intense turbulent dissipation in the burnt gas region before the nozzle or turbine stage. They may however reach their limits when low-frequency entropy forcings are considered. Indeed, below a few hundred Hz the wavelength of such fluctuations becomes comparable to the turbulent integral scale in the engine and no significant damping is expected in this case between the flame and the combustion chamber outlet. Recent studies have shown both numerically and experimentally the influence of coherent entropy waves on the onset or sustainability of combustion instabilities [START_REF] Giauque | Fonctions de transfert de flamme et énergies de perturbation dans les écoulements réactifs[END_REF][START_REF] Brear | Disturbance energy transport and sound production in gaseous combustion[END_REF][START_REF] Goh | The influence of entropy waves on the thermoacoustic stability of a model combustor[END_REF][START_REF] Hochgreb | Forced and self-excited instabilities from lean premixed, liquid-fuelled aeroengine injectors at high pressures and temperatures[END_REF][START_REF] Motheau | Analysis and modeling of entropy modes in a realistic aeronautical gas turbine[END_REF][START_REF] Motheau | Mixed acoustic-entropy combustion instabilities in gas turbines[END_REF] and it seems reasonable to consider that such entropy perturbations can lie in the nonlinear domain. It is the objective of the present work to investigate the indirect combustion noise generated by these low-frequency, nonlinear excitations in supercritical nozzles. This work completes the study of Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] for nonlinear noise generation in nozzle flows without shock and particularly focuses on shocked flow regimes. It relies on the analytical model of Marble & Candel for compact nozzles [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF], initially developed for ex-citations in the linear regime and rederived here for nonlinear perturbations.

The paper is organized as follows. The analytical models are derived in Section 2. The expression of the nonlinear invariants is first recalled and is followed by the full nonlinear models for the supercritical nozzle, without and with a shock. Full nonlinear analytical solutions are provided in the absence of shock, as well as second-order analytical expressions for shocked configurations. A validation of the nonlinear solutions is provided in Section 3 by comparison with numerical simulations. Thorough analyses of the nozzle response to nonlinear forcing are then performed in Section 4, including shock displacement in the diffuser and accuracy of the second-order model. To end, concluding remarks are given in Section 5.

Analytical models

The sound generated by the passage of acoustic or entropy perturbations through a compact nozzle has been determined analytically in the linear regime by Marble & Candel [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF] for subcritical and supercritical nozzles. The authors consider a quasi-one-dimensional nozzle flow with adiabatic walls and a thermodynamically perfect gas, and assume that the nozzle is small with respect to the considered wavelengths so that it can be treated as a discontinuity. The flow itself inside the nozzle is thus replaced by continuity relations for mass, stagnation temperature and entropy to evaluate the generated acoustic waves. Recently, Moase et al. [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF] extended the results to the presence of a normal shock in the diffuser and Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] generalized the linear solutions without shock to nonlinear regimes, with numerical full nonlinear and analytical second-order solutions.

In this section, a new resolution starting from a modified set of equations is first addressed for the supercritical nozzle to provide exact analytical expressions in the nonlinear regime. Additional developments are then proposed to account for the presence of a shock in the diffuser and numerical full nonlinear and analytical second-order solutions are provided. This approach relies on nonlinear expressions of the flow invariants, whose derivation is presented in [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] and recalled hereafter.

For the sake of simplicity, the coupling between different excitations is not considered in the present paper: for any acoustic or entropy forcing, all other excitations are set to 0. This approach to the study of nonlinearities is legitimate because even thermo-acoustic instabilities can be analysed with success in the linear limit as far as acoustics is concerned [START_REF] Paschereit | Measurement of transfer matrices and source terms of premixed flames[END_REF][START_REF] Boudier | Thermo-acoustic stability of a helicopter gas turbine combustor using large-eddy simulations[END_REF][START_REF] Candel | Progress and challenges in swirling flame dynamics[END_REF][START_REF] Wolf | Using LES to study reacting flows and instabilities in annular combustion chambers[END_REF].

In this case, the study of superimposed acoustic and entropy excitations is straightforward because it corresponds to the summation of both linear and nonlinear responses.

Nonlinear invariants

For one-dimensional flows, three invariants are present and correspond to the entropy and acoustic waves. The entropy invariant is defined as the entropy fluctuation nondimensionalized by the heat capacity at constant pressure, and writes

σ = s /c p (1) 
The acoustic invariants are obtained following the developments of Landau & Lifshitz [30]. Let us first write the energy and momentum equations over the pressure and velocity variables for the one-dimensional Euler equations

∂p ∂t + u ∂p ∂x + ρc 2 ∂u ∂x = 0 (2) 
∂u ∂t + u ∂u ∂x + 1 ρ ∂p ∂x = 0 (3) 
where p stands for the pressure, ρ for the density, u for the velocity and c for the speed of sound. Dividing Eq. ( 2) by ±ρc and adding it to Eq. (3), one obtains

∂u ∂t ± 1 ρc ∂p ∂t + (u ± c) ∂u ∂x ± 1 ρc ∂p ∂x = 0 (4) 
From Eq. ( 4), it is straightforward to introduce the nonlinear Riemann invariants

J + = u + p+p p dp ρc , J -= u - p+p p dp ρc (5) 
where the superscript (•) indicates a flow variable in the steady state and the superscript (•) a flow perturbation from this steady state, to rewrite the previous equation as the propagation equation of the forward and backward nonlinear acoustic waves

∂ ∂t + (u ± c) ∂ ∂x J ± = 0 (6) 
To evaluate the integral term dp/ρc of J ± , one uses the entropy differential for an ideal gas ds/c p = dT /T -(γ -1) /γ × dp/p, where T is the gas temperature, to write

dp ρc = 2 γ -1 dc - c γ -1 ds c p ( 7 
)
The integration is straightforward for an isentropic flow, where ds/c p = 0. In the presence of an entropy perturbation, such an integration cannot be performed in the general case because dp/ρc is no longer a perfect differential [30]. More precisely, the integral cds cannot be evaluated because the integrand is a function of the temperature and thus does not depend solely on the entropy variation but also on the pressure perturbation. Integration can nevertheless be performed assuming a quasi-static evolution of the isobaric entropy fluctuation. In that case, the entropy perturbation can be considered as a modification of the mean flow values and the evaluation of the integral term is achieved considering the modified mean flow quantities. For a nondimensional entropy perturbation σ, the mean sound speed is changed from c to ce σ/2 and the nonlinear Riemann invariants write, after some manipulations to express the fluctuations of sound speed as a function of pressure perturbations

J ± = u ± 2ce σ/2 γ -1 1 + p p γ-1 2γ -1 (8) 
To help comparisons with the linear model of Marble & Candel [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF], the invariants Γ ± given in Eq. ( 9) are preferred in the following instead of J ± because they collapse with the linear invariants P ± of Marble & Candel [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF] for small amplitude perturbations.

Γ ± = 1 2 2 γ -1 1 + p p γ-1 2γ -1 ± u ce σ 2 (9) 

Nonlinear model

The flow is assumed to be adiabatic and one-dimensional. It is oriented towards the increasing x-axis and the nozzle is described by its section A(x), as illustrated in Fig. 1. Subscripts (•) 1 and (•) 2 refer to the variables upstream and downstream of the nozzle. Whatever the nozzle regime, the entropy wave σ 1 and the acoustic wave Γ + 1 enter the nozzle whereas σ 2 , Γ - 1 and Γ + 2 leave the nozzle. The acoustic wave Γ - 2 either enters or leaves the nozzle, depending on the subsonic or supersonic outlet Mach number. 

Supercritical nozzle

For the supercritical nozzle, the flow is supersonic at nozzle outlet. Two waves enter the nozzle and four have to be determined, four equations are therefore required to solve the system. Because there is no shock in the diffuser the flow is isentropic and the stagnation temperature

T t = T 1 + γ -1 2 M 2 (10) 
and the entropy

s = c p ln p 1 γ ρ ( 11 
)
are constant throughout the nozzle. The last two equations can be provided by the conservation of mass and the choked nozzle condition [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF], however the nonlinear system is then too complex to be solved analytically [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF]. In the present paper, it is preferred to replace those equations with the ones describing the Mach number evolution upstream and downstream of the nozzle.

M = u c (12) 
For a flow at equilibrium, a unique property of the supercritical nozzle is the Mach number being fixed by the geometry [START_REF] Anderson | Modern compressible flow with historical perspective, 2nd Edition[END_REF]. In the present case, the compact assumption supposes the frequencies of the perturbations to be very low, hence the flow can be considered locally at equilibrium (quasistatic hypothesis) and upstream and downstream Mach numbers do not vary in time in the presence of a forcing. The perturbative form of Eqs. ( 10)-( 12) writes, as a function of the nonlinear characteristics [14]

T t T t = 1 1 + γ-1 2 M 2 1 + γ -1 2 Γ + + Γ - 2 e σ + γ -1 2 M 2 1 + 1 M e -σ/2 Γ + -Γ - 2 -1 (13) 
s c p = σ (14) 
M M = 1 + 1 M e -σ/2 Γ + -Γ - 1 + γ -1 2 Γ + + Γ - -1 e -σ/2 -1 (15) 
and the system to solve is

M M 1 = 0; M M 2 = 0; T t T t 2 1 = 0; s c p 2 1 = 0 (16) 
where [•] 2 1 holds for the jump condition between the upstream (index 1) and downstream (index 2) parts of the nozzle and [•] 1/2 to the quantity evaluated at position 1 or 2. The analytical resolution of the system is performed using the computer algebra system SAGE [START_REF] Stein | Sage Mathematics Software (Version 6.0), The Sage Development Team[END_REF] and solutions are reproduced in Table 1. These expressions correspond to the exact nonlinear analytical solutions for the supercritical nozzle and are valid whatever the amplitude of the forcing. It has been verified that the second-order Taylor expansions of the expressions collapse with the solutions of Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF].

Supercritical nozzle with shock

When the back pressure imposed at nozzle outlet does not correspond to the discharge pressure of the chocked nozzle, the flow is not adapted and shocks appears in the flow. If the back pressure is sufficiently large compared to the discharge pressure, a normal shock forms inside the diffuser. The presence of the shock as well as the subcritical downstream Mach number evolution modify the noise generated by the passage of acoustic and entropy waves through the nozzle, compared to the supercritical nozzle without shock.

In the presence of a shock in the diffuser, the acoustic wave Γ - 2 enters the nozzle and three waves have to be determined, requesting three equations.

upstream acoustic forcing Γ + 1 Γ - 1 = 1 -1 2 (γ -1) M 1 1 + 1 2 (γ -1) M 1 Γ + 1 Γ + 2 = 1 + 1 2 (γ -1) M 2 1 + 1 2 (γ -1) M 1 Γ + 1 Γ - 2 = 1 -1 2 (γ -1) M 2 1 + 1 2 (γ -1) M 1 Γ + 1 entropy forcing σ 1 Γ - 1 = M 1 e -σ 1 /2 -1 1 + 1 2 (γ -1) M 1 Γ + 2 = - M 2 -M 1 2 e -σ 1 /2 -1 1 + 1 2 (γ -1) M 1 Γ - 2 = M 2 + M 1 2 e -σ 1 /2 -1 1 + 1 2 (γ -1) M 1
Table 1: Nonlinear analytical solutions for the supercritical nozzle.

The flow is still adiabatic therefore the stagnation temperature remains conserved throughout the nozzle. The flow is also supercritical upstream of the shock, so that M 1 = 0 still holds. The entropy is nevertheless not conserved through the shock [START_REF] Anderson | Modern compressible flow with historical perspective, 2nd Edition[END_REF] and in its downstream region the flow is subcritical and the Mach number M 2 may vary in the presence of low-frequency perturbations. Associated relations are not valid anymore and the third equation requested is provided by the conservation of mass

ṁ = ρuA (17) 
whose perturbation form writes [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] 

ṁ ṁ = 1 + 1 M e -σ/2 Γ + -Γ - 1 + γ -1 2 Γ + + Γ - 2/(γ-1) e -σ -1 (18) 
The perturbed flow is therefore described by the following set of equations

M M 1 = 0; T t T t 2 1 = 0; ṁ ṁ 2 1 = 0 ( 19 
)
Unlike the supercritical nozzle without shock, no simple analytical solutions seem to exist for Eqs. [START_REF] Giauque | Thermoacoustic shape optimization of a subsonic nozzle[END_REF] and a numerical resolution of the system is required.

Second-order model

The linear analytical solutions provided by Marble & Candel [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF] for the supercritical nozzle and by Moase et al. [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF] for the supercritical nozzle with shock are obtained by solving a first-order Taylor expansion of the equations above. Solutions are provided in the form Γ ± /ε = β where Γ ± corresponds to the generated wave, ε to the forcing and β depends on the fluid adiabatic coefficient γ and the steady upstream and downstream Mach numbers M 1 and M 2 . For a harmonic excitation ε = ε 0 cos ω 0 t, the generated waves are also harmonic with the same angular frequency ω 0 . In this section, the Taylor expansion of the equations is extended to second order and solutions are sought in the form Γ ± /ε = αε + β. Considering the harmonic forcing given above, the generated waves write

Γ ± = 1 2 αε 2 0 + 1 2 αε 2 0 cos (2ω 0 t) + βε 0 cos (ω 0 t) (20) 
Second-order solutions do not modify the amplitude of the generated wave at the fundamental angular frequency ω 0 but predict additional noise at the first harmonic 2ω 0 . Second-order solutions of the supercritical nozzle are detailed in Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF]. In the present document, focus is given on the supercritical nozzle with shock. Second-order Taylor expansions of conservation relations in Eqs. [START_REF] Giauque | Thermoacoustic shape optimization of a subsonic nozzle[END_REF] are provided in Appendix A. All analytical developments are performed using the computer algebra system SAGE [START_REF] Stein | Sage Mathematics Software (Version 6.0), The Sage Development Team[END_REF].

Analytical resolution of the second-order system

The nozzle being supercritical upstream of the shock, the flow is identical to that of the supercritical nozzle in the converging part. The generated wave Γ - 1 , provided by the resolution of M 1 /M 1 = 0, is therefore unchanged compared to the supercritical nozzle. Its full nonlinear expression is given in Table 1 and an extensive investigation of its second-order expansion is performed by Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF].

The contribution of the present paper corresponds to the determination of the waves Γ + 2 and σ 2 generated at the downstream end of the nozzle. The amplitude of those two waves is provided through the resolution of the remaining relations of Eqs. [START_REF] Giauque | Thermoacoustic shape optimization of a subsonic nozzle[END_REF]. The methodology for the resolution of the nonlinear system is illustrated in Fig. 2 for an entropy forcing σ 1 but the resolution is very similar for an acoustic forcing. The resolution is based on successive substitutions and Taylor expansions of the generated characteristic wave expressions into the conservation equations of mass and stagnation temperature.

In a first step, the system to solve is simplified by considering only one incoming wave and assuming all other forcings to be nil. For an entropy forcing σ 1 , for instance, Γ + 1 = Γ - 2 = 0. The wave Γ - 1 is provided by the resolution of the full nonlinear relation M 1 /M 1 = 0 (see Table 1) and its second-order Taylor expansion is used to express the remaining relations as functions of the forcing σ 1 , the downstream waves Γ + 2 , σ 2 and the flow parameters only. The mass conservation relation ṁ / ṁ 2 1 = 0 is used in a second step to write the acoustic wave Γ + 2 as a function of the inlet and outlet entropy fluctuations. This relation being a second-order polynomial, two solutions must be considered for Γ + 2 . Their second-order Taylor expansions are substituted in the stagnation temperature relation. Step 3 corresponds to the resolution of the stagnation temperature relation to provide the outlet entropy wave. As a consequence of the two solutions considered for Γ + 2 , there are 2 different expressions for this relation, leading to 4 solutions. One discriminates between the physical and non-physical solutions because the non-physical solutions have a non-zero amplitude even in the absence of forcing. A Taylor expansion provides the second-order expression of σ 2 . To end, σ 2 is substituted in the physically valid expression of Γ + 2 in step 4 and the second-order expression of the wave is obtained thanks to a Taylor expansion.

α = 1 2 M 2 1 + M 2 3 1 -γ-1 2 M 2 1 + (γ -1) M 2 3 1 1 + γ-1 2 M 1 2 × 2(γ 4 -4γ 3 + 6γ 2 -4γ + 1)M 6 2 + (γ 5 -2γ 4 + 2γ 2 -γ)M 5 2 -2(2γ 4 -9γ 3 + 15γ 2 -11γ + 3)M 4 2 + 2(γ 3 -2γ 2 + γ)M 3 2 -2(4γ 3 -11γ 2 + 10γ -3)M 2 2 -(3γ 3 -4γ 2 + γ)M 2 + 2(3γ -1) ] β = M 2 3γ -1 + (γ -1) 2 M 2 2 1 + 1 2 (γ -1) M 1 1 + M 2 1 + (γ -1) M 2 σ 2 α = γ -1 2 1 1 + M 2 1 -γ-1 2 M 2 1 + (γ -1) M 2 3 1 1 + γ-1 2 M 1 2 × (γ 4 -2γ 3 + 2γ -1)M 5 2 + 2(γ 3 -2γ 2 + γ)M 4 2 + 4(γ 2 -2γ + 1)M 3 2 -2(γ 3 -2γ 2 + 1)M 2 2 -(7γ 2 -6γ + 3)M 2 -2γ + 2) ] β = 2 (γ -1) 1 -M 2 1 -1 2 (γ -1) M 2 1 + 1 2 (γ -1) M 1 1 + (γ -1) M 2
α = - γM 2 1 + M 2 3 1 1 + (γ -1) M 2 3 × (γ 3 -3γ 2 + 3γ -1)M 4 2 + 2(γ 2 -2γ + 1)M 2 2 -(γ + 1) β = 1 -M 2 1 + M 2 1 -(γ -1) M 2 1 + (γ -1) M 2 σ 2 α = - γ -1 1 + M 2 1 1 + (γ -1) M 2 3 × (γ 3 -3γ 2 + 3γ -1)M 4 2 + 2(γ 2 -2γ + 1)M 3 2 + 2(γ 2 -γ)M 2 2 +2(2γ -1)M 2 -(γ -1) ] β = -2 (γ -1) 1 -M 2 1 + (γ -1) M 2
The coefficients α and β of the second-order solutions are provided in Tables 234, for acoustics forcings Γ + 1 , Γ - 2 and entropy forcing σ 1 respectively. It has been verified that the coefficients β correspond to those given by Moase et al. [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF] in the linear regime (the factor 1/2 that appears between Moase and the present paper for certain terms comes from a different definition of the acoustic invariants in the two documents).

Numerical validation

The full nonlinear and second-order solutions determined in Section 2 are now validated by means of comparisons with numerical simulations for the supercritical nozzle with shock. Computations are performed with the code Sunday developed at Onera. In its current version, Sunday solves the α = -1 16

M 2 1 + M 2 3 1 1 + (γ -1) M 2 3 1 1 + γ-1 2 M 1 2 × (γ 4 -2γ 3 + 2γ -1)M 1 M 6 2 + 2(γ 3 -3γ 2 + 3γ -1)M 7 2 +2(2γ 4 -5γ 3 + 4γ 2 -γ)M 1 M 5 2 + (γ 4 + γ 3 -7γ 2 + 7γ -2)M 6 2 -2(γ 4 -2γ 3 + γ 2 )M 2 1 M 3 2 + (γ 4 -3γ 3 + 6γ 2 -7γ + 3)M 1 M 4 2 +2(γ 3 + γ 2 -5γ + 3)M 5 2 -(γ 4 -γ 3 )M 2 1 M 2 2 +2(γ 3 -3γ 2 + 2γ)M 1 M 3 2 + 2(γ 3 + 3γ 2 -7γ + 3)M 4 2 -2(γ 3 -γ 2 )M 2 1 M 2 -(γ 3 + 6γ 2 -8γ + 3)M 1 M 2 2 +2(2γ 2 + γ -3)M 3 2 -2γ 2 M 2 1 -2(3γ 2 + γ)M 1 M 2 -(γ 2 -7γ + 6)M 2 2 -(3γ -1)M 1 + 2(γ + 1)M 2 + 2 ] β = 1 2 M 2 1 -γM 1 + (γ -1) M 2 2 1 + M 2 1 + (γ -1) M 2 1 + γ-1 2 M 1 σ 2 α = - 1 16 
(γ -1) quasi-one-dimensional nonlinear Euler equations for the conservative variables. The steady mean flow is computed in a first step, after which acoustic or entropy disturbances are injected. The resolution is performed using finite differences; space derivatives are computed using the optimized 11-point scheme and selective filter proposed by Bogey & Bailly [START_REF] Bogey | A family of low dispersive and low dissipative explicit schemes for flow and noise computations[END_REF] and time integration is done with the standard explicit fourth-order Runge-Kutta algorithm.

M 2 + M 1 1 + M 2 1 1 + (γ -1) M 2 3 1 1 + γ-1 2 M 1 2 × (γ 3 -γ 2 -γ + 1)M 5 2 + 2(γ 2 -γ)M 4 2 + (γ 3 -γ 2 )M 1 M 2 2 +4(γ -1)M 3 2 + 2γ 2 M 1 M 2 + 2(γ + 1)M 2 2 -3(γ -1)M 2 -2 ] β = 1 + γ-1 2 M 2 1 + M 2 + γ(γ-1) 2 M 1 M 2 1 + γ-1 2 M 1 1 + (γ -1) M 2
Centred schemes are used inside the computational domain and are switched to the upwind schemes proposed by Berland et al. [START_REF] Berland | High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems[END_REF] near the boundaries. Non-reflective boundary conditions are implemented at both extremities of the numerical domain following the characteristics decomposition of Thompson [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF][START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems, II[END_REF]. In order to ensure perfectly nonreflective conditions as well as undistorted waves injection in the nonlinear regime, the implementation of the boundary conditions follows the modified form proposed by Huet [START_REF] Huet | One-dimensional characteristic boundary conditions using nonlinear invariants[END_REF]. Sunday has been validated for noise generation through a nozzle in both linear and nonlinear regimes [START_REF] Giauque | Analytical analysis of indirect combustion noise in subcritical nozzles[END_REF][START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] . The nozzle geometry is based on the generic nozzle shape proposed by Sigman & Zinn [START_REF] Sigman | A finite element approach for predicting nozzle admittances[END_REF], illustrated in Fig. 3. In the converging and the diverging parts, the section radius evolves linearly with the axial distance. A circular shape is used to smooth the transition at the nozzle inlet, throat and outlet. The definition of the inlet, outlet and throat Mach numbers, the circle radii at the inlet, outlet and nozzle throat and converging and diverging section lengths are sufficient to design any nozzle of this family, allowing investigation of a wide range of flows from subcritical to supercritical regimes.

The nozzle characteristics and flow conditions correspond to the nozzle N1 of Table 5. The simulations are run for air with constant specific heat ratio γ = 1.4 and the flow corresponds to a supercritical nozzle with a shock -Sunday; × first-order model [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF]; second-order model; • full nonlinear model. in the diffuser. The upstream and downstream Mach numbers are chosen to exhibit a nozzle regime where the second-order solution for Γ + 2 differs from the full nonlinear response (see Section 4 for more details). The forcing corresponds to a harmonic entropy perturbation σ(t) = σ 0 sin (2πt/τ 0 ) with σ 0 = 0.5 and τ 0 = 1 s to ensure the compactness of the nozzle. Simulated and analytical time signals of the invariants are reproduced in Fig. 4. As pointed out previously, the upstream acoustic wave Γ - 1 is identical to that obtained in the absence of shock and its analytical expression has been validated in a previous study [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF]. Focus is given here on the waves generated at the downstream end of the nozzle. The entropy wave σ 2 is visible in Fig. 4 (a). All analytical solutions collapse with the simulated signal. The very good agreement between the simulation and the first-order analytical signal especially indicates that the generated wave is harmonic, with negli-gible nonlinear contributions. Figure 4 (b) reproduces the time signature of the acoustic wave. The large discrepancies between the simulation and the first-order analytical signal indicates that, in the present case, the generated wave is not harmonic and cannot be described solely with the fundamental frequency of the forcing. Taking into account the first harmonic of the forcing improves the reproduction of the simulated wave, even if some differences remain visible especially at t/τ 0 ∼ 0.25 and 0.75. Finally, the full nonlinear solution, where all harmonics of the forcing are considered, collapses with the simulated data. This last result particularly validates the nonlinear model presented in the previous section and illustrates its capacity to predict the generation of indirect combustion noise in the nonlinear regime.

M 1 M t M 2 L c L d r i r t r o N1 0.

Analysis of nozzle response to nonlinear forcing

The analytical model developed in Section 2 provides the amplitude of the waves generated by nonlinear acoustic or entropy forcings. Nonlinear acoustic fluctuations are however seldom observed in practical applications because they correspond to very high pressure fluctuations rarely to be generated even in the case of combustion instabilities [START_REF] Paschereit | Measurement of transfer matrices and source terms of premixed flames[END_REF][START_REF] Boudier | Thermo-acoustic stability of a helicopter gas turbine combustor using large-eddy simulations[END_REF][START_REF] Candel | Progress and challenges in swirling flame dynamics[END_REF][START_REF] Wolf | Using LES to study reacting flows and instabilities in annular combustion chambers[END_REF]. Recent studies however evidenced the role of coherent entropy spots, that may lie in the nonlinear domain, on the onset or sustainability of combustion instabilities [START_REF] Giauque | Fonctions de transfert de flamme et énergies de perturbation dans les écoulements réactifs[END_REF][START_REF] Brear | Disturbance energy transport and sound production in gaseous combustion[END_REF][START_REF] Motheau | Analysis and modeling of entropy modes in a realistic aeronautical gas turbine[END_REF][START_REF] Motheau | Mixed acoustic-entropy combustion instabilities in gas turbines[END_REF]. The investigation is therefore limited in the present section to entropy forcings. The supercritical nozzle has been thoroughly studied in [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] and analyses are limited here to the downstream waves for the supercritical nozzle with shock.

Shock location in the diffuser

For a steady flow, the location of the shock in the diffuser is determined by the flow conditions, such as the stagnation pressure ratio between nozzle outlet and inlet p t,2 /p t,1 . A forcing changes the flow conditions and hence modifies the position of the shock, as illustrated in Fig. 5. For a given geometry, the position of the shock can be determined thanks to the steady shock Mach number in the supersonic region M s,u , using the mass conservation relation (see Appendix B for the derivation of the relations used in this section) where A s stands for the nozzle section at the shock location and A ref and M ref to the nozzle section and steady Mach number at a reference position in the supercritical region (for instance at nozzle throat where M = 1).

A s = A 1 M ref 1 + γ-1 2 M 2 ref -(γ+1)/2(γ-1) M s,u 1 + γ-1 2 M
In the presence of a forcing, the shock displacement inside the diffuser is provided by the new value of the shock Mach number in the supersonic region M s,u , function of the entropy forcing σ 1 . In the present case, Eq. ( 21) remains valid because the nozzle compactness hypothesis assumes the forcing frequency to be low and therefore the flow evolution to be quasi-static. To determine M s,u as a function of σ 1 , it is convenient to express the stagnation pressure ratio between nozzle outlet and inlet p t,2 /p t,1 in two different ways. The flow being adiabatic, the compact nozzle assumption indicates that, even in the presence of perturbations, the stagnation pressure is uniform in the supercritical and subcritical regions. Its ratio between nozzle outlet and inlet writes, as a function of the shock Mach number in the supersonic region M s,u

p t,2 p t,1 = γ -1 γ + 1 + 2 (γ + 1) M 2 s,u -γ/(γ-1) 2γ γ + 1 M 2 s,u - γ -1 γ + 1 -1/(γ-1) (22) 
Using the definition of the stagnation pressure as a function of the steady pressure and the Mach number, this ratio writes also, after some algebra Equation ( 23) relates the stagnation pressure ratio to the entropy forcing σ 1 , through the waves generated at nozzle inlet and nozzle outlet. Combining Eqs. ( 22) and ( 23), it provides the relation between M s,u and σ 1 that can be solved numerically to obtain the shock Mach number, leading finally to the shock position through Eq. ( 21).

p t,2 p t,1 = p t,2 p t,1 1 + γ-1 2 Γ + 2 + Γ - 2 1 + γ-1 2 Γ + 1 + Γ - 1 2γ/(γ-1) 1 1 + γ-1 2 M 2 2 γ/(γ-1) ×   1 + γ -1 2 M 2 e -σ 2 /2 Γ + 2 -Γ - 2 1 + γ-1 2 Γ + 2 + Γ - 2 2   γ/(γ-1) (23) 
The analytical evolution of the shock location is represented in Fig. 6 for the nozzle and flow conditions N2 described in Table 5. The fluid considered is air (γ = 1.4). The shock location obtained numerically with the code Sunday is also reproduced in the Figure . An excellent agreement is observed between the two solutions, which illustrates the accuracy of the analytical method to determine the shock displacement in the diffuser. For positive entropy forcings, the shock moves upstream towards the nozzle throat whereas it moves towards the nozzle outlet for negative forcings. Changes are expected in the nozzle regime when the shock reaches one of the two extremities of the diffuser. When it reaches the nozzle throat, the flow is no longer choked and becomes subsonic. This corresponds to unchoked flow regime. At the opposite, when the shock travels through the nozzle outlet the flow becomes totally supercritical in the nozzle. Moase et al. [START_REF] Moase | The forced response of choked nozzles and supersonic diffusers[END_REF] refer to this condition as over-choked regime. Maximum entropy fluctuations leading to regime change are discussed in the next section.

In Fig. 6, the shock moves towards the nozzle throat for positive entropy forcings and towards the nozzle exit for negative forcings. A simple linear analysis indicates that this behaviour is observed for any diffuser, whatever the steady flow inside the nozzle. Let us first combine Eqs. ( 22) and ( 23) and perform a first-order Taylor expansion over M s,u /M s,u and the invariants to provide a linear relation between the Mach number variation at the shock and the invariants. After substitution of the invariants by their linear analytical expressions provided in Table 4, it finally comes

M s,u M s,u = -    1 + γ 2M 2 s,u -1 2 M 2 s,u -1 2    1 + γ-1 2 M 2 s,u 1 + γ-1 2 M 2 2 × 1 -M 2 2 M 1 + M 2 1 + (γ -1) M 2 1 + γ-1 2 M 2 2 1 + γ-1 2 M 1 σ 1 ( 24 
)
As M s,u > 1 and M 2 < 1, all the terms inside parentheses are positive so that M s,u and σ 1 are of opposite signs. It is therefore obvious (see Fig. 5 for instance) that positive entropy forcings move the shock towards the nozzle throat whereas it is shifted towards the nozzle exit for negative forcings.

Maximum forcing amplitude for conservation of nozzle flow regime

The models derived in Section 2 are valid if the flow regime does not change through time while the inlet perturbation goes through the nozzle.

In the absence of shock, the Mach numbers at nozzle inlet and nozzle outlet do not fluctuate in the presence of low-frequency forcing perturbations, so that the flow regime remains unchanged whatever the amplitude of the entropy forcing. For shocked flows, however, as pointed out in Section 4.1 the shock moves inside the diffuser with the entropy forcing and a forcing too large may lead to unchoke or over-choke of the nozzle flow. The maximum harmonic entropy forcing that ensures the shock to stay positioned inside the diffuser is now determined as a function of the steady Mach numbers at nozzle inlet, shock location and nozzle outlet.

From the results of the section above, the shock stays located in the diverging section if 1 < M s,u < M 2 , where M 2 > 1 corresponds to the outlet Mach number for the supercritical nozzle without shock (see Appendix B for its evaluation). M s,u = 1 corresponds to the unchoke criterion and M s,u = M 2 to the over-choke criterion. For given steady flow conditions, the maximum entropy forcing σ max is sought numerically through iterative evaluations of M s,u using Eqs. [START_REF] Goh | The influence of entropy waves on the thermoacoustic stability of a model combustor[END_REF] and [START_REF] Hochgreb | Forced and self-excited instabilities from lean premixed, liquid-fuelled aeroengine injectors at high pressures and temperatures[END_REF]. The maximum harmonic entropy forcing to be applied is reproduced in Fig. 7 as a function of the steady inlet Mach number M 1 , outlet Mach number M 2 and shock Mach number in the subsonic region M s,d . A detailed view for the fixed value M 1 = 0.2 is visible in Fig. 8. In these figures, it is preferred to consider the shock Mach number in the subsonic region M s,d instead of M s,u because the former is bounded, (γ -1)/2γ < M s,d < 1, which simplifies the graphical representation of the maximum entropy forcing for all possible flow values. Both Mach numbers are linked by the following relation (see Appendix B)

M 2 s,d = 1 + γ-1 2 M 2 s,u γM 2 s,u -γ-1 2 (25) 
The nozzle being compact, its precise geometry is not considered in the present evaluations; it is assumed to be composed of a converging section and a diffuser, the latter presumed to be strictly diverging. The case of double-throat nozzles is therefore not considered and the subsonic shock Mach number is higher than the outlet Mach number. Hence, the region of Fig. 7 where M s,d < M 2 has no physical meaning and thus no associated value of σ max . This region is delimited by the isosurface σ max = 0. It corresponds to steady flow regimes where the shock is located at nozzle exit. Any harmonic entropy fluctuation will lead to an over-choke of the flow. When the shock Mach number grows compared to the outlet Mach number, the shock is able to oscillate in the diffuser and the maximum entropy forcing rises. It remains however low for large values of M s,d , which correspond to configurations where the shock is close to the nozzle throat and small entropy fluctuations are sufficient to provoke unchoke. For low values of M 2 and M s,d , the steady shock is located far enough from the extremities of the diffuser to allow large entropy forcings without change in the flow regime. The maximum entropy forcing especially exceeds 0.5 for a large region of the possible steady flows, which is above the fluctuation levels that are expected to be encountered in aeronautical engines. Finally, the shock being located in the diffuser with a sonic throat, unchoke and over-choke conditions show little dependence on the inlet Mach number because the latter contributes only indirectly through the generated acoustic and entropy waves in the nozzle, as visible in Eq. ( 23).

Accuracy of the second-order model

The accuracy of the second-order solutions is now investigated numerically by comparison with the full nonlinear values, for the maximum possible harmonic entropy forcings σ max keeping the flow regimes unchanged. For the cases where the maximum forcing is very large, its value is capped at σ max = 0.5, a value thought to overestimate the maximum physical entropy fluctuation that can occur in real combustion chambers.

The differences between second-order and full nonlinear waves σ 2 and Γ + 2 are reproduced in Fig. 9 as functions of the steady inlet, shock and outlet Mach numbers. These differences are expressed as the relative error of the second-order model compared to the full nonlinear numerical solution, | (Γ order 2 -Γ nonlinear ) /Γ nonlinear |, for all considered entropy forcings σ 1 ≤ |σ max |. As for the maximum entropy forcing, configurations where M s,d < M 2 have no physical meaning and are not considered here; associated regions for σ 2 and Γ + 2 are delimited by isosurfaces with a relative error of 0%, corresponding to σ max = 0.

In the compact assumption, generated waves depend only on the fluid adiabatic coefficient γ and Mach numbers upstream and downstream of the nozzle. The dependence of the second-order solutions with the Mach number at the shock comes from the variation of the maximum possible entropy forcing σ max . The relative error of the second-order model is for instance limited for large values of M s,d for both generated waves because it corresponds to low maximum entropy forcings. In this region, the error remains below 0.1% for σ 2 and below 20% for Γ + 2 . More generally, the relative error remains negligible for σ 2 for all Mach numbers values. The second-order model hence provides very accurate solutions for the generated entropy wave. The secondorder model remains also valid for Γ + 2 when the inlet Mach number is low. For large values of M 1 , however, the relative error rises quickly which makes the second-order solution inaccurate. The error especially exceeds 100% for M 1 between 0.6 and 0.9, as clearly visible in Fig. 10 showing a detailed representation of the error for M 2 = 0.2.

To illustrate the discrepancies between the second-order and full nonlinear solutions, it is convenient to use the extended nozzle describing function proposed by Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF]. It represents the non-dimensional amplitude of the generated wave Γ/ε as a function of the forcing ε. First-order, second-order and full nonlinear extended nozzle describing functions corresponding to the nozzle N1 of Table 5, investigated in Section 3, are reproduced in Fig. 11 for the wave Γ + 2 . The first-order solution corresponds to the constant function Γ + 2 /σ 1 = β (β is the linear nozzle response of Marble & Candel [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF] defined in Table 4). The response to a harmonic forcing is therefore harmonic. For the second-order nozzle response, the solution is linear with a slope α (Γ + 2 /σ 1 = ασ 1 + β) leading to additional noise at the first harmonic of the forcing frequency. Finally, the real evolution of the extended nozzle describing function is obtained with the full nonlinear solution. This solution can exhibit a more complex evolution due to the presence of higher harmonic frequencies in the nozzle response. From the extended nozzle describing function, it is very simple to evaluate the nonlinear response of the nozzle to a harmonic forcing. In Fig. 11, the contribution of several harmonics of the forcing frequency in the nonlinear response of Γ + 2 is made obvious from the discrepancies between first-order, second-order and full nonlinear solutions, as previously observed in Fig. 4 (b) from the different time evolutions of the wave. To end, it is worth mentioning that, for the present configuration, the full nonlinear nozzle response tends to cancel when σ 1 reaches -0.5. A similar cancellation is observed for most of the flow conditions with 0.6 < M 1 < 0.9, which explains the rise of the relative error above 100% for such configurations.

Flow response to forcing with the second-order model

It has been shown in Eq. ( 20) that the nonlinearities taken into account in the second-order model do not modify the amplitude of the generated waves at the forcing frequency but add additional noise at its first harmonic. For a given harmonic forcing of amplitude ε 0 , the non-dimensionalized amplitude of the wave at the fundamental frequency is β and the amplitude ratio between first harmonic and fundamental frequencies is |αε 0 /2β|.

The coefficients above are represented in Fig. 12 for the generated wave σ 2 . Figure 12 (a) corresponds to the non-dimensionalized amplitude of the wave at the fundamental frequency β and Fig. 12 (b) to the amplitude ratio between first harmonic and fundamental frequencies. The latter corresponds to an entropy forcing of amplitude σ 0 = 1. The figure therefore overestimates the ratio for realistic forcings of lower amplitudes. It first appears in Fig. 12 (a) that the amplitude of the generated entropy wave σ 2 at the fundamental frequency is always lower than that of the forcing. The amplitude ratio is 0.84 at minimum and increases with decreasing inlet and increasing outlet Mach numbers. Second, the amplitude ratio between first harmonic and fundamental frequencies is very low for all Mach numbers, |α/2β| < 0.03, nonlinearities are thus negligible and the generated entropy wave is almost harmonic. The second-order model being very accurate for the entropy wave σ 2 , it finally indicates that the generated entropy wave only exhibits negligible nonlinear contributions and is very accurately represented by the first-order model, as illustrated in Fig. 4 (a).

The two coefficients are now reproduced in Fig. 13 for the wave Γ + 2 . The non-dimensional amplitude of the fundamental frequency holds below 0.25, the downstream acoustic wave hence presents levels at least four times smaller than the entropy forcing in the linear regime. For large inlet Mach numbers, this amplitude is very small and even cancels for specific values of M 1 and M 2 . For small amplitude perturbations, it therefore exists shocked nozzle flows that do not generate entropy noise in the downstream direction, at least for low frequencies. This cancellation of the downstream acoustic wave corresponds to the regimes where the relative error of the second-order model rises above 100% in Fig. 9 (b). In the nonlinear regime, the relative contribution of the first harmonic is limited for M 1 < 0.6 and even cancels for M 1 around 0.4. For such flows, the acoustic nozzle response in the downstream direction remains harmonic whatever the amplitude of the entropy forcing. For inlet Mach numbers above 0.6, the ratio |α/2β| rises quickly because β tends to cancel. The absolute amplitude of the first harmonic ασ 2 0 /2 is small but not zero, as illustrated in Fig. 14, and the nozzle is not silent anymore for such nozzle flows.

Conclusion

In this paper, indirect combustion noise generated through a supercritical nozzle is investigated in the nonlinear regime and in the low-frequency limit. This noise is generated by the acceleration of entropy fluctuations through the nozzle. This work completes the study of Huet & Giauque [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] for nonlinear noise generation in nozzle flows without shock and particularly focuses on shocked flow regimes. It relies on the analytical model of Marble & Candel for compact nozzles [START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF], initially developed for excitations in the linear regime and rederived here for nonlinear perturbations.

Full nonlinear analytical solutions are first provided for the supercritical nozzle without shock. In the presence of a shock in the diffuser, no simple analytical solutions seem to exist and a numerical resolution of the system is required for the downstream generated waves. To overtake this limitation and help investigating the nonlinear nozzle responses, a second-order model is proposed and thoroughly analysed for entropy forcings. The validity of the developed models is assessed through comparisons with numerical simulations. The second-order model especially shows to be very accurate for the generated entropy wave whatever the nozzle Mach numbers. Nonlinearities are weak, so that the nozzle response to a harmonic forcing is essentially harmonic. The model is less accurate for the downstream generated acoustic wave for large inlet Mach numbers because this wave tends to cancel in the linear regime for such nozzle flows. Nonlinear contributions are therefore not negligible and significantly modify the time signature of the acoustic wave.

The phenomenon of nozzle regime change due to an incoming entropy fluctuation is also addressed for shocked supercritical nozzles. This change of regime is related to the displacement of the shock and occurs when the shock reaches the nozzle throat or the nozzle outlet, leading respectively to unchoked and over-choked configurations. Keeping the shock located inside the diffuser limits the maximum possible amplitude of the entropy forcing. Such a limitation occurs when the steady shock Mach number in the subcritical region is large or close to the outlet Mach number.

For perturbations in the low-frequency regime, the flow is considered to be locally at equilibrium (quasi-static hypothesis) and the Mach number does not fluctuate in the supercritical region, so that M 1 = M 1 at nozzle inlet (see Section 2.2). Expressing the static pressure fluctuations in the form p = p (1 + p /p), the stagnation pressure ratio reformulates When the negative entropy forcing is large enough, the shock travels through the nozzle outlet and the flow becomes totally supercritical. The flow at nozzle exit is supersonic and its Mach number M 2 can be evaluated analytically using Eq. (B.13). Expressing the mass conservation between nozzle inlet and nozzle outlet for the steady choked flow and for the overchoked flow, it comes 
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 1 Figure 1: Sketch of the modelled nozzle with incoming and outcoming waves.
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 2 Figure 2: Methodology for the resolution of the second-order system for the supercritical nozzle with shock with an entropy forcing.
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 3 Figure 3: General shape of the nozzle geometry proposed by Sigman & Zinn [38].

(a) entropy wave σ 2 (b) acoustic wave Γ + 2 Figure 4 :

 224 Figure 4: Time signature of the generated characteristic waves at nozzle outlet. Entropy forcing of a supercritical nozzle with a shock (M 1 = 0.64, M 2 = 0.2, σ 0 = 0.5). (a) entropy wave σ 2 ; (b) acoustic wave Γ + 2 .-Sunday; × first-order model[START_REF] Marble | Acoustic disturbance from gas nonuniformities convected through a nozzle[END_REF]; second-order model; • full nonlinear model.
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 5 Figure 5: Mach number profiles in the nozzle for different amplitudes of the entropy forcing σ.
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 6 Figure 6: Evolution of the shock location in the diffuser with entropy forcing. -Sunday; • nonlinear model.

Figure 7 :

 7 Figure 7: Maximum entropy forcing σ max that can be applied to a supercritical nozzle with shock for conservation of nozzle flow regime, with respect to the steady Mach numbers at nozzle inlet (M 1 ), nozzle outlet (M 2 ) and at the downstream position of the shock (M s,d ). Evaluation for a diatomic gas (γ = 1.4).
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 8 Figure 8: Detail of the maximum entropy forcing σ max that can be applied to a supercritical nozzle with shock for conservation of nozzle flow regime with M 1 = 0.2. Evaluation for a diatomic gas (γ = 1.4).

(b) entropy wave σ 2 (a) acoustic wave Γ + 2 Figure 9 :

 229 Figure 9: Maximum relative error of the second-order model with comparison to the full nonlinear nozzle response for the waves σ 2 and Γ + 2 . Harmonic entropy forcing with σ max ≤ 0.5 for a diatomic gas, γ = 1.4.
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 10 Figure 10: Detail for M 2 = 0.2 of the maximum relative error of the second-order model with comparison to the full nonlinear nozzle response for the wave Γ + 2 . Harmonic entropy forcing with σ max ≤ 0.5 for a diatomic gas, γ = 1.4.
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 11 Figure 11: Extended nozzle describing function of a supercritical nozzle with a shock forced with entropy for the wave Γ + 2 . M 1 = 0.64, M 2 = 0.2, γ = 1.4. × first-order solution [6]; second-order solution; • full nonlinear solution.
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Figure 12 :

 12 Figure 12: Evolution of the non-dimensionalized amplitude β of the outgoing entropy wave σ 2 at the fundamental frequency and of the amplitude ratio |α/2β| between first harmonic and fundamental frequencies generated by a harmonic entropy forcing, as function of the inlet and outlet Mach numbers. Evaluation for a diatomic gas (γ = 1.4).
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Figure 13 :

 13 Figure 13: Evolution of the non-dimensionalized amplitude β of the outgoing acoustic wave Γ + 2 at the fundamental frequency and of the amplitude ratio |α/2β| between first harmonic and fundamental frequencies generated by a harmonic entropy forcing, as function of the inlet and outlet Mach numbers. The dashed line in Fig. (b) corresponds to β = 0. Evaluation for a diatomic gas (γ = 1.4).

Figure 14 :

 14 Figure 14: Evolution of the amplitude α of the first harmonic frequency of the outgoing waves Γ + 2 generated by a harmonic entropy forcing, as function of the inlet and outlet Mach numbers. Evaluation for a diatomic gas (γ = 1.4). The dashed line corresponds to β = 0 in Fig. 13.
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 11 the stagnation pressure is also uniform in the supercritical and subcritical regions of the flow. Expressing for instance the mass conservation relation at positions a and b of the supercritical or subcritical region relates the sections and Mach numbers of both positions A a M a 1 + γwhich provides the Mach number at position b assuming that the nozzle geometry and the Mach number are known at position a. Appendix B.5. Supercritical outlet Mach number of an over-choked nozzle
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 1162 1 p t,1 1 + γ -The right-hand-side terms of Eqs. (B.15)-(B.16) are equal. They provide the desired relation between the subcritical outlet Mach number and its supercritical over-choked value

Table 2 :

 2 

Second-order analytical solutions for the supercritical nozzle with shock with upstream acoustic forcing Γ + 1 . Solutions write Γ + 2 /Γ + 1 = αΓ + 1 + β and σ 2 /Γ + 1 = αΓ + 1 + β.

Table 3 :

 3 

Second-order analytical solutions for the supercritical nozzle with shock with downstream acoustic forcing Γ - 2 . Solutions write Γ + 2 /Γ - 2 = αΓ - 2 +β and σ 2 /Γ - 2 = αΓ - 2 +β.

Table 4 :

 4 Second-order analytical solutions for the supercritical nozzle with shock with entropy forcing σ 1 . Solutions write Γ + 2 /σ 1 = ασ 1 + β and σ 2 /σ 1 = ασ 1 + β.

Table 5 :

 5 Nozzles characteristics and flow conditions.

		64	1	0.20	10 mm 30 mm 2 mm 2 mm 2 mm
	N2	0.80	1	0.57	10 mm 30 mm 2 mm 2 mm 2 mm

s,u -(γ+1)/2(γ-1)[START_REF] Brear | Disturbance energy transport and sound production in gaseous combustion[END_REF] 

Appendix A. Second-order relations for the supercritical nozzle with shock

The perturbed flow at the extremities of the supercritical nozzle with shock follows Eqs. [START_REF] Giauque | Thermoacoustic shape optimization of a subsonic nozzle[END_REF] that describe the Mach number fluctuation at nozzle inlet and the conservation of the stagnation temperature and mass fluctuation through the nozzle. The Mach number relation at nozzle inlet M 1 /M 1 = 0 directly provides the full nonlinear analytical expression of the upstream gen-erated wave Γ - 1 . Taylor expansions of the conservation relations are however required to provide the second-order analytical nozzle responses in Section 2.4. These second-order expansions are obtained with the computer algebra system SAGE [START_REF] Stein | Sage Mathematics Software (Version 6.0), The Sage Development Team[END_REF] and are the following [START_REF] Huet | A nonlinear model for indirect combustion noise through a compact nozzle[END_REF] 

Appendix B. Relations for a supercritical nozzle with shock Appendix B.1. Mach number variation through the shock The variation of the Mach number through the shock can be expressed using the conservation relations for mass, momentum and energy on both sides of the shock. These relations write respectively [START_REF] Candel | Mécanique des fluides[END_REF] The right-hand-side terms are developed using the definition of the stagnation pressure p t = p 1 + γ-1 2 M 2 γ/(γ-1) and relations. (B.5)-(B.6). To end, according to the compact nozzle assumption the stagnation pressure is uniform in the supercritical and subcritical regions of the flow even in the presence of perturbations, so that p t s,u = p t,1 and p t s,d = p t,2 . All calculations done, it yields to expression (B.8) between the stagnation pressure ratio and the Mach number at the shock

Appendix B.3. Variation of the stagnation pressure in the presence of a forcing By definition, the stagnation pressure ratio writes

Appendix B.4. relation between the Mach number and the section For a steady flow in a nozzle, the Mach number is determined at every location by the geometry and the Mach number value at a reference position through the mass conservation relation, Eq. [START_REF] Lourier | Numerical analysis of indirect combustion noise generation within a subsonic nozzle[END_REF]. For an ideal gas, the mass conservation can be rewritten using stagnation temperature and stagnation pressure. After some basic algebra, it comes The flow being adiabatic, the steady stagnation temperature is uniform throughout the nozzle. The entropy being conserved outside of the shock,