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Abstract

We study Gauss-Manin systems of non tame Laurent polynomial functions. We focuse on
Hori-Vafa models, which are the expected mirror partners of the small quantum cohomology of
smooth hypersurfaces in weighted projectives spaces.

1 Introduction

A point in mirror symmetry is that it suggests the study of new, and sometimes unexpected,
phenomena, on the A-side (quantum cohomology) as well on the B-side (singularities of regular
functions). From this point of view, the case of (the contribution of the ambient part to) the
small quantum cohomology of smooth hypersurfaces in weighted projective spaces is particularly
significant and leads to the study of a remarkable class of regular functions on the torus, the Hori-
Vafa models, see [13], [16], [22] and section 5. The key point is that, unlike the usual absolute
situation, see for instance [9], [10], [11], [12], [23], such functions are not tame and may have some
singular points at infinity (recall in few words that f is tame if the set outside which f is a locally
trivial fibration is made from critical values of f and that these critical values belong to this set
only because of the critical points at finite distance, see section 2.1). In this way, a geometric
situation requires wild functions and this is the opportunity to study them more in detail. One
aim of these notes is to enlighten this interaction between singularities of functions (including
at infinity), Gauss-Manin systems, smooth hypersurfaces in weighted projective spaces, quantum
cohomology and to connect rather classical results in various domains. For instance, it’s worth to
note that an arithmetical condition that ensures the smoothness of a hypersurface in a weighted
projective space gives also a number of vanishing cycles at infinity for the expected mirror partner,
see sections 5.3 and 6.1.
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We proceed as follows: in a first part, we focuse on Gauss-Manin systems of (possibly wild)
regular functions and their Brieskorn modules, emphasizing their relations with singular points
(including at infinity), bifurcation set etc..., see sections 2 and 3. It happens that (and this is a
major difference with the tame case) the Brieskorn module of a Hori-Vafa model f is not of finite
type because the rank of the (localized Fourier transform of the) Gauss-Manin system G of f (see
sections 3 and 5 for the definition of G) is strictly greater than the number of critical points at finite
distance. The difference between the rank of G and the number of critical points at finite distance
should be seen as a number of vanishing cycles at infinity. We discuss an explicit characterization
of these singular points at infinity and their contribution to the Gauss-Manin system of f . Notice
that the situation is slightly different from the classical polynomial case considered in [1], [21] etc...:
as a Hori-Vafa model is a Laurent polynomial we have also to take into account the singular points
on the polar locus of f at finite distance. Fortunately, the results in [28], [29] fit in very well with
this situation.

In a second part, we are interested in the following formulation of mirror symmetry: above the
small quatum cohomology of a degree d hypersurface in a projective space (and we consider here
only the contribution of the ambient space to the small quantum cohomology, see [3], [13], [19] and
section 7.2.1) and above a Hori-Vafa model on the B-side, we make grow a quantum differential
system in the sense of [9], [10]. Two models will be mirror partners if their respective quantum
differential systems are isomorphic. On the B-side, the expected quantum differential system can
be constructed solving a Birkhoff problem for the Hori-Vafa model alluded to, as in the absolute
case (i.e d = 0, see for instance [9], [10], [11], [12], [23]... ), see section 6. In the tame case, this
bundle is provided by the Brieskorn module as defined in section 3.3, which is in this situation a
lattice in G: a difficult point of the theory is to verify that the Brieskorn module is indeed free of
finite rank, and this follows from the tameness assumption. But, and as previously noticed, it will
be certainly not the case for Hori-Vafa models, and we have to imagine something else. We give a
general result in this way for quadrics in P

n, and this was, after [14], one of the triggering factors
of this paper. Precisely, let G be the (localized Fourier transform of the) Gauss-Manin system of
the Hori-Vafa model of a smooth quadric in P

n, see sections 3 and 5. We show in section 6.2 the
following result:

Theorem 1.0.1 We have a direct sum decomposition

G = H ⊕H◦

of free modules, H being free of rank n and being equipped with a connection making it isomorphic
to the differential system associated with the small quantum cohomology of quadrics in P

n.

It follows that the rank of G is greater or equal than n and that it is equal to n if and only if
H◦ = 0. This is what happens for instance for n = 3 et n = 4, see example 5.3.1, and this is what
it is expected in general, see conjecture 5.3.4. The case n = 4 is also considered in [14], using a
different strategy.

These notes are organized as follows: in section 2 we discuss about tameness of regular functions
and we study their Gauss-Manin systems in section 3. In section 4 we gather the results about
hypersurfaces in weighted projective spaces that we need in order to define Hori-Vafa models in
section 5. Their relationship with mirror symmetry is emphasized in section 6. As an application,
we study the case of the quadrics in section 6.2.
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2 Topology and tameness of regular functions

We collect in this section the general results about topology of regular functions that we will need.
Our references are [5], [6] and [23]. The exposition is borrowed from the old preprint [8].

2.1 Isolated singularities including at infinity

Let U be an affine manifold of dimension n ≥ 2, S = C and f : U → S be a regular function. We
will say that f has isolated singularities including at infinity if there exists a compactification

f : X → S

of f , X is quasi-projective and f is proper, such that the support Σs of ϕf−sRj∗CU is at most a
finite number of points. Here, j : U → X denotes the inclusion and ϕ denotes the vanishing cycles
functor [5, Chapter 4]. If it happens to be the case, f has at most isolated critical points on U [5,
Theorem 6.3.17]. If moreover Σs ⊂ U for all s ∈ S, f is said to be cohomologically tame [23].

Let us assume that f has isolated singularities including at infinity. Since pϕ := ϕ[1] preserves
peverse sheaves, Es :=

pϕf−sRj∗CU [n] is a perverse sheaf with support in Σs and thus Hi(Es) = 0
for i 6= 0, because Σs has ponctual support, see [5, Example 5.2.23]. For x ∈ Σs, the fibre
Ex := H0(Es)x is a finite dimensional vector space. More precisely,

• if x ∈ U we have
dimEx = µx and

∑

x∈U

dimEx = µ (1)

µx denoting the Milnor number of f at x and µ the global Milnor number of f , see [5,
proposition 6.2.19],

• if x ∈ Σs ∩ (X − U) we define

νx,s := dimEx, νs :=
∑

x∈Σs∩(X−U)

νx,s and ν :=
∑

x∈X−U

νx,s. (2)

In particular f is cohomologically tame if and only if ν = 0.

Definition 2.1.1 Assume that f has isolated singularities including at infinity. The point x ∈
Σs ∩ (X − U) is a singular point of f at infinity if νx,s > 0.

Let pHi be the perverse cohomology functor : one has, see for instance [5, Theorem 5.3.3]

DR(M(i)) = pHi(Rf∗CU [n])

If f has isolated singularities including at infinity, the perverse sheaves pHi(Rf∗CU [n]) are locally
constant on S for i 6= n because ϕt−s(

pHi(Rf∗CU [n])) = 0 if i 6= n for all s ∈ C [6, 3.1.1] and
[5, Exercise 4.2.13]. It follows that H0(pHi(Rf∗CU [n])) = 0 and that H−1(pHi(Rf∗CU [n])) is a
constant sheaf on S for i 6= n. One has also, using the characterization of perverse sheaves in
dimension 1 [5, Proposition 5.3.6],

0 → H0(pHi(Rf∗CU )) → Rif∗CU → H−1(pHi+1(Rf∗CU )) → 0 (3)
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and therefore
pHi(Rf∗CU ) = (Ri−1f∗CU)[1] (4)

for all i < n because H0(pHi(Rf∗CU )) = 0 for i < n. Notice also that

pHn(Rf∗CU ) = (Rn−1f∗CU )[1] (5)

if Rnf∗CU = 0.
We will use the next proposition it in order to compute the rank of the Fourier transform of

the Gauss-Manin system of some regular functions, see theorem 3.1.2.

Proposition 2.1.2 ([5], [6]) Let f : U → S be a regular function, with isolated singularities
including at infinity.

1. One has
m = µ+ ν + hn−1(U)− hn(U) (6)

where m is the rank of Rn−1f∗CU |V , V = S−∆ denoting the maximal open set in S on which
the restriction of Rn−1f∗CU is a local system.

2. One has
χ(f−1(s′))− χ(f−1(s)) = (−1)n−1(µs + νs) (7)

for all s, s′ ∈ S such that s′ /∈ ∆.

Proof. 1. We give the proof in order to test the definitions. We have, for F• ∈ Db
c(S),

χ(S,F•) = χ(S)χ(S,F•
x)−

∑

s∈S

χ(ϕtsF
•)

where x ∈ S is a generic point and χ(S,F•) =
∑

(−1)p+q dimHp(S,Hq(F•)), see [5, Exercise
4.2.15]. Applying this formula to F• = P = pHn(Rf∗CU), we get

m+ χ(S,P) =
∑

s∈∆

dim pϕtsP = µ+ ν

because f has isolated singularities including at infinity. Because f is affine, we have Rnf∗CU = 0
and thus, using the exact sequence (3), H0(P) = 0. Finally,

χ(S,P) = dimH1(S,H−1P) − dimH0(S,H−1P)

where H−1P = Rn−1f∗CU by (5). We have also (Leray)

0 → H1(S,Ri−1f∗CU) → H i(U,C) → H0(S,Rif∗CU ) → 0

for all i : if i = n, and because f is affine, we get H1(S,Rn−1f∗CU) = Hn(U); if i = n − 1 we
get H0(H−1P) = Hn−1(U) because Rn−2f∗CU is a constant sheaf on S. This gives the expected
equation (6).
2. Analogous proof, see [5, Proposition 6.2.19]. 2

Remark 2.1.3 1. Formula (7) shows that the number of vanishing cycles at infinity ν defined by
(2) is precisely the one defined by Siersma and Tibar and denoted by λ in [28, corollary 4.10], [29,
paragraphe 3]. It also shows that singular points at infinity give a contribution to the bifurcation
set of f , see section 2.3.
2. Formula (7) has also another important consequence: if f has isolated singularities including at
infinity, the numbers νs and ν do not depend on the choosen compactification of f .
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2.2 A particular case : vanishing cycles at infinity with respect to the projective
compactification by the graph

We apply the previous definitions to Laurent polynomials, using the standard compactification by
the graph. We follow here [28] and [29].

Let Y = P
n and

F : Y 99K P
1

be the rational function defined by F (x) = (P (x) : Q(x)) where P and Q are two homogeneous
polynomials of same degree. Let

G = {(x, t) ∈ (Y −A)× P
1 | F (x) = t}

where A = {x ∈ Y | P (x) = Q(x) = 0} and

Y = {(x, (s : r)) ∈ Y × P
1 | rP (x) = sQ(x)} (8)

be the closure of G in Y × P
1. By definition, G is the graph of F restricted to Y − A and thus

G ≃ Y −A. Finally, the inclusion Y −A →֒ Y defines the compactification

Y −A →֒ Y

ց ↓ π
P
1

of F , π denoting the projection on the second factor. With the notations of section 2.1, X = Y

and π = f . The singular locus Ysing of Y is contained in A.
Assume now that the hypersurface Ya := π−1(a) has an isolated singularity at (p, a) ∈ A× {a}

and denote by µp,a the corresponding Milnor number. If Ysing is a curve at (p, a), it intersects Ys,
s close to a, at points pi(s), 1 ≤ i ≤ k. Let µpi(s),s be the Milnor number of Ys at pi(s).

Proposition 2.2.1 Assume that Ya has an isolated singularity at (p, a) ∈ A× {a}. Then

νp,a = µp,a −
k∑

i=1

µpi(s),s.

Proof. Follows from remark 2.1.3 (1) and [28, Theorem 5.1]. 2

This proposition is very explicit when Ysing is a line {p}×C (or a union of lines): indeed, let µp,gen

be the Milnor number of the hypersurface Ys at p for generic s.

Corollary 2.2.2 Assume that Ysing = {p} × C. Then νp,a = µp,a − µp,gen. 2

Remark 2.2.3 We will apply the previous construction to Laurent polynomials

f(x1, · · · , xn) =
P (x1, · · · , xn)

Q(x1, · · · , xn)
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where P and Q have no common factors, Q is monomial and degP ≥ degQ. The homogeneization1

of f is

P (X0,X1, · · · ,Xn)

Q(X0,X1, · · · ,Xn)
:=

Xdeg P
0 P (X1/X0, · · · ,Xn/X0)

Xdeg P
0 Q(X1/X0, · · · ,Xn/X0)

and we will write, for t ∈ C,

F (X0,X1, · · · ,Xn, t) := P (X0,X1, · · · ,Xn)− tQ(X0,X1, · · · ,Xn)

We will have to distinguish two kinds of singular points at infinity: the ones on the hyperplane at
infinity X0 = 0 and the ones on the polar locus at finite distance. In the former case, p = (0 : 1 :
a2 : · · · : an) while in the latter case p = (1 : a1 : · · · : an) with a1 · · · an = 0.

Remark 2.2.4 How to recognize functions that do not have singular points at infinity?
1. The polynomial case. By [21, Theorem 1.3], a polynomial function f is cohomologically tame for
the standard projective compactification by the graph if and only if f satisfies Malgrange’s condition

∃δ > 0, |x||∂f(x)| ≥ δ for |x| large enough,

∂f(x) denoting the gradient of f at x. One can strengthen this condition and use Broughton’s
condition [1]: let us define (and we use here the standard compactification)

T∞(f) = {c ∈ C| ∃ (pn), pn → p ∈ X − U, grad f(pn) → 0, f(pn) → c} (9)

Then f is cohomologically tame if T∞(f) = ∅.

2. Laurent polynomial case. One can also write Malgrange’s condition and Broughton’s conditions
as in [30, 1.3] using formula (8) but one has also to take into account the points p ∈ X −U on the
polar locus at finite distance and for which the previous conditions should be slightly different. The
point is that one can have T∞(f) = ∅, where T∞(f) is defined by (9), for a non cohomologically
tame Laurent polynomial function f , see example 5.3.2 and example 5.3.1 below. This leads to the
following definitions. Let f be a Laurent polynomial:

• if p is a point on the polar locus at finite distance, we define

T fin
∞ (f) = {c ∈ C| ∃ (pn), pn → p, pn grad f(pn) → 0, f(pn) → c} (10)

• if p is a point on the hyperplane at infinity, we define

T∞
∞ (f) = {c ∈ C| ∃ (pn), pn → p, grad f(pn) → 0, f(pn) → c} (11)

The expected result is that f is cohomologically tame if T fin
∞ (f) = T∞

∞ (f) = ∅.

1If n = 2, we will denote by X, Y,Z the homogeneous coordinates and by Z = 0 the hyperplane at infinity.
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2.3 Bifurcation set

Let U be an affine manifold and f : U → C be a non constant regular function. There exists a
finite set B ⊂ C such that

f : U − f−1(B) → C−B

is a locally trivial fibration. The smallest such set, denoted by B(f), is called the bifurcation set
of f and its points are called the atypical values. A value which is not atypical is typical. This
set describes also the singular points of the Gauss-Manin system M of f . In general B(f) =
C(f)∪B∞(f) where C(f) is the set of critical values of f and B∞(f) is a contribution of singular
points at infinity. Keeping the previous notations, one has B∞(f) ⊂ T∞(f) for a polynomial f and

one should expect B∞(f) ⊂ T fin
∞ (f) ∪ T∞

∞ (f) for a Laurent polynomial f .
One can be more precise if f has isolated singularities including at infinity. Keep the notations

of section 2.2 and recall the number νa defined by (2). The next result refines equation (7):

Proposition 2.3.1 [28, Theorem 4.12] Let f be a (Laurent) polynomial with isolated singularities
including at infinity. Then a is typical if and only if νa = µa = 0.

In particular, B(f) = C(f) if f is cohomologically tame.

3 Applications to Gauss-Manin systems and their Fourier trans-

form

We study here the Gauss-Manin systems of regular functions and their Brieskorn modules (of
course, we have in mind Hori-Vafa models). As before, let U be an affine manifold of dimension
n ≥ 2, S = C and f : U → S be a regular function.

3.1 Gauss-Manin systems of regular functions

Let Ωp(U) be the space of regular p-forms on U . The Gauss-Manin complex of f is

(Ω•+n(U)[∂t], df )

where df is defined by

df (
∑

i

ωi∂
i
t) =

∑

i

dωi∂
i
t −

∑

i

df ∧ ωi∂
i+1
t

The Gauss-Manin systems of f are the cohomology groups M (i) of this complex. These are holo-
nomic regular C[t] < ∂t >-modules, see [Bo, p. 308], the action of t and ∂t coming from the one on
Ω•+n(U)[∂t] defined by

t(
∑

i

ωi∂
i
t) =

∑

i

fωi∂
i
t −

∑

i

iωi∂
i−1
t

and
∂t(

∑

i

ωi∂
i
t) =

∑

i

ωi∂
i+1
t

Lemma 3.1.1 Assume that f has isolated singularities including at infinity. Then the modules
M (i) are C[t] free of rank hn−1+i(U) for i < 0.
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Proof. Follows from equation (4) and the fact that H−1(pHi(Rf∗CU [n])) is a constant sheaf on S
for i 6= n if f has isolated singularities including at infinity, see section 2.1. 2

In general, we will put M := M (0) and we will call it the Gauss-Manin system of f . Let M̂ be
its Fourier transform: this is M seen as a C[τ ] < ∂τ >-module where τ acts as ∂t and ∂τ acts as
−t. In particular

M̂ =
Ωn(U)[τ ]

df (Ωn−1(U)[τ ])

where df (
∑

i ωiτ
i) =

∑
i dωiτ

i −
∑

i df ∧ ωiτ
i+1. Let

G := M̂ [τ−1] =
Ωn(U)[τ, τ−1]

df (Ωn−1(U)[τ, τ−1])

be the localized module. Since M is a regular holonomic C[t] < ∂t >-module, G is a free C[τ, τ−1]-
module equipped with a connection whose singularities are 0 and ∞ only, the former being regular
and the latter of Poincaré rank less or equal to 1, see [24, V, prop. 2.2].

Recall that the rank of M is dimC(t)C(t) ⊗C[t] M , and this is also equal to the rank of
C[t, p−1(t)]⊗C[t] M , p−1(0) being the set of the singular points of M .

Theorem 3.1.2 If f has at most isolated singularities including at infinity one has

RankM = µ+ ν + hn−1(U)− hn(U) (12)

and
RankG = µ+ ν (13)

where µ is the global Milnor number of f , see equation (1).

Proof. By formula (5) one hasDR(M) = (Rn−1f∗CU )[1] and it follows thatMa is a freeOa-module
of rank dimHn−1(f−1(a),C) for a /∈ p−1(0). But Oa ⊗C[t] M is also isomorphic to (Oa)

RankM and
it follows that the rank of M is equal to dimHn−1(f−1(a),C). The first formula then follows from
proposition 2.1.2. For the second, we use the exact sequence

... → M (j) ∂t→ M (j) → Hn+j(U,C) → · · · → Hn−1(U,C) → M
∂t→ M → Hn(U,C) → 0

for j ≤ 0. If f has isolated singularities including at infinity, it follows from lemma 3.1.1 that ∂t is
surjective on M (−1) and this gives the exact sequence

0 → Hn−1(U,C) → M
∂t→ M → Hn(U,C) → 0

We also have
RankG = RankM + dim(coker ∂t)− dim(ker ∂t)

see for instance [24, Proposition V.2.2], and the second formula follows from the first one. 2
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3.2 Slopes

We use here the terminology of [18]. Notice the following properties of G:

• G has no ramification because M is regular, see for instance [24, V. 3. b.]. In particular G
has only integral slopes, the slopes 0 and 1.

• IfH is a lattice in G, i.e a free C[θ]-module of maximal rank, stable under θ2∂θ, the eigenvalues
of the constant matrix in the expression of θ2∂θ in a basis of H are precisely the singular
points of the Gauss-Manin system M , see [24, V. 3].

The condition “no ramification“ is a characteristic property of the Fourier transform of regular
holonomic modules, see f.i [25, lemma 1.5]. In order to emphasize it, let us consider the following
example: let M be a meromorphic connection of rank 3 and (ω0, ω1, ω2) a basis of M over C[θ, θ−1]
in which the system takes the form

θ2∂θ = A0 +A1θ

where

A0 =




L1
2q L2

1q
2 L3

0q
3

1 L1
1q L2

0q
2

0 1 L1
0q




and A1 = diag(0, 1, 2). The section ω0 is cyclic and its minimal polynomial Q can have rational
slopes (possible cases 1/2, 1/3 et 2/3) and integral slopes (possible cases 0 and 1), depending on
the values of the coefficients of the matrix A0. Assume moreover that

L1
0 = 60, L1

1 = 312, L1
2 = 60, L2

0 = 20520, L2
1 = 20520 et L3

0 = 1339200

This is the differential system associated with the small quantum cohomology of a smooth hyper-
surface of degree 6 in P(1, 1, 2, 3), see section 7.2.2. Then Q has only two slopes, 0 and 1.

3.3 Brieskorn module

The Brieskorn module G0 of the regular function f on U is by definition the image in G of the
sections that do not depend on τ . Putting θ := τ−1, we have

G0 :=
Ωn(U)[θ]

df (Ωn−1(U)[θ, θ−1]) ∩ Ωn(U)[θ]

where
df (

∑

i

ωiθ
i) =

∑

i

[dωiθ
i+1 − df ∧ ωiθ

i].

If f is cohomologically tame, this module provides a lattice in G, that is a free C[θ]-module of
maximum rank [23]. This result is no longer true in general. Recall the global Milnor number µ
defined in equation (1).

Proposition 3.3.1 Assume that f has only isolated critical points on U .
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1. One has

G0 =
Ωn(U)[θ]

(θd− df∧)Ωn−1(U)[θ]

and
G0

θG0
=

Ωn(U)

df ∧ Ωn−1(U)

this vector space being of dimension µ.

2. The C[θ]-module G0 has no torsion.

3. Sections of G0 are linearly independent over C[θ] if their classes are independent in G0/θG0.

Proof. For assertions 1. and 2. we use the classical generalized de Rham lemma: if f has only
isolated critical points on U , the cohomology groups of the complex (Ω•(U), df∧) all vanish, except
possibly the one in degree n which is equal to

Ωn(U)

df ∧ Ωn−1(U)

In order to show 3., let us assume that
∑µ

i=1 ai(θ)ωi = 0 in G0. If the classes of the ωi’s are
independent in G0/θG0, we first get ai(0) = 0 for all i. Using the fact that G0 has no C[θ]-torsion,
we also get that the coefficients of the monomials θk in the ai(θ)’s all vanish. 2

Corollary 3.3.2 Assume that f has only isolated critical points U . Then

1. RankG ≥ µ.

2. RankG = µ if G0 is free of finite type.

Proof. 1. By proposition 3.3.1 there exists a free module of rank µ in G. 2. If G0 is free of finite
type, it follows from proposition 3.3.1 that its rank is µ. In this case, G0 is a lattice in G and thus
RankG = µ. 2

As a consequence, G0 will not be of finite type if RankG > µ. This happens for instance if f has
isolated singularities including at infinity, see theorem 3.1.2. Notice also that the converse of point
2 is true if we assume moreover that f has isolated singularities including at infinity, see [23].

3.4 Basic example

We test the previous results on a classical wild example [1]. Let f be defined on C
2 by

f(x, y) = y(xy − 1)

It has no critical points at finite distance.

Proposition 3.4.1 1. f has only one singular point at infinity. The number ν of vanishing
cycles at infinity is equal to 1 and B(f) = {0}.
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2. The C[τ, τ−1]-module G is free of rank 1 and the class [dx ∧ dy] of dx ∧ dy is a basis of it.

Proof. 1. This result is well-known but we give the proof in order to set the notations. Let us
keep the notations of section 2.2. Homogeneization of the fibers of f gives

F (X,Y,Z, t) = XY 2 − Y Z2 − tZ3 = 0

where the equation Z = 0 defines the hyperplane at infinity. Notice that Ysing = {p} × C where
p = (1 : 0 : 0) and in order to compute the number of vanishing cycles at infinity we can use
corollary 2.2.2. The Milnor number of the singularity u2 − uv2 − tv3 = 0 at (0, 0) is equal to 2 for
all t 6= 0 and is equal to 3 for t = 0. The point p is thus an isolated singular point of f at infinity
and we have νp,0 = 1 2.
2. By 1. and theorem 3.1.2, we know that G is free of rank 1 over C[τ, τ−1]. The differential form

ω = rxr−1ypdx+ pxryp−1dy,

r, p ≥ 1, is exact. We thus have [df ∧ ω] = 0 and

[(2r − p)xryp+1dx ∧ dy] = [rxr−1ypdx ∧ dy] (14)

in G for r, p ≥ 1. An analogous computation shows that [yp+1dx ∧ dy] = 0 if p ≥ 1 and that
[2rxrydx ∧ dy] = [rxr−1dx ∧ dy] if r ≥ 1. If 2r 6= p, one can express in particular [xryp+1dx ∧ dy]
in terms of [xr−1ypdx ∧ dy]. If 2r = p, notice that

τ [xry2r+1dx ∧ dy] = [xry2rdx ∧ dy] (15)

Indeed, df ∧ xry2r+1dx = (−2xr+1y2r+2 + xry2r+1)dx ∧ dy hence

(2r + 1)[xry2rdx ∧ dy] = 2τ [xr+1y2r+2dx ∧ dy]− τ [xry2r+1dx ∧ dy]

and we get formula (15) using formula (14). This comptutation holds also for r = 0, in particular
τ [ydx ∧ dy] = [dx ∧ dy]. Last,

τ−1[xqdx ∧ dy] = [df ∧
xq+1

q + 1
dy] = [y2

xq+1

q + 1
dx ∧ dy] = [aqx

qydx ∧ dy] = [bqx
q−1dx ∧ dy]

for q ≥ 1, where aq and bq are non zero constant, as shown by formula (14). These observations
show that one can express the class of any form in terms of [dx ∧ dy], which is thus a generator of
G. 2

We will consider other wild examples in section 5.3.

4 Hypersurfaces in weighted projective spaces

In this section we recall basic results about hypersurfaces in weighted projective spaces. We will
consider only smooth hypersurfaces and the goal of this section is to give a characterization of such
objects, see theorem 4.1.3. Our references are [4], [7] and [17].

2To make the link with remark 2.2.4, notice that f(n, 1

2n
) → 0 and grad f(n, 1

2n
) → (0, 0) so that 0 ∈ T∞(f).

11



4.1 Smooth hypersurfaces in weighted projective spaces

Let w0, · · · , wn and d be integers greater than zero. In what follows, except otherwise stated, we
will assume that n ≥ 3 and that the weighs wi are normalized, that is

P.G.C.D.(w0, · · · , ŵi, · · · , wn) = 1 for all i = 0, · · · , n and w0 ≤ w1 ≤ · · · ≤ wn (16)

Recall that a polynomial W is quasi-homogeneous of weight (w0, · · · , wn) and of degree d if

W (λw0u0, · · · , λ
wnun) = λdW (u0, · · · , un)

for any non zero λ. Equation W (u0, · · · , un) = 0 defines a hypersurface H (resp. CH) of degree
d in the weighted projective space P(w) := P(w0, · · · , wn) (resp. C

n+1). The hypersurface H is
quasi-smooth if CH − {0} is smooth.

Example 4.1.1 If d = wi for some index i then W = aiui + g(u0, · · · , ûi, · · · , un), where ai ∈ C
∗

and g is quasi-homogeneous. H is then quasi-smooth and isomorphic to the weighted projective
space P(w0, · · · , ŵi, · · · , wn) via the isoomorphism

(u0, · · · , ûi, · · · , un) 7→ (u0, · · · ,−a−1
i g(u0, · · · , ûi, · · · , un), · · · , un)

In this case, we will say that H is a linear cone.

Let Psing(w) be the singular locus of P(w). The hypersurface H is in general position with
respect to Psing(w) (for short: in general position) if

codimH(H ∩ Psing(w)) ≥ 2 (17)

A hypersurface in general position inherits the singularities of the ambient space:

Proposition 4.1.2 1. Assume that the degree d hypersurface H is in general position and quasi-
smooth. Then

ωH ≃ OH(d−
n∑

i=0

wi) := OP(w)(d−
n∑

i=0

wi)|H

where ωH denotes the canonical bundle. One has also Pic(H) = Z.

2. The singular locus of a quasi-smooth hypersurface H in general position is Hsing = H ∩
Psing(w).

Proof. See [7, Theorem 3.3.4 and Theorem 3.2.4] for 1. and [4, Proposition 8] for 2. 2

Put

w :=
n∑

i=0

wi (18)

Under the assumptions of proposition 4.1.2, we will say that H is Fano if d < w and Calabi-Yau if
d = w. We will mainly consider the Fano case.

We will use the following characterization of smooth hypersurfaces in section 5:

12



Theorem 4.1.3 Let H be a degree d hypersurface in P(w0, · · · , wn). Assume that 3

1. P.G.C.D.(wi, wj) = 1 for all i, j,

2. wi divides d for all i,

3. wi < d for all i.

Then H is not a linear cone, is in general position, quasi-smooth and smooth.

Proof. By [17, I.3.10], a degree d hypersurface is in general position if and only if

P.G.C.D.(w0, · · · , ŵi, · · · , ŵj , · · · , wn)|d

for all i, j, i 6= j, and
P.G.C.D.(w0, · · · , ŵi, · · · , · · · , wn) = 1

for all i. Therefore the first condition shows that H is in general position. The second condition
shows that H is quasi-smooth, see [17, Theorem I.5.1]. Last, and in order to show that H is smooth
we use the following numerical criterion [4]: for any prime p, let us define

m(p) = card{i; p divides wi}, k(p) = 1 if p divides d, 0 otherwise, q(p) = n−m(p) + k(p) (19)

Then the quasi-smooth and in general position degree d hypersurface H is smooth if and only if
q(p) ≥ n for any prime p. The first condition shows that m(p) ≤ 1: if m(p) = 0 we get, by the very
definition, q(p) ≥ n; if m(p) = 1 the second condition shows that k(p) = 1 and thus q(p) = n. 2

Example 4.1.4 (Surfaces) The degree 6 hypersurface in P(1, 1, 2, 3) is in general position and
smooth. It’s a Fano surface. The other smooth Fano surfaces are the surfaces of degree 2 or 3 in
P(1, 1, 1, 1) and surfaces of degree 4 in P(1, 1, 1, 2).

Remark 4.1.5 (Curves) The previous results have been established for n ≥ 3. If H is a curve of
degree d in P(w0, w1, w2) then H is in general position, is smooth and is not a linear cone if and
only if the conditions of theorem 4.1.3 are satisfied [17, Theorem II.2.3].

4.2 The quantum differential equation of a smooth hypersurface

Let H be a degree d smooth hypersurface in the weighted projective space P(w0, · · · , wn). The
differential operator

PH(θq∂q, q, θ) =
n∏

i=0

(wiθq∂q)(wiθq∂q−θ) · · · (wiθq∂q−(wi−1)θ)−q(dθq∂q+θ) · · · (dθq∂q+dθ) (20)

(q is a quantum variable) is called the quantum differential operator of H. We will often write P
instead of PH . We will call

PH(θq∂q, q, θ) = 0 (21)

3The first and the second conditions imply the third except when H is a degree d hypersurface in P(1, · · · , 1, d):
the purpose of the third condition is to remove the linear cones. This will simplify the statements.
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the quantum differential equation. The key point is that the quantum differential equation, which
depends only on combinatorial data, can be used in order to describe the small quantum cohomology
of the H, see for instance [2] and section 7.2.1.

Let us define
MA = C[θ, q, q−1] < θq∂q > /C[θ, q, q−1] < θq∂q > PH (22)

This is a C[θ, q, q−1]-module of finite type.

Proposition 4.2.1 Under the assumptions of theorem 4.1.3, MA is a C[θ, q, q−1]-module of rank
n.

Proof. Notice first that, using the relation ∂qq = q∂q + 1, equation (21) takes the form

θµ
n∏

i=0

wwi

i

n∏

i=0

(q∂q)(q∂q −
1

wi
) · · · (q∂q −

wi − 1

wi
) = θddd(q∂q)(q∂q −

1

d
) · · · (q∂q −

d− 1

d
)q (23)

By assumption, wi divides d: we write d = miwi and we define

vi := card{k ∈ {1, · · · , d− 1}; mi divides k}

for i = 0, · · · , n. Let k ∈ {1, · · · , d − 1}. If mi divides k, write k = miℓi : we have dℓi = kwi and
thus ℓi

wi
= k

d . Conversely, if there exists k ∈ {1, · · · , d− 1} such that ℓi
wi

= k
d then k = miℓi. Using

(23) we see that, after cancellation of the common factors on the left and on the right, the quantum
differential operator PH is of degree w0 + · · · + wn − 1 −

∑n
i=0 vi in q∂q. If d = w1 · · ·wn we have

vi = wi − 1 for i = 1, · · · , n and the proposition follows because the rank of MA is the degree of
the irreducible polynomial P in θq∂q. 2

5 Hori-Vafa models

We define here, following [13] and [16], mirror partners for the small quantum cohomology of smooth
hypersufaces in weighted projective spaces. Let H be a degree d hypersurface in P(w0, · · · , wn).
Except otherwise stated, we assume that

d ≤ w − 1 := w0 + w1 + · · · +wn − 1

which is precisely the Fano condition of section 4.1.

5.1 Hori-Vafa models as Laurent polynomials

The Hori-Vafa model of H (for short: H-V model) is the function f defined on the variety U where:

1. f = u0 + · · · + un,

2. U is defined by the equations
{

uw0

0 · · · uwn
n = q∑

j∈J uj = 1
(24)

where J is a set of indices such that
∑

j∈J wj = d.

14



Here q is the quantization variable. The following result is [22, Theorem 9]:

Proposition 5.1.1 ([22]) Under the assumptions of theorem 4.1.3, one may assume that

w0 = 1 et d = wr+1 + · · ·+ wn

for some r ∈ {0, · · · , n − 2}. In these conditions, the Hori-Vafa model of H takes the form, for
(x1, · · · , xn−1) ∈ (C∗)n−1,

f(x1, · · · , xn−1) = x1 + · · · + xr + 1 + q
(xr+1 + · · · + xn−1 + 1)d

xw1

1 · · · x
wn−1

n−1

(25)

if r ≥ 1 (that is d ≤ w − 2) and

f(x1, · · · , xn−1) = 1 + q
(x1 + · · ·+ xn−1 + 1)d

xw1

1 · · · x
wn−1

n−1

if r = 0 (that is d = w − 1). 2

Remark 5.1.2 By [22, Proposition 7] and under the assumptions of theorem 4.1.3, there are at
least w − d+ 1 weights wi equal to 1. It follows that

n+ d > w (26)

We will see in sections 5.3 and 6 that n+d−w is a potential number of vanishing cycles at infinity.

For the two next results, we fix q = q0 ∈ C
∗. We denote by f o the Laurent polynomial (25) for

q = q0 and by Qo
f its Jacobian ring.

Lemma 5.1.3 The Laurent polynomial f o has w − d isolated, non degenerate, critical points on
(C∗)n−1. These points are defined by

ck = (b1ε
k, · · · , brε

k,
wr+1

wn
, · · · ,

wn−1

wn
) (27)

for k = 0, · · · , w − d − 1 where ε denotes a w − d-th primitive root of the unity and bi =
wi(q0

dd

w
w1

1
···wwn

n
)1/(w−d) for i = 1, · · · , r. The corresponding critical values are

f o(ck) = (w − d)(q0
dd

ww1

1 · · ·wwn
n

)1/(w−d)εk + 1 (28)

for k = 0, · · · , w − d− 1 and we have
∏w−d−1

k=0 f o(ck) = (w − d)w−dq0
dd

w
w1

1
···wwn

n

Proof. Direct computations. 2

Corollary 5.1.4 1. The eigenvalues of the multiplication by f o on Qo
f are pairwise distinct,

2. the classes of 1, f o, · · · , (f o)w−d−1 provide a basis of Qo
f ,

3. one has (f o)w−d = (w − d)w−dq0
dd

w
w1

1
···wwn

n
.

Proof. The critical values of f are pairwise distinct by lemma 5.1.3 and their product is equal to
the right hand side of the last equality. 2
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5.2 A homogeneous version of H-V models and its relative Gauss-Manin system

For i = r + 1, · · · , n − 1, let us define ui = q1/wnxi and ui = xi if i = 1, · · · , r. Then formula (25)
takes the form, putting Q := q1/wn and removing the additive constant 1,

f(u1, · · · , un−1, Q) = u1 + · · · + ur +
(ur+1 + · · · + un−1 +Q)d

uw1

1 · · · u
wn−1

n−1

(29)

if r ≥ 1, this formula being easily adapted for r = 0. Results of lemma 5.1.3 remain unchanged
(replace q by Qwn). From now on, we will use this description the reason being the following
homogeneity relation

f =
w − d

wn
Q
∂f

∂Q
+

r∑

i=1

ui
∂f

∂ui
+

w − d

wn

n−1∑

i=r+1

ui
∂f

∂ui
(30)

from which it follows in particular that

u1, · · · , ur are of degree 1 (31)

and

ur+1, · · · , un−1 et Q are of degree
w − d

wn
. (32)

The (localized Fourier transform) Gauss-Manin system G of (29) is defined as section 3: it is a
free C[θ, θ−1, q, q−1]-module equipped with a connection ∇ defined by

θ2∇∂θ [
∑

i

ωiθ
i] = [

∑

i

fωiθ
i]− [

∑

i

iωiθ
i+1] (33)

and

θ∇Q∂Q[
∑

i

ωiθ
i] = [

∑

i

Q∂Q(ωi)θ
i+1]− [

∑

i

Q
∂f

∂Q
ωiθ

i] (34)

where the ωi’s are differential forms on (C∗)n−1×C
∗, equipped with coordinates (u1, · · · , un−1, Q),

Q∂Q(ωi) denotes the Lie derivative of the differential form ωi in the direction of Q∂Q and [ ] denotes
the class in G.

The following result relies the actions of θ2∇∂θ and θ∇Q∂Q in G. Let (a1, · · · , an−1) ∈ Z
n−1,

ω0 =
du1
u1

∧ · · · ∧
dun−1

un−1
(35)

and [ua11 · · · u
an−1

n−1 ω0] be the class of ua11 · · · u
an−1

n−1 ω0 in G.

Lemma 5.2.1 One has

θ2∇∂θ [u
a1
1 · · · u

an−1

n−1 ω0] = −
w − d

wn
θ∇Q∂Q [u

a1
1 · · · u

an−1

n−1 ω0]+(
r∑

i=1

ai+
w − d

wn

n−1∑

i=r+1

ai)θ[u
a1
1 · · · u

an−1

n−1 ω0]

(36)
in G.

Proof. Follows from (30) and the definition of ∇. 2
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5.3 The rank of G

How to compute the rank of the connection G associated with the H-V model f defined in section
5.2? The hope is to use theorem 3.1.2, especially formula (13): the main question is to decide
whether f has at most isolated singularities including at infinity for a suitable compactification or
not. This problem is in general very difficult4. Let us begin with the following examples:

Example 5.3.1 1. Let us consider the H-V model5 of a smooth hypersuface of degree 2 in P
3:

f(x, y) = x+
(y + 1)2

xy

Keep the notations of section 2.2 and remark 2.2.3: the equation F (X,Y,Z, t) = 0 takes the form

X2Y − tXY Z + Z(Y + Z)2 = 0

and Ysing = P ×C where P = (0 : −1 : 1) is on the polar locus at finite distance (the hyperplane at
infinity has the equation Z = 0). In order to compute the number of vanishing cycles νP,t, we use
corollary 2.2.2: the hypersurface

u2v − tuv + (1 + v)2 = 0

is smooth for t 6= 0 but the Milnor number at P for t = 0 is µP,0 = 1. Thus νP,0 = µP,0 = 1. The
value t = 0 is atypical. By theorem 3.1.2, the rank of G is w − d+ ν = 2 + 1 = 3. Notice that the
set T∞(f) defined in remark 2.2.4 is void despite the fact that f is not cohomologically tame (see
the discussion of remark 2.2.4).

2. Let us now consider the H-V model of a smooth hypersurface of degree 2 in P
4:

f(x, y, z) = x+ y +
(z + 1)2

xyz

With the notations of section 2.2, the equation F (X0,X1,X2,X3, t) = 0 takes the form

X2
1X2X3 +X1X

2
2X3 +X2

0 (X3 +X0)
2 − tX0X1X2X3 = 0

and we check as above that:

• f has no singular point on the hyperplane at infinity X0 = 0,

• f has an isolated singular point P = (1 : 0 : 0 : −1) on the polar locus at finite distance for
which νP,0 = 4− 3 = 1 as it follows from proposition 2.2.1.

P is thus a singular point at infinity, the value t = 0 is atypical and the number of vanishing cycles
at infinity is 1. By theorem 3.1.2, the rank of G is therefore 4.

4More generally, there exist different theoretic classes of functions having isolated singularities including at infinity
in some sense, see for instance the book [30] and the references therein. But in general one cannot decide if a given
function belongs to a class or to another.

5We fix here q = 1.
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Example 5.3.2 The H-V model of a degree d hypersurface in P
n takes the form

f(u1, · · · , un−1) = u1 + · · ·+ un−d +
(un−d+1 + · · · + un−1 + q)d

u1 · · · un−1

Recall the sets T fin
∞ (f), T∞

∞ (f) and T∞(f) defined in remark 2.2.4. We have

T fin
∞ (f) = {0} et T∞

∞ (f) = T∞(f) = ∅.

Indeed, let us define the sequence (up) = ((up1, · · · , u
p
n−1)) by

up1 = · · · = upn−d =
1

p
et upn−d+1 = · · · = upn−1 =

1

pn−d
−

q

d− 1

Then
up → (0, · · · , 0,−

q

d − 1
, · · · ,−

q

d− 1
), up grad f(up) → 0 et f(up) → 0

thus {0} ⊂ T fin
∞ (f), see section 2.3. The same kind of computations shows that there are no other

candidates in T fin
∞ (f) and that T∞

∞ (f) = T∞(f) = ∅.

This suggests the following conjectures, which will be emphasized by the discussion in section
6.1 below:

Conjecture 5.3.3 (Optimistic) Under the assumptions of theorem 4.1.3, there exists a compacti-
fication for which Hori-Vafa models have only one singular point P at infinity, located on the polar
locus at finite distance and such that ν = νP,0 = n+ d− w.

Notice that n + d − w > 0 under the assumptions of theorem 4.1.3, see remark 5.1.2. Conjecture
5.3.3 has been verified in example 5.3.1 using the standard compactification.

Conjecture 5.3.4 (Realistic) Under the assumptions of theorem 4.1.3 the rank of G is equal to n.

It follows from theorem 3.1.2 and lemma 5.1.3 that conjecture 5.3.3 implies conjecture 5.3.4.

Corollary 5.3.5 Under the assumptions of theorem 4.1.3, if conjecture 5.3.4 holds true then the
Brieskorn module of a Hori-Vafa model is not of finite type (in particular, a H-V model is not
cohomologically tame).

Proof. Follows from lemma 5.1.3 and corollary 3.3.2 because w − d < n under the assumptions of
theorem 4.1.3, see remark 5.1.2 . 2

6 Application to mirror symmetry for smooth hypersurfaces in
projective spaces. The case of the quadrics

We explain in this section why the Hori-Vafa models should be mirror partners of smooth hyper-
surfaces in weighted projective spaces. The general setting is described in section 6.1 and we apply
it to quadrics in P

n in section 6.2. We work in the sequel under the assumptions of theorem 4.1.3.
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6.1 Mirror symmetry and the Birkhoff problem

Let H be a smooth Fano degree d hypersurface in the weighted projective space P(1, w1, · · · , wn).
The general principle is to show that the quantum differential operator PH defined in section 4.2 is
a minimal polynomial of a section in G (see section 5.2) of a suitable Hori-Vafa model, see equation
(29). This can be done solving the following Birkhoff problem for the H-V model alluded to: find

a free C[q, θ]-module H log
0 of rank n in G and a basis (ω0, · · · , ωn−1) of it in which the matrix of

the flat connection ∇ takes the form

(
A0(q)

θ
+A1(q))

dθ

θ
+ (

Ω0(q)

θ
+Ω1(q))

dq

q
(37)

and such that
P (θ∇q∂q , q, θ)(ω0) = 0 (38)

where P (θ∇q∂q , q, θ) is defined by equation (20). We also require that A1(q) is semi-simple, with
eigenvalues 0, 1, · · · , n− 1 (and, up to a factor 2, this corresponds to cohomology degrees). Notice

that, unlike the absolute case, the expected module H log
0 is not the Brieskorn module G0. The size

of the matrices alluded to should be equal to n because of the degree of P , see proposition 4.2.1.
It follows that the rank of G is greater or equal than n: conjecture 5.3.4 asserts that this rank is
precisely equal to n.

As explained in remark 7.2.1, it follows from (38) that the matrix A0(q) (which is the matrix

of multiplication by f on H log
0 /θH log

0 ) provides the characteristic relation 6

b◦n = q
dd∏n

i=1 w
wi

i

b◦d+n−w (39)

in small quantum cohomology, where ◦ denotes the quantum product, b the hyperplane class and
w = w0 + · · · + wn, [2], [15], see section 7.2.2 for details. Therefore it deserves a particular study.
Recall that n+ d− w > 0, see remark 5.1.2. Let Pc(A0) be the characteristic polynomial of A0.

Proposition 6.1.1 Assume that the rank of G is equal to n. One has

Pc(A0)(ζ, q) = P fin
c (A0)(ζ, q)P

∞
c (A0)(ζ, q) (40)

where

P fin
c (A0)(ζ, q) = ζw−d − (w − d)w−d dd∏n

i=0w
wi

i

q (41)

and
P∞
c (A0)(ζ, q) = ζn+d−w +

∑

i,j

ai,j≥0ζ
iqj with i+ (w − d)j = n+ d− w (42)

In particular,

Pc(A0)(ζ, q) = ζn − (w − d)w−d dd∏n
i=0 w

wi

i

qζn+d−w (43)

if and only if B∞(f) = {0}, see section 2.3.

6This formula is well known for hypersurfaces in P
n, in which case w = n+1, see [3, 11.2.1], [13] and section 7.2.1.
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Proof. For fixed q, different from 0, the eigenvalues of A0(q) are precisely the atypical values of f ,
with appropriate multiplicities, see section 3.2. Moreover, the coefficients of A0(q) are homogeneous
in q: a coefficient ar,s is homogeneous of degree s−r+1, see section 5.2 (recall that q is homogeneous
of degree w−d). It follows that the characteristic polynomial Pc(A0)(ζ, q) of A0(q) is homogeneous
of degree n, ζ being of degree 1. Therefore, equation (40) follows from lemma 5.1.3. For the
last assertion, use the fact that the eigenvalues of A0(q) are the singular points of the classical
Gauss-Manin system M , see section 3.2. 2

Remark 6.1.2 Formula (37) yield a polynomial Q in the variables (∇θ2∂θ , q, θ), which annihilates
ω0 and which gives informations about the irregularity of system (37), see for instance [18] and
section 3.2 . Assume that the characteristic polynomial of A0(q) takes the form (43). Then Q has
only two slopes, 0 and 1 and one has

RankH log = IrrQ+RegQ

where the irregularity IrrQ of Q is w − d and its regularity RegQ is n + d − w. Indeed, the
Newton polygon of Q is the one of (θ2∂θ)

n − (w − d)w−d dd∏n
i=0

w
wi
i

q(θ2∂θ)
n+d−w. Notice that IrrQ

is the dimension of the Jacobian ring and that RegQ is the expected number of vanishing cycles
at infinity, see section 5.3. If moreover ω0 is cyclic, IrrQ and RegQ are the regularity and the
irregularity of H.

6.2 Illustration: smooth quadrics in Pn

The aim of this section is to test the previous discussions for quadrics in P
n. This paragraph

has been inspired by [14], which deals in a slightly different way with quadrics in P
4. We prove7

in particular the theorem announced in the introduction, see section 6.2.3. We do not use any
conjecture in this section.

6.2.1 The Hori-Vafa model of a quadric

The Hori-Vafa model of a quadric in P
n is

f(u1, · · · , un−1) = u1 + · · · + un−2 +
(un−1 + q)2

u1 · · · un−1

The (localized Fourier transform of the) Gauss-Manin system G of f is a free C[θ, θ−1, q, q−1]-
module and is equipped with a connection ∇ whose covariant derivatives are defined by formulas
(33) and (34), see section 5.2.

6.2.2 The Birkhoff problem

Let ω0 =
du1

u1
∧ · · · ∧ dun−1

un−1
and

ε := ([ω0], [u1ω0], · · · , [u1 · · · un−2ω0], 2[un−1ω0]) := (ε0, · · · , εn−1) (44)

7We don’t use any conjecture in this section.

20



where [α] denotes the class of α in G. Recall the Brieskorn module G0 defined as in section 3.3.
One has

G0

θG0
=

Ωn(V )[q, q−1]

df ∧ Ωn−1(V )[q, q−1]

where the differential d is taken with respect to u ∈ V := (C∗)n−1, see proposition 3.3.1.

Lemma 6.2.1 The quotient G0/θG0 is a free C[q, q−1]-module of rank n− 1 and

([ω0], [u1ω0], · · · , [u1 · · · un−2ω0])

is a basis of it.

Proof. Let us show that the system alluded to gives a system of generators. Notice first the
relations

ui
∂f

∂ui
= u1 −

(un−1 + q)2

u1 · · · un−1
(45)

for i = 1, · · · , n− 2 and

un−1
∂f

∂un−1
=

u2n−1 − q2

u1 · · · un−1
(46)

We thus have

u1
∂f

∂u1
− un−1

∂f

∂un−1
= u1 − 2

un−1 + q

u1 · · · un−2

from which we get (equalities hold now modulo the Jacobian ideal (∂u1
f, · · · , ∂unf))

un−1 + q =
1

2
u21u2 · · · un−2 (47)

Putting this in (45), we get

un−1 =
1

4
u21u2 · · · un−2

and, using (47),
un−1 = q et u21u2 · · · un−2 = 4q

We deduce from this that we have indeed a system of generators because

u1 = u2 = · · · = un−2

(always modulo the Jacobian ideal). This gives in particular the relations

un−1ω0 = qω0 et un−2ω0 = · · · = u1ω0 (48)

in G0/θG0. Last, corollary 5.1.4 shows that there are no non trivial relations between the sections:
for i = 1, · · · , n− 2, the classes of u1 · · · uiω0 and f iω0 are indeed proportional in G0/θG0. 2

Let us define

• H (resp. H log) the sub-C[θ, θ−1, q, q−1]-module (resp. sub-C[θ, θ−1, q]-module) of G generated
by ε = (ε0, · · · , εn−1) where ε is defined by formula (44),
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• H0 (resp. H log
0 ) the sub-C[θ, q, q−1]-module (resp. sub-C[θ, q]-module) of G generated by

(ε0, · · · , εn−1),

• H2 (resp. H log
2 ) the sub-C[θ, q, q−1]-module (resp. sub-C[θ, q]-module) of G generated by

(ε0, · · · , εn−2).

We shall see that these modules are free. H0 is the counterpart of the Brieskorn lattice G0 in
the tame case and H log provides a canonical logarithmic extension of H along q = 0 (the eigenval-
ues of the residue matrix are all equal to 0). Of course, it remains to give a geometric meaning of H0.

Proposition 6.2.2 The matrix of ∇ takes the form, in the system of generators ε of H log
0 ,

(
A0(q)

θ
+A1)

dθ

θ
− (n− 1)−1A0(q)

θ

dq

q
(49)

where

A0(q) = (n − 1)




0 0 . 0 2q 0
1 0 . 0 0 2q
0 1 . 0 0 0
. . . . . .
0 0 . 1 0 0
0 0 . 0 1 0




and A1 = diag(0, 1, · · · , n− 1).

Proof. First, we have

• [q ∂f
∂qω0] = [u1ω0],

• [q ∂f
∂q u1 · · · un−iω0] = [u1 · · · un−i+1ω0] pour i = 3, · · · , n− 1,

• [q ∂f
∂q u1 · · · un−2ω0] = 2q[ω0] + 2[un−1ω0],

• [q ∂f
∂q un−1ω0] = q[u1ω0]

and this follows respectively from the following formulas:

• q ∂f
∂q = u1 − u1

∂f
∂u1

+ un−1
∂f

∂un−1
,

• q ∂f
∂qu1 · · · un−i = u1 · · · un−i+1−u1 · · · un−iun−2

∂f
∂un−2

+u1 · · · un−iun−1
∂f

∂un−1
si i = 3, · · · , n−1,

• q ∂f
∂qu1 · · · un−2 = 2q + 2un−1 − 2u1 · · · un−1

∂f
∂un−1

,

• q ∂f
∂qun−1 = qu1 − qu1

∂f
∂u1

− qun−1
∂f

∂un−1
,

This gives the matrix of ∇q∂q and the remaining assertion follows from formula (36). 2

Proposition 6.2.3 The C[θ, q]-module H log
0 is free of rank n and (ε0, · · · , εn−1) is a basis of it.
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Proof. Observe the following:

• H2 is a free C[θ, q, q−1]-module of rank n − 1, with basis (ε0, · · · , εn−2): ε0, · · · , εn−2 are
linearly independent because their classes in G0/θG0 are so, see proposition 3.3.1 and lemma

6.2.1. It follows that H log
2 is free of rank n− 1.

• H is, by definition, of finite type and moreover equipped with a connection by proposition
6.2.2: it is thus free over C[θ, θ−1, q, q−1], see [26, proposition 1.2.1]. It follows that H0 is
free over C[θ, q, q−1]. Indeed, let α0, · · · , αr be a basis of H: for i ∈ {0, · · · , r} there exists
di ∈ N such that θ−d0α0, · · · , θ

−drαr generate H0 over C[θ, q, q
−1] and there are no non trivial

relations between these sections on C[θ, q, q−1]. It follows that H log
0 is free over C[θ, q].

• H log
2 is a free sub-module of the free module H log

0 : the rank of H log
0 is therefore greater or

equal than n − 1. The free module H log
0 has n generators: its rank is therefore less or equal

than n. It follows that the rank of H log
0 is equal to n− 1 or n.

• Assume for the moment that the rank of H log
0 is equal to n− 1: one would have a relation

a0(θ, q)ε0 + · · ·+ an−1(θ, q)εn−1 = 0 (50)

where the ai(θ, q)’s are homogeneous polynomials in (θ, q) (recall that q is of degree n−1 and
θ is of degree 1, see section 5.2). One would have an−1(0, q) = 1 because [εn−1] = q[ε0] modulo
θ by equation (48), and thus an−1(θ, q) = 1 by homogeneity. Because εn−1 is of degree n− 1,
one would have finally

εn−1 = (a0q + b0θ
n−1)ε0 + a1θ

n−2ε1 + · · · + an−2θεn−2

Apply θ∇q∂q to this formula: using the computations of proposition 6.2.2, one gets

(a0qθ + 2an−2qθ + an−2(a0qθ + b0θ
n))ε0

+(a0q + b0θ
n−1 + an−2a1θ

n−1)ε1 + (a1θ
n−2 + an−2a2θ

n−2)ε2

+ · · ·+ (an−3θ
2 + an−2an−2θ

2)εn−2 = 2qε1

It follows that

– an−2b0 = 0

– a0 + 2an−2 + an−2a0 = 0

– a0 = 2

– b0 + an−2a1 = 0

– ai + an−2ai+1 = 0 pour i = 1, · · · , n− 3

The first three equalities give a0 = 2, an−2 = −1
2 and b0 = 0. From the following ones we get

a1 = · · · = an−3 = 0 and finally an−2 = 0: this is a contradiction. We conclude that the rank
of H log

0 is not equal to n− 1 .

To sum up, H log
0 is free of rank n and because (ε0, · · · , εn−1) is a system of n generators it is also

a basis of it. 2
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6.2.3 Proof of theorem 1.0.1

We keep the notations of section 6.2.2 (we refer to section 7.2.1 for a description of the small
quantum cohomology of hypersurfaces that we consider here).

Theorem 6.2.4 We have a direct sum decomposition

G = H ⊕H◦ (51)

of free C[θ, θ−1, q, q−1]-modules where H is free of rank n and is equipped with a connection making
it isomorphic to the differential system associated with the small quantum cohomology of quadrics
in P

n.

Proof. The module G/H is of finite type and therefore free because it is equipped with a connection
as it follows from proposition 6.2.2. We thus have the direct sum decomposition

G = H ⊕ r(G/H)

where r is a section of the projection p : G → G/H. This gives (51) with H◦ := r(G/H).
The assertion about quantum cohomology follows from example 7.2.2 and formula (49) via the
correspondence εi ↔ bi where b denotes the hyperplane class and bi the i-fold cup-product of b by
itself. 2

It follows that the rank of G is greater or equal than n and that it is equal to n if and only if8

H◦ = 0. This is what happens for instance for n = 3 et n = 4, see example 5.3.1 and this is what
it is expected in general, see conjecture 5.3.4.

Remark 6.2.5 H has only two slopes, 0 and 1. In particular, H is the (localized) Fourier transform
of a regular holonomic module M whose singular points run through C(f) ∪ {0}. Moreover,

RankH = Irr(H) + Reg(H)

where Irr(H) = n− 1 and Reg(H) = d− 1: indeed, Q(ω0) = 0 where

Q = θn(∇θ∂θ)
n − 2q(n − 1)n−1nθ(∇θ∂θ) + 2q(n − 1)nθ

and ω0 is cyclic.

Remark 6.2.6 (Metric) In order to get a whole quantum differential system it remains to construct
a flat “metric” on H, see f.i [10]. If S is a ∇-flat, non degenerate bilinear form on H0, then

{
S(εi, εj) = S(ε0, εn−1) ∈ C

∗θn−1 si i+ j = n− 1
S(εi, εj) = 0 otherwise

Conversely, all flat metrics are of this kind: as A0 is cyclic, one can argue as in [12].

8Notice that we do not assert in the theorem that H◦ is equipped with a connection.
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7 Appendix: small quantum cohomology of hypersurfaces in pro-
jective spaces (overview)

We briefly recall here the definition of the small quantum cohomology of smooth hypersurfaces in
projectives spaces alluded to in this paper. Our references are [3], [15], [19] and [27].

7.1 Small quantum cohomology

Given a Fano projective manifold M and a homology class A ∈ H2(M ;Z) one defines Gromov-
Witten invariants (three points, genus 0) GWA : H∗(M ;C)3 → C which satisfy the following
properties:

Linearity. GWA is linear in each variable.

Effectivity. GWA is zero if
∫
A ωM < 0, ωM denoting the symplectic form on M .

Degree. Let x, y and z be homogeneous cohomology classes. Then GWA(x, y, z) = 0 if

deg x+ deg y + deg z 6= 2dimC M + 2 < c1(M), A >

c1(M) denoting the first Chern class of M and < x,A >=
∫
A x.

Initialisation. GW0(x, y, z) =
∫
M x ∪ y ∪ z.

Divisor axiom. If z is a degree 2 cohomology class one has GWA(x, y, z) =< z,A > GWA(x, y, 1).

Assume that the rank of H2(M ;Z) is 1 and let p be a generator of it. Let b0, · · · , bs be a basis of
H∗(M ;C) and b0, · · · , bs its Poincaré dual. The small quantum product ◦tp (for short ◦) is defined
as follows:

x ◦tp y =
s∑

i=0

∑

A∈H2(M ;Z)

GWA(x, y, bi)q
Abi (52)

where qA = exp(tA). It follows from the Fano condition that the sum (52) is finite, see for instance
[3, Proposition 8.1.3].

7.2 Small quantum cohomology of hypersurfaces in (weighted) projective spaces

7.2.1 In projective spaces

Assume that M = Xn
d is a degree d ≥ 1 smooth hypersurface in P

n and let i : Xn
d →֒ P

n be the
inclusion. Let p ∈ H2(Pn;C) be the hyperplane class and b = i∗p. Then c1(X

n
d ) = (n+ 1− d)b. In

what follows, we will assume that n+ 1− d > 0 (Fano case). We have
{

Hm(Xn
d ;C) = Hm(Pn;C) si m < n− 1

Hm(Xn
d ;C) = Hm+2(Pn;C) si m > n− 1

(53)

In particular, H2(Xn
d ;C) = H2(Pn;C) if n ≥ 4. The cohomology ring is divided in two parts:
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The ambient part. This is the space Hamb(X
n
d ;C) := im i∗, where i∗ : H∗(Pn;C) → H∗(Xn

d ;C).
We have Hamb(X

n
d ;C) = ⊕n−1

i=0 Cbi where bi = b∪ · · · ∪ b (i-times) and this is a cohomology algebra
of rank n.

The primitive part. This is P (Xn
d ) := ker i! ⊂ Hn−1(Xn

d ;C), where i! : Hn−1(Xn
d ;C) →

Hn+1(Pn;C) is the Gysin morphism.

The small quantum cohomology ofXn
d preserves the ambient partHamb(X

n
d ;C), see [20], [3, Chapter

11]. We thus get a subring denoted by QHamb(X
n
d ;C), equipped with the product ◦ and which

describes the small quantum product of cohomology classes coming from the ambient space P
n:

using the degree property we get, for 0 ≤ m ≤ n− 1,

b ◦ bn−1−m = bn−m +
∑

ℓ≥1

Lℓ
mqℓbn−m−ℓ(n+1−d) (54)

and
b ◦ bn−1 =

∑

ℓ≥1

Lℓ
0q

ℓbn−ℓ(n+1−d) (55)

where Lℓ
m ∈ C and qℓ = exp(tℓA), A denoting a generator of H2(X

n
d ;Z); the constants Lℓ

m vanish
unless 0 ≤ m ≤ n − (n + 1 − d)ℓ and we have deg q = (n + 1 − d), which is positive in the Fano
case. This is this product that we consider in these notes.

Last, let us make the link between the small quantum cohomology and the quantum differential
operators defined in section 4.2. The differential system associated with Xn

d is





θq∂qϕn−1−m(q) = ϕn−m(q) +
∑

ℓ≥1 L
ℓ
mqℓϕn−m−ℓ(n+1−d)(q) pour m = 1, · · · , n− 1

θq∂qϕn−1(q) =
∑

ℓ≥1 L
ℓ
0q

ℓϕn−ℓ(n+1−d)(q)
(56)

see formula (54) and (55). It follows from [13] that this system can be written

P (θq∂q, q, θ)ϕ0(q) = [(θq∂q)
n − qdd(θq∂q +

1

d
θ) · · · (θq∂q +

d− 1

d
θ)]ϕ0(q) = 0 (57)

In other words, the matrix of system (56) is conjugated to a companion matrix whose characteristic
polynomial is P (X, q, θ). This allows to compute the constants Lℓ

m.

Remark 7.2.1 A first consequence is the formula

b◦n = qddb◦d−1 (58)

see for instance [3, page 364], which reads P (θq∂q, q, 0) = 0 via the correspondences

b◦ ↔ θq∂q and 1 ↔ ϕ0 (59)

A justification is the following: in the basis (ϕ0, θq∂qϕ0, · · · , (θq∂q)
n−1ϕ0) the matrix of θq∂q is

Ω0 + θ[· · · ] where Ω0 is a matrix with coefficients in C[q] and whose characteristic polynomial is
P (θq∂q, q, 0). Up to conjugacy, the matrix Ω0 is also the one of θq∂q in the basis (ϕ0, · · · , ϕn−1).
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Example 7.2.2 Let us consider the quadric in P
n. In the basis (ϕ0, · · · , ϕn−1), the matrix of θq∂q

takes the form 


0 · · · 2q 0
1 · · · 0 2q
0 · · · 0 0
0 · · · 1 0




It is also the matrix of b◦, using the correspondences (59).

7.2.2 In weighted projective spaces

For smooth hypersurfaces in weighted projective spaces our references are [16], [15], [7] and [17].
Let M = Xw

d be a degree d ≥ 1 hypersurface in P(w) := P(w0, · · · , wn), satisfying the assumptions
of theorem 4.1.3. Let i : Xw

d →֒ P(w) be the inclusion, p ∈ H2(P(w);C) the hyperplane class and
b = i∗p. By proposition 4.1.2, the first Chern class c1(X

w
d ) is (w− d)b and we will assume in what

follows that w − d > 0 (Fano case, recall that w = w0 + · · · + wn). The cohomology Hm(P(w);C)
groups of the untwisted sector are of rank 1 if m is even, they vanish otherwise and

{
Hm(Xw

d ;C) = Hm(P(w);C) si m < n− 1
Hm(Xw

d ;C) = Hm+2(P(w);C) si m > n− 1
(60)

see [7, Corollary 2.3.6 et 4.2.2] and [17, Theorem 7.2]. As before, we divide the cohomology ring
H∗(M ;C) into an ambient part Hamb(X

w
d ;C) := im i∗, where i∗ : H∗(P(w);C) → H∗(Xw

d ;C) and
a primitive part. We thus have Hamb(X

w
d ;C) = ⊕n−1

i=0 Cbi where bi = b ∪ · · · ∪ b (i-times). The
small quantum product of Xw

d should preserves this ambient part and one would at the end get a
subring QHamb(X

w
d ;C), equipped with a product ◦. The differential system associated with this

small quantum product looks like (compare with (56))





θq∂qϕn−1−m(q) = ϕn−m(q) +
∑

ℓ≥1 L
ℓ
mqℓϕn−m−ℓ(w−d)(q) pour m = 1, · · · , n− 1

θq∂qϕn−1(q) =
∑

ℓ≥1 L
ℓ
0q

ℓϕn−ℓ(w−d)(q)
(61)

where q is now of degree w − d > 0. Following [13], [16] and [15, section 5] this systems should
be equivalent to the equation PH(ϕ0(q)) = 0 where PH is the differential operator defined by
formula (20). Again, one can derive from this the constants Lℓ

m in terms of combinatorial data. A
consequence is the formula

b◦n = q
dd∏n

i=1 w
wi

i

b◦d+n−w (62)

as in remark 7.2.1.

References

[1] Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent.
Math., 92, 1988, p. 217-241.

[2] Corti, A., Golyshev, V.: Hypergeometric equations and weighted projective spaces.
math.AG/0607016.

27



[3] Cox, D., Katz, S.: Mirror symmetry and algebraic geometry. Mathematical Surveys and
Monographs, 68, American Mathematical Society, Providence, RI, 1999.

[4] Dimca, A.: Singularities and coverings of weighted complete intersections. J. Reine Angew.
Math., 366, 1986, p. 184-193.

[5] Dimca, A.: Sheaves in topology. Universitext. Springer Verlag, Berlin, 2004.

[6] Dimca, A. , Saito, M.: Algebraic Gauss-Manin systems and Brieskorn modules, American
Journal of Math., 123, 2001, p. 163-184.

[7] Dolgachev, I.: Weighted projective varieties. In Group actions and vector fields, Lecture Notes
in Math., 956, 1982, p. 34-71.
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