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We prove the Local Asymptotic Mixed Normality property from high frequency observations, of a continuous time process solution of a stochastic differential equation driven by a pure jump Lévy process. The process is observed on the fixed time interval [0, 1] and the parameter appears in the drift coefficient only. We compute the asymptotic Fisher information and find that the rate in the LAMN property depends on the behavior of the Lévy measure near zero. The proof of this result contains a sharp study of the asymptotic behavior, in small time, of the transition probability density of the process and of its logarithm derivative.

Introduction

An important concept in parametric estimation is the Local Asymptotic Mixed Normality property introduced by Jeganathan in a serie of papers ( [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF], [START_REF] Jeganathan | Some asymptotic properties of risk functions when the limit of the experiment is mixed normal[END_REF]), which permits to extend the Le Cam and Hajek's results (see [START_REF] Hájek | A characterization of limiting distributions of regular estimates[END_REF], [START_REF] Le | Asymptotics in statistics[END_REF]) to situations where the local Asymptotic Normality does not hold. Let {E n , E n , (P θ n ) θ∈Θ⊂R d } be a statistical experiment, we say that the LAMN property holds at θ with information matrix I(θ) and rate u n (u n tends to zero as n goes to infinity) if

log dP θ+unh n dP θ n = h T I n (θ) 1/2 N n - 1 2 h T I n (θ)h + o P θ n (1) 
where (N n , I n (θ)) converges in law (under P θ n ) to (N, I(θ)) with N a standard gaussian vector independent of I(θ), and I(θ) > 0 a.e. The LAN property is obtained when the information matrix I(θ) is non random.

If the LAMN property is satisfied at θ, then from the Hajek's convolution theorem, we know that for any regular estimator θn such that

u -1 n [ θn -θ] ⇒ Z θ (in law under P θ n ),
Z θ admits the decomposition Z θ = I(θ) -1/2 N + R with N a standard gaussian vector and R independent of N conditionally on I(θ). As a consequence, the minimal asymptotic estimation error is a mixed normal variable with variance I(θ) -1 .

In this paper, we consider the statistical experiment {R n , B n , (P θ n ) θ∈Θ⊂R }, corresponding to the observation of a Lévy driven stochastic equation at discrete times t i = i n , for 1 ≤ i ≤ n. More precisely, we observe (X θ i n ) 1≤i≤n , where (X θ t ) t∈[0,1] is a continuous time process depending on an unknown real parameter θ. There is a large literature concerning the estimation of the parameters, and the LAN property, of a translated Lévy process

X θ t = θ 1 t + θ 2 L t , θ = (θ 1 , θ 2 ),
see for example Aït-Sahalia and Jacod [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] [2], Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF], Kawai and Masuda [START_REF] Kawai | On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling[END_REF], [START_REF] Kawai | Local asymptotic normality for normal inverse Gaussian Lévy processes with high-frequency sampling[END_REF]. In this case, the statistical study is based on the fact that the density of X θ t can be expressed as a function of the density of L t .

Here, we intend to consider the more general stochastic equation

X θ t = x 0 + t 0 b(X θ s , θ)ds + L t (1) 
where (L t ) t∈[0,1] is a pure jump Lévy process, and focus on the estimation of the drift parameter.

When (X θ t ) t is solution of (1), the transition density of X θ t is unknown, and the link between the density of L t and the density of X θ t is not clear. This complicates the statistical study considerably and to our knowledge, there are no results about the asymptotic behavior of the log-likelihood of the discretized process (X θ i/n ) 1≤i≤n .

In this paper, we prove the LAMN property based on the observations (X θ i n

) i where (X θ t ) t∈[0,1] is solution of [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF], with rate u n = n 1/2-1/α , when the Lévy measure of (L t ) is an α-stable Lévy measure near zero, with α ∈ [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF][START_REF] Aït | Fisher's information for discretely sampled Lévy processes[END_REF]. This result is obtained through a representation of the transition density of X θ t , using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. The recourse to the Malliavin calculus to prove the LAMN property, in a high frequency data setting, has been initiated by Gobet [6] for diffusion processes. However, the situation given by ( 1) is completely different. Indeed, for diffusion processes, it is well known that one can not estimate the drift parameter from the observation of the process on a fixed time interval.

Besides the statistical application, a main contribution of this paper is to precise the asymptotic behavior of the transition density of X θ t , in small time, and of its logarithm derivative with respect to the parameter.

The paper is organized as follows. The main results are stated in Section 2. Section 3 gives some representations of the transition density and its logarithm derivative, using the Malliavin calculus proposed in [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] and Section 4 studies their asymptotic behavior. The proof of the LAMN property is given in Sections 5 and 6. We stress on the fact that contrarily to [START_REF] Gobet | Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach[END_REF], this proof does not require some lower bounds for the density of X θ t . Section 7 contains some more technical proof.

Main results

We consider the real process (X θ t ) defined on the time interval [0, 1], by

X θ t = x 0 + t 0 b(X θ s , θ)ds + L t , (2) 
where (L t ) is a centered Lévy process defined on a filtered space (Ω, G, (G t ) t , P ). We assume that the Lévy measure of (L t ) is absolutely continuous with respect to the Lebesgue measure and admits a density F (z) given on R * by We assume that the function b is bounded, with bounded derivatives up to order three with respect to both variables x and θ. Under these assumptions, we know that for t > 0, X θ t admits a density (see Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], Ishikawa and Kunita [START_REF] Ishikawa | Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps[END_REF], Picard [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF], Fournier and Printemps [START_REF] Fournier | Absolute continuity for some one-dimensional processes[END_REF] for weaker assumptions on b), moreover this density admits a derivative with respect to the parameter θ.

F (z) = 1 |z| α+1 τ (z), (3) 
We are interested in the statistical properties of the process (X θ t ), based on the discrete time observations (X θ i n ) i=0,...,n . Before stating our main results, we introduce some more notations. We denote by p θ 1 n (x, y) the transition density of the homogenous Markov chain (X θ i n ) i=0,...,n and by P θ n the law of the vector (X θ 1 n , . . . , X θ 1 ). In all the paper, for a function f depending on both variables (x, θ), we denote by f the derivative of f with respect to the variable x and by ḟ the derivative of f with respect to the parameter θ.

We first give an asymptotic expansion of log-likelihood ratio.

Theorem 1 Let u n = n 1 2 -1 α . We have : log dP θ+unh n dP θ n (X θ 1 n , . . . , X θ 1 ) = hJ n (θ) 1 2 N n (θ) - h 2 2 J n (θ) + o P (1), (4) 
with :

J n (θ) = u 2 n n-1 i=0 E (ξ θ i,n ) 2 |G i/n N n (θ) = J n (θ) -1 2 u n n-1 i=0 ξ θ i,n ξ θ i,n = ṗθ 1 n p θ 1 n (X θ i n , X θ i+1 n
).

We can precise the asymptotic behavior of J n (θ) and N n (θ). Let ϕ α be the density of L α 1 , where (L α t ) is a centered α-stable Lévy process whose Lévy measure is dz |z| 1+α . We define the following quantity which will be the asymptotic information of the statistical model :

I θ = 1 0 ḃ(X θ s , θ) 2 ds × R ϕ α (u) 2 ϕ α (u) du. ( 5 
)
Theorem 2 With the notations of Theorem 1, the following convergences hold :

J n (θ) n→∞ ---→ I θ , in probability, (6) 
∀ε > 0, n-1 i=0 u 2 n E ξ θ i,n 2 
1 {un|ξ θ i,n |≥ε} n→∞ ---→ 0. ( 7 
)
Theorem 3 We have the convergence in law

J n (θ) 1 2 N n (θ) = u n n-1 i=0 ξ θ i,n n→∞ ---→ N (0, I θ ) , (8) 
where the limit variable is conditionally Gaussian (recall the definition of I θ (5)), and the convergence is stable with respect to G 1 .

The stable convergence in law [START_REF] Ishikawa | Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps[END_REF] and the convergence in probability (6) yield to the convergence of the couple (J n (θ), N n (θ)):

(J n (θ), N n (θ)) n→∞ ---→ (I θ , N ), in law,
where N is a standard gaussian variable independent of I θ .

As a consequence of the asymptotic expansion given in Theorem 1 and the preceding limit theorems, we deduce the LAMN property. given by [START_REF] Genon | On the estimation of the diffusion coefficient for multidimensional diffusion processes[END_REF].

Let us stress that the rate of convergence depends on α. When α tends to 2, the rate u n degenerates.

This reflects the situation of a stochastic differential equation driven by a Brownian motion, where the drift coefficient cannot be estimated from the observation of the process on a finite time interval.

The proves of Theorem 1, Theorem 2 and Theorem 3 will be given in the next sections. They rely on the pointwise convergence of the transition density p θ 1 n (x 0 , y) and its derivative with respect to θ that will be study in Section 4. These asymptotic behaviors are precised below, after a time rescaling.

Let q n,θ,x 0 be the density of the rescaled variable n

1 α (X θ 1/n -x 0 ). One can verify that n 1 α (X θ 1/n -x 0 ) is equal in law to Y n,θ,x 0 1 solution of the equation Y n,θ,x 0 t = n 1 α -1 t 0 b(x 0 + n -1/α Y n,θ,x 0 s , θ)ds + L n,α t , (9) 
with (L n,α t ) equal in law to (n 1/α L t/n ). The connection between the two densities is given by :

p θ 1/n (x 0 , y) = n 1 α q n,θ,x 0 (n 1 α (y -x 0 )). ( 10 
)
The next result precises the asymptotic behavior of q n,θ,x 0 and qn,θ,x 0 as well as the limit of the Fisher information carried by the observation of Y n,θ,x 0 1 ,

I n,θ,x 0 = E   qn,θ,x 0 (Y n,θ,x 0 1 ) q n,θ,x 0 (Y n,θ,x 0 1 ) 2   . (11) 
.

Proposition 1 For all (x 0 , u) ∈ R 2 , we have

i) q n,θ,x 0 (u) n→∞ ---→ ϕ α (u), ii) n 1-1/α qn,θ,x 0 (u) n→∞ ---→ ḃ(x 0 , θ)ϕ α (u), iii) n 2-2/α I n,θ,x 0 n→∞ ---→ ḃ(x 0 , θ) 2 E ϕ α (L α 1 ) ϕα(L α 1 ) 2 = ḃ(x 0 , θ) 2 R ϕ α (u) 2 ϕα(u) du.
The proof of this convergence result is based on the representation of the density q n,θ,x 0 and its derivative using the Malliavin calculus for jump processes. This is developed in the next sections.

Representation of the transition density via Malliavin calculus

The aim of this section is to represent q n,θ,x 0 and qn,θ,x 0 q n,θ,x 0 as an expectation, using the Malliavin calculus for jump processes developped by Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF]. Due to the singularity of the Lévy measure of (L t ) at zero, we are not exactly in the same context, and we define in the next section an integration by part setting adapted to the study of equation ( 9).

Integration by part setting

In this section, we consider a filtered probability space (Ω, G, (G t ) t∈[0,1] , P ) endowed with a Poisson random measure µ on [0, 1] × E, where E is an open subset of R, with compensator ν given by dν = dt × g(z)dz on [0, 1] × E. We denote by μ the compensated measure and we are interested to study the regularity of the density of Y θ 1 , where the process (Y θ t ) is solution of :

Y θ t = t 0 a(Y θ s , θ)ds + t 0 E z μ(ds, dz). (12) 
This is the framework of Bichteler, Gravereaux and Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], excepted that g is not assumed to be equal to one and consequently the Malliavin operators have to be defined accordingly.

We make the following assumptions.

H: a) We assume that a is bounded with bounded derivatives up to order three with respect to both variables.

b) We assume that g ≥ 0 on E, C 1 on E and that

∀p ≥ 2, E |z| p g(z)dz < ∞.
We first precise the Malliavin operators L and Γ and their basic properties (see Bichteler, Gravereaux, Jacod, [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] Chapter IV, sections 8-9-10). For a test function f : [0, 1] × E → R ( f is measurable, C 2 with respect to the second variable, with bounded derivatives, and f ∈ ∩ p≥1 L p (ν)), we set

µ(f ) = 1 0 E f (t, z)µ(dt, dz).
We introduce an auxiliary function ρ : E → (0, ∞), derivable and such that ρ, ρ and ρ g g belong to ∩ p≥1 L p (g(z)dz). With these notations, we define the Malliavin operator L as

L(µ(f )) = 1 2 µ ρ f + ρ g g f + ρf , (13) 
where f and f are the derivatives with respect to the second variable. For φ = F (µ(f 1 ), . . . , µ(f k )), with F of class C 2 , we set

LΦ = k i=1 ∂F ∂x i (µ(f 1 ), . . . , µ(f k )) L(µ(f i )) + 1 2 k i,j=1 ∂ 2 F ∂x i ∂x j (µ(f 1 ), . . . , µ(f k ))µ(ρf i f j ). ( 14 
)
These definitions permit to construct a linear operator on a space D ⊂ ∩ p≥1 L p whose basic properties are the following :

i) L is self-adjoint : ∀Φ, Ψ ∈ D, we have EΦLΨ = ELΦΨ. ii) LΦ 2 ≥ 2ΦLΦ.
iii) ELΦ = 0.

We associate to L, the symmetric bilinear operator Γ :

Γ(Φ, Ψ) = L(ΦΨ) -ΦLΨ -ΨLΦ. ( 15 
)
If f and h are two test functions, we have :

Γ(µ(f ), µ(h)) = µ ρf h , (16) 
This operator satisfies the chain rule property :

Γ(F (Φ), Ψ) = F (Φ)Γ(Φ, Ψ). ( 17 
)
Moreover we have the inequality

|Γ(Φ, Ψ)| ≤ Γ(Φ, Φ) 1/2 Γ(Ψ, Ψ) 1/2 . ( 18 
)
These operators permit to establish the following integration by part formula (see [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] Proposition 8-10 p. 103).

Proposition 2 For Φ and Ψ in D, and f bounded with bounded derivatives up to order two, we have

Ef (Φ)ΨΓ(Φ, Φ) = Ef (Φ)(-2ΨLΦ -Γ(Φ, Ψ)).
Moreover, if Γ(Φ, Φ) is invertible and Γ -1 (Φ, Φ) ∈ ∩ p≥1 L p , we have

Ef (Φ)Ψ = Ef (Φ)H Φ (Ψ), (19) 
with

H Φ (Ψ) = -2ΨΓ -1 (Φ, Φ)LΦ -Γ(Φ, ΨΓ -1 (Φ, Φ)). ( 20 
)

Representation of the density of Y θ 1

The integration by part setting of the preceding section permits to derive the existence of the density of Y θ 1 given by ( 12), and gives a representation of this density as an expectation. Following Bichteler, Gravereaux, Jacod [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF] (section 10, p130), we can prove that ∀t > 0, the variable Y θ t , solution of ( 12), belongs to the domain of the operator L, and we can compute LY θ t and Γ(Y θ t , Y θ t ).

Lemma 1 There are versions of the processes (LY θ t ) t∈[0,1] and (U θ t ) t = (Γ(Y θ t , Y θ t )) t that are solutions of the linear equations:

LY θ t = t 0 a (Y θ s , θ)LY θ s ds + 1 2 t 0 a (Y θ s , θ)U θ s ds + 1 2 t 0 E ρ (z) + ρ(z) g (z) g(z) µ(ds, dz), (21) 
U θ t = 2 t 0 a (Y θ s , θ)U θ s ds + t 0 E ρ(z)µ(ds, dz). ( 22 
)
The proof of this result is based essentially on the linearity and chain rule property of the operators L and Γ.

Theorem 4 Let us denote by q θ the density of Y θ 1 . We assume that the auxiliary function ρ satisfies:

lim inf u→∞ 1 ln u E 1 {ρ(z)≥1/u} g(z)dz = +∞. ( 23 
)
Then we have :

q θ (u) = E(1 {Y θ 1 ≥u} H θ (1)), (24) 
with

H θ (1) := H Y θ 1 (1) = Γ(Y θ 1 , Γ(Y θ 1 , Y θ 1 )) Γ(Y θ 1 , Y θ 1 ) 2 -2 LY θ 1 Γ(Y θ 1 , Y θ 1 ) (25) 
Remark 1

The assumption (23) is a non degeneracy assumption which ensures the existence and

integrability of Γ(Y θ 1 , Y θ 1 ) -1 .
Proof We apply the integration by part formula (19) with f a regularization of the Dirac mass, Φ = Y θ 1 and Ψ = 1. So we just have to verify that, assuming (23

), U θ 1 = Γ(Y θ 1 , Y θ 1 ) is invertible and that 1 U θ 1 ∈ ∩ p≥1 L p .
From Lemma 1, solving equation ( 22), we obtain

U θ 1 = e 1 0 2a (Y θ s ,θ)ds 1 0 E e -s 0 2a (Y θ u ,θ)du ρ(z)µ(ds, dz).
Since a is bounded and ρ > 0, we deduce:

U θ 1 ≥ C 1 0 E ρ(z)µ(ds, dz),
where C is a non negative constant. We set I t (ρ) = t 0 E ρ(z)dµ(s, z), and we just have to prove that ∀p ≥ 1,

E 1 I 1 (ρ) p < ∞. We remark that ∀λ > 0, p ≥ 1, 1 λ p = C p ∞ 0 u p-1 e -λu du,
where C p is a non negative constant depending on p. So we deduce from Fubini Theorem :

E 1 I 1 (ρ) p = C p ∞ 0 u p-1 E(e -uI 1 (ρ) )du.
But from the classical exponential formula for Poisson measures, we have

Ee -uI 1 (ρ) = e -E (1-e -uρ(z) )g(z)dz .
We finally obtain:

E 1 I 1 (ρ) p = C p ∞ 0 u p-1 e -E (1-e -uρ(z) )g(z)dz du.
From assumption (23), we conclude easily that

E 1 I 1 (ρ) p < ∞.
To complete the result of Theorem 4, we give an expression for Γ(

Y θ t , Γ(Y θ t , Y θ t )).
Lemma 2 There is a version of (W θ t ) t = (Γ(Y θ t , U θ t )) t which is solution of the linear equation :

W θ t = 3 t 0 a (Y θ s , θ)W θ s ds + 2 t 0 a (Y θ s , θ)(U θ s ) 2 ds + t 0 E ρ(z)ρ (z)µ(ds, dz). ( 26 
)
U θ s [ ȧ (Y θ s , θ) + a (Y θ s , θ) Ẏ θ s ]ds. ( 29 
)
Proof Let f be a smooth function, by differentiating θ → Ef (Y θ 1 ), and using the integration by part formula (19), we obtain

f (u) qθ (u)du = Ef (Y θ 1 ) Ẏ θ 1 , = Ef (Y θ 1 )H θ ( Ẏ θ 1 ) = Ef (Y θ 1 )E(H θ ( Ẏ θ 1 )|Y θ 1 ) = f (u)E(H θ ( Ẏ θ 1 )|Y θ 1 = u)q θ (u)du.
This gives the expression of qθ q θ (u). The expression of the weight H θ ( Ẏ θ 1 ) follows from (20) and the basic properties of the operator Γ. The expression (29) follows from [START_REF] Kawai | On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling[END_REF] and the fact that Ẏ θ is

solution to Ẏ θ t = t 0 {a (Y θ s , θ) Ẏ θ s + ȧ(Y θ s , θ)}ds.

Application to the representation of the density of the rescaled process

We apply the preceding results to study the asymptotic behavior of q n,θ,x 0 , and qn,θ,x 0 q n,θ,x 0 , as n goes to infinity, where q n,θ,x 0 is the density of Y n,θ,x 0 1 defined by [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF].

We can observe that process (L n,α t ), governing [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF], and equal in law to (n 1/α L t/n ), is a centered Lévy process with Lévy measure

F n (z) = 1 |z| 1+α τ ( z n 1/α )
where τ is a non negative function equal to 1 on [-1, 1], vanishing on [-2, 2] c and satisfying 0 ≤ τ ≤ 1. This clearly suggests that when n growths, the process (L n,α t ) t becomes close to an α-stable process. For the sequel, it will be convenient to construct the family of Lévy processes (L n,α t ) t , for n ≥ 1, on a common probability space where the limiting α-stable process exists as well, and where the convergence holds true in a pathwise sense.

Let us consider µ e (dt, dz, du) a Poisson measure on [0, ∞) × R * × [0, 1] with compensating measure ν e (dt, dz, du) = dt dz |z| 1+α du. This measure corresponds to the jump measure of an α-stable process, where each jumps is marked with a uniform variable on [0, 1].

We define the Poisson measures µ (n) , for all n ≥ 1, and µ by setting:

∀A ⊂ [0, ∞) × R, µ (n) (A) = [0,∞) R [0,1] 1 A (t, z)1 {u≤τ ( z n 1/α )} µ e (dt, dz, du), ( 30 
) ∀A ⊂ [0, ∞) × R, µ(A) = [0,∞) R [0,1] 1 A (t, z)µ e (dt, dz, du). ( 31 
)
By simple computations, one can check that the compensator of the measure

µ (n) (dt, dz) is ν (n) (dt, dz) = dt × τ ( z n 1/α ) dz |z| 1+α = dt × F n (z)dz and the compensator of µ(dt, dz) is ν(dt, dz) = dt × dz |z| 1+α .
Remark that, since τ (z) = 1 for |z| ≤ 1, the measures µ (n) (ds, dz) and µ(ds, dz) coincides on the set

{(s, z) | |z| ≤ n 1/α }.
We now define the stochastic processes associated to these random measures,

L α t = t 0 [-1,1] z{µ(ds, dz) -ν(ds, dz)} + t 0 [-1,1] c zµ(ds, dz) (32) L n,α t = t 0 R z{µ (n) (ds, dz) -ν (n) (ds, dz)} = t 0 |z|≤2n 1/α z{µ (n) (ds, dz) -ν (n) (ds, dz)} (33)
By construction, the process L α is a centered α-stable process,and the process L n,α is equal in law to the process (n 1/α L t/n ) t , since they are based on random measures with same compensators. Remark that the jumps of L n,α t with size smaller than n 1/α exactly coincide with the jumps of L α with size smaller than n 1/α . On the other hand, the process L n,α has no jump with a size greater than 2n 1/α .

Using that the measures µ and µ (n) coincide on the subsets of {(t, z); |z| ≤ n 1/α }, and that, on

|z| ≤ n 1/α , the function τ ( z n 1/α ) 1 |z| 1+α = 1 |z| 1+α is symmetric, we can write: L n,α t = t 0 [-1,1] z{µ(ds, dz) -ν(ds, dz)} + t 0 1≤|z|≤n 1/α zµ(ds, dz) + t 0 n 1/α ≤|z|≤2n 1/α z{µ n (ds, dz) -ν n (ds, dz)}. ( 34 
)
The following simple lemma gives a precise connection between L n,α and the stable process L α .

Lemma 3 There exists a sequence κ n with κ n n→∞ ---→ 0 such that for all t ≤ 1,

L n,α t = L α t -tκ n (35) on the event µ {(t, z) | 0 ≤ t ≤ 1, |z| ≥ n 1/α } = 0. Moreover P µ {(t, z) | 0 ≤ t ≤ 1, |z| ≥ n 1/α } = 0 = 1 + O(1/n). ( 36 
)
Proof Let us set κ n = n 1/α ≤|z|≤2n 1/α zτ (z/n 1/α ) dz |z| 1+α which converges to zero since τ is bounded and α > 1. Now, by comparison of the representations (32) and (34), it is clear that the equation (35) holds true on the event that the supports of the random measures µ and µ (n) do not intersect

{(t, z) | 0 ≤ t ≤ 1, |z| ≥ n 1/α }. Since, by construction, the support of µ (n) is included in the support of µ, we see that (35) holds true on the event µ {(t, z) | 0 ≤ t ≤ 1, |z| ≥ n 1/α } = 0.
Finally, the probability of the latter event is exp -

1 0 |z|≥n 1/α
dz |z| 1+α dt which converges to 1 at rate 1/n as stated.

In the following, we will assume that the process Y n,θ,x 0 is solution of

Y n,θ,x 0 t = n 1 α -1 t 0 b(x 0 + n -1/α Y n,θ,x 0 s , θ)ds + L n,α t , (37) 
where L n,α t is given by (33). We are in the framework of section 3.2, with g(z) = 1 |z| 1+α τ ( z n 1/α ) and the auxiliary function ρ can be chosen as ρ(z) = z 4 τ (2z).

Proposition 3 Let q n,θ,x 0 be the density of Y n,θ,x 0 1 , we have :

q n,θ,x 0 (u) = E(1 {Y n,θ,x 0 1 ≥u} H n θ (1)), ( 38 
)
with

H n θ (1) := H Y n,θ,x 0 1 (1) = H n θ (1) + R n θ (1). ( 39 
)
The main term H n θ (1) is given by

H n θ (1) = 1 0 R (E n s ) -3 ρ (z)ρ(z)µ(ds, dz) E n 1 1 0 R (E n s ) -2 ρ(z)µ(ds, dz) 2 - 1 0 R (E n s ) -1 ρ (z) -(1+α)ρ(z) z µ(ds, dz) E n 1 1 0 R (E n s ) -2 ρ(z)µ(ds, dz) (40) 
where

E n t = exp n -1 t 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)ds , (41) 
and the remainder term satisfies the upper bound,

|R n θ (1)| ≤ C 1 n 1+ 1 α , ( 42 
)
where C is some deterministic constant.

Proof

We apply the Integration by Part Formula given in Theorem 4 to Y n,θ,x 0

1

. The non degeneracy assumption is verified by choosing ρ(z) = z 4 τ (2z). We obtain :

q n,θ,x 0 (u) = E(1 {Y n,θ,x 0 1 ≥u} H n θ (1)),
with

H n θ (1) = Γ(Y n,θ,x 0 1 , Γ(Y n,θ,x 0 1 , Y n,θ,x 0 1 )) Γ 2 (Y n,θ,x 0 1 , Y n,θ,x 0 1 ) -2 LY n,θ,x 0 1 Γ(Y n,θ,x 0 1 , Y n,θ,x 0 1 )
.

The random variables appearing in the weight H n θ (1) can be computed explicitely. Let us denote by

U n,θ t = Γ[Y n,θ,x 0 t , Y n,θ,x 0 t ], and W n,θ t = Γ[Y n,θ,x 0 t , U n,θ t ].
Then applying the results of Lemma 1 and Lemma 2 we have,

U n,θ t = 2 n t 0 U n,θ s b (x 0 + n -1/α Y n,θ,x 0 s , θ)ds + t 0 R ρ(z)µ (n) (ds, dz), L(Y n,θ,x 0 t ) = 1 n t 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)L(Y n,θ,x 0 s )ds + 1 2n 1+1/α t 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)U n,θ s ds + 1 2 t 0 R (ρ (z) + ρ(z) F n (z) F n (z) )µ (n) (ds, dz), W n,θ t = 3 n t 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)W n,θ s ds + 2 n 1+1/α t 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)(U n,θ s ) 2 ds + t 0 R ρ(z)ρ (z)µ (n) (ds, dz).
These linear equations can be resolved explicitly using E n t given by (41). By simple computations, we find

U n,θ 1 = (E n 1 ) 2 1 0 R (E n s ) -2 ρ(z)µ(ds, dz), ( 43 
)
where we used that the measures µ (n) (ds, dz) and µ(ds, dz) coincide on (s, z)

∈ [0, 1] × [-1, 1] and that the support of ρ is included in [-1, 1]
. By analogous computations we get,

L(Y n,θ,x 0 1 ) = E n 1 2 1 0 R (E n s ) -1 ρ (z) - (1 + α)ρ(z) z µ(ds, dz) + E n 1 2n 1+1/α 1 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)U n,θ s (E n s ) -1 ds (44)
where we have used that F n (z) Fn(z) = -1+α z on the support of ρ. Solving the equation for W n,θ 1 yields to

W n,θ 1 = (E n 1 ) 3 1 0 R (E n s ) -3 ρ (z)ρ(z)µ(ds, dz) + (E n 1 ) 3 2n 1+1/α 1 0 b (x 0 + n -1/α Y n,θ,x 0 s , θ)(U n,θ s ) 2 (E n s ) -3 ds. ( 45 
)
Based on these expressions and recalling that

H n θ (1) = W n,θ 1 (U n,θ 1 ) 2 -2 L(Y n,θ,x 0 1 ) U n,θ 1 , (46) 
we deduce, after some calculus, the decomposition (39), where the leading term is

H n θ (1) = 1 0 R (E n s ) -3 ρ (z)ρ(z)µ(ds, dz) E n 1 1 0 R (E n s ) -2 ρ(z)µ(ds, dz) 2 - 1 0 R (E n s ) -1 ρ (z) -(1+α)ρ(z) z µ(ds, dz) E n 1 1 0 R (E n s ) -2 ρ(z)µ(ds, dz)
and, using that b is bounded with bounded derivatives and U n,θ s U n,θ 1 is bounded for 0 ≤ s ≤ 1, the remainder term satisfies the upper bound

|R n θ (1)| ≤ C n 1+1/α
where C is some deterministic constant.

On a similar way, we give an expansion of qn,θ,x 0 q n,θ,x 0 (u).

Proposition 4

We have :

qn,θ,x 0 q n,θ,x 0 (u) = E(H n θ ( Ẏ n,θ,x 0 1 )|Y n,θ,x 0 1 = u), (47) 
with

H n θ ( Ẏ n,θ,x 0 1 ) := H Y n,θ,x 0 1 ( Ẏ n,θ,x 0 1 ) = Ẏ n,θ,x 0 1 H n θ (1) + R n θ ( Ẏ n,θ,x 0 1 ), ( 48 
)
where R n θ ( Ẏ n,θ,x 0

1

) ≤ Cn -1 and H n θ (1) is given in (40).

Proof Using successively the Theorem 5 and the equation (46), we have

H n θ ( Ẏ n,θ,x 0 1 ) = Ẏ n,θ,x 0 1 W n,θ 1 (U n,θ 1 ) 2 -2 LY n,θ,x 0 1 U n,θ 1 - Γ(Y n,θ,x 0 1 , Ẏ n,θ,x 0 1 ) U n,θ 1 = Ẏ n,θ,x 0 1 H n θ (1)- Γ(Y n,θ,x 0 1 , Ẏ n,θ,x 0 1 ) U n,θ 1 , U n,θ
1 is given by (43). For the computation of V n,θ

1 = Γ(Y n,θ,x 0 1 , Ẏ n,θ,x 0 1
), we use (29), this gives

V n,θ 1 = (E n 1 ) 2 1 0 (E n s ) -2 U n,θ s 1 n ḃ (x 0 + n -1/α Y n,θ,x 0 s , θ) + Ẏ n,θ,x 0 s 1 n 1+1/α b (x 0 + n -1/α Y n,θ,x 0 s , θ) ds. (49)
The expression of Ẏ n,θ,x 0 1 is explicitly given by,

Ẏ n,θ,x 0 1 = n 1 α -1 E n 1 1 0 (E n s ) -1 ḃ(x 0 + n -1/α Y n,θ,x 0 s , θ)ds. ( 50 
)
Using these expressions, we deduce the bounds

Ẏ n,θ,x 0 1 ≤ Cn 1 α -1 (51) V n,θ 1 ≤ Cn -1 U n,θ 1 
Combining this with the Proposition 3, the result follows.

Asymptotic behaviour of the transition density

In this section we study the asymptotic behaviour of q n,θ,x 0 , the density of Y n,θ,x 0 1 , solution of (37).

We will establish some stronger versions of Proposition 1.

Pointwise convergence

The following two propositions will imply the results of Proposition 1 i) and ii).

Proposition 5 Let (θ n ) n≥1 be a sequence of parameters such that θ n n→∞ ---→ θ. For all (x 0 , u) ∈ R 2 ,
we have q n,θn,x 0 (u)

n→∞ ---→ ϕ α (u). Moreover sup u∈R sup n q n,θn,x 0 (u) < ∞. ( 52 
) Proposition 6 Let (θ n ) n≥1 be a sequence of parameters such that θ n n→∞ ---→ θ. For all (x 0 , u) ∈ R 2 , we have √ nu n qn,θn,x 0 (u) n→∞ ---→ ḃ(x 0 , θ)ϕ α (u). Moreover sup u sup n n 1-1/α qn,θn,x 0 (u) < ∞. (53) 

Proof of the Proposition 5

From the Proposition 3, the expression for the density of Y n,θ,x 0 1 at some point u and with θ n ∈ Θ is given by equation ( 38)

q n,θn,x 0 (u) = E[1 [u,∞) (Y n,θn,x 0 1 )H n θn (1)],
where H n θn (1) = H n θn (1) + R n θn [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF], with H n θn [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] given by (40) and R n θn (1) bounded by (42). Let us note

H L α (1) = 1 0 R ρ (z)ρ(z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 - 1 0 R ρ (z) -(1+α)ρ(z) z µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) , ( 54 
)
then from (41), and the boundedness of b , it is clear that H n θn (1) converges almost surely to H L α (1). Using again the boundedness of b and the fact that ρ is a non negative function, we deduce the upper bound

H n θn (1) ≤ C 1 0 R |ρ (z)| ρ(z)µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) 2 + 1 0 R |ρ (z)| + (1+α)ρ(z) |z| µ(ds, dz) 1 0 R ρ(z)µ(ds, dz) (55) 
for some constant C > 0. Using that ρ, |ρ | and z → ρ(z) z belongs to p≥1 L p (|z| -1-α dz) we get

E 1 0 R |ρ (z)| ρ(z)µ(ds, dz) p < ∞, E 1 0 R |ρ (z)| + (1+α)ρ(z) |z| µ(ds, dz) p < ∞ for all p ≥ 1.
Since ρ satisfies the non degeneracy assumption (23), [ 1 0 R ρ(z)µ(ds, dz)] -1 belongs to p≥1 L p , as a consequence we deduce from (55) that sup n H n θn [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] p is integrable for all p ≥ 1. Applying the dominated convergence Theorem, we deduce that

H n θn (1) n→∞ ---→ L p H L α (1), , ∀p ≥ 1. ( 56 
)
The Lemma 3 implies that L n,α 1 converges to L α 1 in probability. From the boundedness of b and equation (37) we deduce that Y n,θn,x 0 1 converges in probability to L α 1 . Then, an easy computation, using that P (L α 1 = u) = 0, shows the convergence in probability

1 [u,∞) (Y n,θn,x 0 1 ) n→∞ ---→ P 1 [u,∞) (L α 1 ). ( 57 
)
Moreover from the boundedness property of the variables, the latter convergence holds in L p sense, ∀p ≥ 1.

Using (38), (39), ( 42), ( 56), (57) we get,

q n,θn,x 0 (u) n→∞ ---→ E 1 [u,∞) (L α 1 )H L α (1) . (58) 
To finish the proof of the convergence, it remains to show that the right hand side of (58) is a representation for ϕ α (u), the density of an α-stable process. This is done in Lemma 4 below.

Remark that, we easily get from (38), (39), (42), and (56) that sup u∈R sup n q n,θn,x 0 (u) < ∞.

Lemma 4

We have

ϕ α (u) = E 1 [u,∞) (L α 1 )H L α (1) . ( 59 
)
Proof The relation (59) could be formally obtained by Malliavin computations for the stable measure.

However Malliavin computation in the setting of a stable process does not immediately enters the framework developed by [START_REF] Bichteler | Malliavin calculus for processes with jumps[END_REF], since the amplitude of the (big) jumps are not L p random variables for all p. Hence, we prefer to give another proof.

Let us denote ϕ n (u) the density of the variable L n,α 1 . We apply the results ( 52) and (58), in the situation where the drift function b ≡ 0, for which Y n,θ,x 0 1 = L n,α 1 . This yields to,

ϕ n (u) n→∞ ---→ E 1 [u,∞) (L α 1 )H L α (1) := ψ(u), (60) 
sup u sup n ϕ n (u) < ∞. (61) 
Assume by contradiction that, for some u, we have ψ(u) = ϕ α (u). From the fact that P (L α 1 = u) = 0, it can be seen that ψ is continuous at the point u. Hence, one can find a continuous, compactly supported, function f such that f (x)ψ(x)dx = f (x)ϕ α (x)dx.

On the one hand we have,

E[f (L n,α 1 )] = f (x)ϕ n (x)du n→∞ ---→ f (x)ψ(x)dx, (62) 
where we have used the dominated convergence Theorem with (60)-(61). On the other hand, we write

E[f (L n,α 1 )] = E[f (L α 1 -κ n )1 {L n,α 1 =L α 1 -κn} ] + E[f (L n,α 1 )1 {L n,α 1 =L α 1 -κn} ],
where we have used the notations of Lemma 3. Moreover, by Lemma 3, we have P (L n,α

1 = L α 1 - κ n ) n→∞ ---→ 1. We deduce that, E[f (L n,α 1 )] n→∞ ---→ E[f (L α 1 )] = f (x)ϕ α (x)dx (63) 
This last convergence result clearly contradicts (62).

Proof of Proposition 6

First we write a representation as an expectation for qn,θ,x 0 . Let f be a smooth, non negative and compactly supported function. Differentiating the relation E[f (Y n,θ,x 0

1

)] = f (u)q n,θ,x 0 du, we get,

E[f (Y n,θ,x 0 1 ) Ẏ n,θ,x 0 1 ] = f (u) qn,θ,x 0 (u)du.
Using the Integration by Part Formula (19) , we obtain

f (u) qn,θ,x 0 (u)du = E[f (Y n,θ,x 0 1 )H n θ ( Ẏ n,θ,x 0 1 )], (64) 
where

H n θ ( Ẏ n,θ,x 0 1
) is given by ( 48) :

H n θ ( Ẏ n,θ,x 0 1 ) = Ẏ n,θ,x 0 1 H n θ (1) + R n θ ( Ẏ n,θ,x 0 1 ), with R n θ ( Ẏ n,θ,x 0 1
) ≤ Cn -1 and H n θ (1) given in (40). Using (64), we get

f (u) qn,θ,x 0 (u)du -E[f (Y n,θ,x 0 1 ) Ẏ n,θ,x 0 1 H n θ (1)] ≤ E f (Y n,θ,x 0 1 ) R θ ( Ẏ n,θ,x 0 1 ) ≤ Cn -1 E[f (Y n,θ,x 0 1 )]
Applying the Integration by Part Formula, we deduce

f (u) qn,θ,x 0 (u)du -E F (Y n,θ,x 0 1 )H Y n,θ,x 0 1 Ẏ n,θ,x 0 1 H n θ (1) ≤ Cn -1 E[f (Y n,θ,x 0 1 )]
where F denotes a primitive function of f and

H Y n,θ,x 0 1 Ẏ n,θ,x 0 1 H n θ (1)
is defined by (20). If f converges to a Dirac mass at some point u, we deduce, qn,θ,x 0 (u)

-E 1 [u,∞) (Y n,θ,x 0 1 )H Y n,θ,x 0 1 Ẏ n,θ,x 0 1 H n θ (1) ≤ Cn -1 q n,θ,x 0 (u). (65) 
Thus we need to study lim

n n 1-1/α E 1 [u,∞) (Y n,θn,x 0 1 )H Y n,θn,x 0 1 Ẏ n,θn,x 0 1
H n θn [START_REF] Aït | Volatility estimators for discretely sampled Lévy processes[END_REF] . Actually, the main step is to show that

n 1-1/α H Y n,θn,x 0 1 Ẏ n,θn,x 0 1 H n θn (1) n→∞ ---→ L p ḃ(x 0 , θ)H (2) , ∀p ≥ 1, ( 66 
)
where H (2) is some random variable whose expression does not depend on θ and b. This is done in Lemma 10 (see the section 7). Then, as in the proof of (58), we can deduce from (65)-(66), that

n 1-1/α qn,θn,x 0 (u) n→∞ ---→ ḃ(x 0 , θ)E 1 [u,∞) (L α 1 )H (2) . (67) 
Remark that from (52) and ( 65)-(66), we get sup

u sup n n 1-1/α qn,θn,x 0 (u) < ∞.
The proof of the Proposition will be finished if we identify E 1 [u,∞) (L α 1 )H (2) as being equal to ϕ α (u). This is done in Lemma 5 below.

Lemma 5

We have for all u ∈ R,

ϕ α (u) = E[1 [u,∞) (L α 1 )H (2) ]. ( 68 
)
Proof Let us consider the situation where b(x, θ) = θ. In that case, we have

Y n,θ,x 0 1 = n 1 α -1 θ + L α,n 1 
and thus the density of Y n,θ,x 0 1 is related to the density of L α,n 1 by the relation

q n,θ,x 0 (u) = ϕ n (u -n 1/α-1 θ).
We can apply the results ( 53) and (67) in this specific setting. This yields to

∀u, ϕ n (u -n 1/α-1 θ) n→∞ ---→ E[1 [u,∞) (L α 1 )H (2) ], (69) sup 
u,n ϕ n (u -n 1/α-1 θ) < ∞. ( 70 
) Let us denote χ(u) = E[1 [u,∞) (L α
1 )H (2) ] and assume by contradiction that χ = ϕ α . Using the continuity of u → χ(u), there exists a smooth, compactly supported function, f such that χ(u)f (u)du = ϕ α (u)f (u)du. Now, on the one hand we have

ϕ n (u -n 1/α-1 θ)f (u)du n→∞ ---→ χ(u)f (u)du, ( 71 
)
where we have used the dominated convergence theorem, together with (69)-(70).

On the other hand, we can write

ϕ n (u -n 1/α-1 θ)f (u)du = -ϕ n (u -n 1/α-1 θ)f (u)du = -ϕ n (u)f (u + n 1/α-1 θ)du = -E[f (L α,n 1 + n 1-1/α )] n→∞ ---→ -E[f (L α 1 )] = -ϕ α (u)f (u)du (72) = ϕ α (u)f (u)du ( 73 
)
where the convergence (72) is obtained in the same way as (63). Clearly (73) contradicts (71), and the lemma is proved.

Fisher information

We study now the asymptotic properties of the Fisher information defined by [START_REF] Jeganathan | Some asymptotic properties of risk functions when the limit of the experiment is mixed normal[END_REF] corresponding to the observation of the random variable Y n,θ,x 0

1

. We recall that it is given by

I n,θ,x 0 = E   qn,θ,x 0 (Y n,θ,x 0 1 ) q n,θ,x 0 (Y n,θ,x 0 1 ) 2  
We will show a stronger version of the Proposition 1 iii).

Proposition 7 Let (θ n ) be a sequence such that θ n n→∞ ---→ θ, we have i)

n 2-2/α I n,θn,x 0 n→∞ ---→ ḃ(x 0 , θ) 2 E ϕ α (L α 1 ) ϕ α (L α 1 ) 2 = ḃ(x 0 , θ) 2 R ϕ α (u) 2 ϕ α (u) du,
and this convergence is uniform with respect to

x 0 , ii) sup n,x 0 ,θ n 2-2/α I n,θ,x 0 = sup n,x 0 ,θ n 2-2/α E qn,θ,x 0 (Y n,θ,x 0 1 ) 2 q n,θ,x 0 (Y n,θ,x 0 1 
) 2 < ∞.

The proof of this proposition is based on the following lemma, which is related to a continuity property with respect to the conditioning variable.

Lemma 6 Let (θ n ) n≥1 be a sequence such that θ n n→∞ ---→ θ. Then, the following convergence holds uniformly with respect to x 0 ,

n 2-2/α E E[H n θ ( Ẏ n,θn,x 0 1 ) | Y n,θn,x 0 1 ] 2 n→∞ ---→ ḃ(x 0 , θ) 2 E E[H L α (1) | L α 1 ] 2 ,
where H L α (1) is given by (54) and L α 1 by (32).

Proof Let us recall the crucial decomposition given in (48),

H n θ ( Ẏ n,θ,x 0 1 ) = Ẏ n,θ,x 0 1 H n θ (1)+R n θ ( Ẏ n,θ,x 0 1 ) where R n θ ( Ẏ n,θ,x 0 1 ) ≤ Cn -1 . From the fact that sup x 0 sup s∈[0,1] |E n s -1| + (E n s ) -1 -1 n→∞ ---→ 0 and
the expression explicit expression of Ẏ n,θ,x 0 1

given in (50), we easily get sup

x 0 n 1-1/α Ẏ n,θn,x 0 1 -ḃ(x, θ) n→∞ ---→ a.s.

0.

From the expression (40) and (54) it can be seen that sup

x 0 H n θn (1) -H L α (1) n→∞ ---→ a.s.
0. We deduce that almost surely, one has the convergence sup

x 0 n 1-1/α H n θn ( Ẏ n,θn,x 0 1 ) -ḃ(x 0 , θ)H L α (1) n→∞ ---→ 0. ( 74 
)
Moreover using the upper bound (55) with (48) again, we can apply the dominated convergence Theorem and see that the convergence (74) holds in L p -norm for all p ≥ 1. Now, we can write

E E[n 1-1/α H n θn ( Ẏ n,θn,x 0 1 ) | Y n,θ,n,x 0 1 ] -E[ ḃ(x 0 , θ)H L α (1) | Y n,θ,n,x 0 1 ] 2 ≤ E E[ n 1-1/α H n θn ( Ẏ n,θn,x 0 1 ) -ḃ(x 0 , θ)H L α (1) 2 | Y n,θ,n,x 0 1 ] = E n 1-1/α H n θn ( Ẏ n,θn,x 0 1 ) -ḃ(x 0 , θ)H L α (1)
2 converges to zero uniformly with respect to x 0 . In turns, it gives the uniform convergence

n 2-2/α E E[H n θn ( Ẏ n,θn,x 0 1 ) | Y n,θn,x 0 1 ] 2 -ḃ(x 0 , θ) 2 E E[H L α (1) | Y n,θn,x 0 1 ] n→∞ ---→ 0.
Hence, the proposition will be proved as soon as we show the uniform convergence with respect to x 0 ,

E E[H L α (1) | Y n,θn,x 0 1 ] 2 -E E[H L α (1) | L α 1 ] 2 n→∞ ---→ 0. ( 75 
)
This is a delicate part of the proof, since it amounts to compare the conditional expectation of a variable with respect to the two different variables Y n,θn,x 0 1 and L α 1 . First, we reduce the situation to the case where the random variable in the expectation is bounded. Let K > 0 and denote by x → χ K (x) a smooth truncation function with χ K (x) = 0 for |x| ≥ K, χ K (x) = 1 for |x| ≤ K/2 and 0 ≤ χ K ≤ 1. Using that E[H L α (1) 2 ] < ∞, one can see that (75) is implied by the following convergence for all K > 0, sup

x 0 E E[H L α (1)χ K (H L α (1)) | Y n,θn,x 0 1 ] 2 -E E[H L α (1)χ K (H L α (1)) | L α 1 ] 2 n→∞ ---→ 0. ( 76 
)
Let us denote by η n and η the measurable functions such that,

E H L α (1)χ K (H L α (1)) | Y n,θn,x 0 1 = η n (Y n,θn,x 0 1
),

E [H L α (1)χ K (H L α (1)) | L α 1 ] = η(L α 1 ).
With these notations, the condition (76) writes sup

x 0 E[η n (Y n,θn,x 0 1 ) 2 ] -E[η(L α 1 ) 2 ] n→∞ ---→ 0 (77) 
Using Proposition 10 in Section 7.2, we know that sup

x 0 E η(Y n,θn,x 0 1 ) -η n (Y n,θn,x 0 1 ) n→∞ ---→ 0.
Since |η n | and |η| are bounded by the constant K, we deduce η(Y n,θn,x 0 1 ) -η n (Y n,θn,x 0

---→ 0 uniformly with respect to x 0 . This yields to sup

x 0 E[η n (Y n,θn,x 0 1 ) 2 ] -E[η(Y n,θn,x 0 1 ) 2 ] n→∞ ---→ 0
Now, applying (104) in Corollary 2 with the bounded function η 2 yields to (77), and the lemma is proved.

We can now prove the main result of the Section.

Proof of Proposition 7. i) First we remark that we have the representation

ϕ α (u) ϕ α (u) = E H L α 1 (1) | L α 1 = u . (78) 
Indeed, by considering the specific model b(x, θ) = θ, we obtain, Y n,θ,x 0

1 = L n,α 1 + n 1-1/α θ, Ẏ n,θ,x 0 1 = n 1-1/α , H n θ (Y n,θ,x 0 ) = n 1-1/α H L α (1), q n,θ,x 0 (u) = ϕ n (u -n 1-1/α θ).
Using (64), we get for any smooth function f ,

f (u)ϕ n (u -n 1-1/α θ)n 1-1/α du = E[f (L n,α 1 + n 1-1/α θ)n 1-1/α H L α (1)] 
From the convergence results (73) and the smoothness of f , we get f (u)ϕ α (u)du = E[f (L α 1 )H L α (1)], and we deduce (78).

Next, we have from Proposition 4

n 2-2/α I n,θn,x 0 = n 2-2/α E E H n θn (Y n,θn,x 0 1 ) Y n,θn,x 0 2 , n→∞ ---→ ḃ(x 0 , θ) 2 E E[H L α (1) | L α 1 ] 2 , from Lemma 6, = ḃ(x 0 , θ) 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 ) 2 , from (78) 
, which proves the first part of the proposition.

ii) Using successively the Proposition 4 and Jensen inequality, we get

I n,θ,x 0 = E[E[H n θ ( Ẏ n,θ,x 0 1 ) | Y n,θ,x 0 ] 2 ] ≤ E[H n θ ( Ẏ n,θ,x 0 1 ) 2 ]
But it is clear from (48), ( 51) and (55

) that n 1-1/α H n θ ( Ẏ n,θ,x 0 1
) is bounded in L p norm independently of n, θ, x 0 , for any p ≥ 1.

5 Proof of the asymptotic expansion of the likelihood (Theorems

1-2)
This section is devoted to the proof of the asymptotic expansion for the log-likelihood function, established in the Theorem 1. The proof is based essentially on the L 2 -regularity property of the transition density p θ 1/n (x, y) and on the result of Theorem 2. Indeed, from Jeganathan [START_REF] Jeganathan | On the asymptotic theory of estimation when the limit of the log-likelihood ratios is mixed normal[END_REF], the following four conditions A1-A4 are sufficient to get the expansion (4) of Theorem 1.

We recall the notation ξ θ i,n = ṗθ

1 n p θ 1 n (X θ i n , X θ i+1 n ). A1. L 2 -regularity n j=1 E    R    p θ+unh 1 n (X θ j-1 n , y) 1/2 -p θ 1 n (X θ j-1 n , y) 1/2 - 1 2 hu n ṗθ 1 n (X θ j-1 y , y) p θ 1 n (X θ j-1 y , y) 1/2    2 dy    n→∞ ---→ 0. A2. J n (θ) = u 2 n n-1 i=0 E (ξ θ i,n ) 2 |G i/n n→∞ ---→ I θ (> 0 a.e.), in probability, A3. ∀ε > 0, n-1 i=0 u 2 n E ξ θ i,n 2 
1 {un|ξ θ i,n |≥ε} n→∞ ---→ 0. A4. sup n u 2 n n i=0 E(ξ θ i,n ) 2 ≤ C, for a strictly positive constant C
The condition A1 is proved in Section 5.1 below. The conditions A2 and A3 coincide with the Theorem 2, which is proved in Section 5.2 below. The condition A4 is immediate from the Proposition

7 ii), since E(ξ θ i,n ) 2 = EI n,θ,X θ i/n and nu 2 n = n 2-2/α
. Note that these conditions does not imply the stable convergence in law [START_REF] Ishikawa | Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps[END_REF] since in our framework the filtration (G i n ) i does not satisfy the nested condition. The proof of the stable convergence in law will be given in Section 6.

Proof of the L 2 regularity condition

Proposition 8 Set u n = n 1/2-1/α , we have n j=1 E    R    p θ+unh 1 n (X θ j-1 n , y) 1/2 -p θ 1 n (X θ j-1 n , y) 1/2 - 1 2 hu n ṗθ 1 n (X θ j-1 y , y) p θ 1 n (X θ j-1 y , y) 1/2    2 dy    n→∞ ---→ 0. ( 79 
)
Proof Recall that q n,θ,x 0 is the density of the rescaled process (X θ 1/n -x 0 )n 1/α . One has the simple relation p θ 1 n (x, y) = n 1/α q n,θ,x [n 1/α (y -x)], and proving (79) amounts to show the convergence to zero of the following quantity,

n j=1 E n 1/α R q n,θ+unh,X θ j-1 n (n 1/α (y -X θ j-1 n )) 1/2 -q n,θ,X θ j-1 n (n 1/α (y -X θ j-1 n )) 1/2 - 1 2 hu n qn,θ,X θ j-1 n (n 1/α (y -X θ j-1 n )) q n,θ,X θ j-1 n (n 1/α (y -X θ j-1 n )) 1/2 2 dy .
By a simple change of variable, it is equivalent to show

n -1 n j=1 E R n 1/2 [q n,θ+unh,X θ j-1 n (u) 1/2 -q n,θ,X θ j-1 n (u) 1/2 ] - 1 2 hn 1/2 u n qn,θ,X θ j-1 n (u) q n,θ,X θ j-1 n (u) 1/2 2 du n→∞ ---→ 0. (80) 
Let us denote f n (x, u) = n 1/2 [q n,θ+unh,x (u) 1/2 -q n,θ,x (u) 1/2 ],

g n (x, u) = 1 2 n 1/2 u n h qn,θ,x (u) q n,θ,x (u) 1/2 .
Let us admit temporarily that the three following properties holds true :

1) There exists a function f such that,

∀x, u, f n (x, u) n→∞ ---→ f (x, u), g n (x, u) n→∞ ---→ f (x, u).
2) We have for all x,

lim sup n R f n (x, u) 2 du ≤ R f (x, u) 2 du, lim sup n R g n (x, u) 2 du ≤ R f (x, u) 2 du. 3) We have sup x,n R f n (x, u) 2 du < ∞, (81) sup 
x,n R g n (x, u) 2 du < ∞. (82) 
Admitting these three points, we can prove (80). Let ε > 0, we first show a uniform polynomial decay for y → p θ t (x 0 , y), when t ≥ ε. Using Theorem 4, we have

p θ t (x 0 , y) = E[1 {X θ t ≥y} H X θ t (1)],
where H X θ t

(1) is given by (20). But, it can be seen that sup ε≤t≤1 E[Γ(X θ t , X θ t ) -p ] is bounded for any p ≥ 1. Then, one can easily deduce that sup ε≤t≤1 E H X θ t (1) p < ∞. From (2) and the fact the Lévy measure of L has a compact support we deduce sup t∈[0,1] E[ X θ t p ] < ∞. Using the Markov inequality, we deduce that sup ε≤t≤1 p θ t (x 0 , y) ≤ C 1+y 2 for some C > 0. Then, we split the right hand side of (80) on the following way

n -1 n j=1 R E[{f n (X θ j-1 n , u) -g n (X θ j-1 n , u)} 2 ]du = n -1 nε j=1 E R {f n (X θ j-1 n , u) -g n (X θ j-1 n , u)} 2 du + n -1 n j= nε +1 E R {f n (X θ j-1 n , u) -g n (X θ j-1 n , u)} 2 du ≤ n -1 nε j=1 sup x,n R 2[f n (x, u) 2 + g n (x, u) 2 ]du + n -1 n j= nε +1 E R {f n (X θ j-1 n , u) -g n (X θ j-1 n , u)} 2 du ≤ εC + n -1 n j= nε +1 E R {f n (X θ j-1 n , u) -g n (X θ j-1 n , u)} 2 du , by (81)-(82), ≤ εC + n -1 C n j= nε +1 R R
{f n (y, u) -g n (y, u)} 2 du dy 1 + y 2 , using p θ t (x 0 , y) ≤

C 1 + y 2 , = εC + C n -nε n R R
{f n (y, u) -g n (y, u)} 2 du dy 1 + y 2 .

From Lemma 7, the conditions 1) and 2) imply that R {f n (y, u) -g n (y, u)} 2 du n→∞ ---→ 0. The condition 3) is sufficient to apply the dominated convergence Theorem and find that R R {f n (y, u)g n (y, u)} 2 du dy 1+y 2 converges to zero as n → ∞. Hence, we have proved the proposition, up to the fact that we need to check the validity of the conditions 1), 2) and 3).

We start with the proof of the property 1). From Propositions 5-6, we see that

g n (x, u) n→∞ ---→ f (x, u) := 1 2 h ḃ(x, θ) ϕ α (u) ϕα(u) 1/2 .
Using the mean value theorem, we can write

f n (x, u) = 1 2 n 1/2 u n h qn,θn,x (u)
q n,θn,x (u) 1/2 , for some θ n ∈ [θ, θ + u n h]. Using again the Propositions 5-6, we get f n (x, u) n→∞ ---→ f (x, u).

We now prove the property 2). Recalling that u n = n 1/2-1/α and (11), we have

R g n (x, u) 2 du = h 2
4 n 2-2/α I n,θ,x . From the Proposition 7, we get

R g n (x, u) 2 du n→∞ ---→ R f (x, u) 2 du, for all x.
Using f n (x, u) = 1 2 n 1/2 θ+unh θ qn,s,x (u) q n,s,x (u) 1/2 ds. We write

R f n (x, u) 2 du = n 4 θ+unh θ qn,s,x (•) q n,s,x (•) 1/2 ds 2 2 ≤ n 4 θ+unh θ qn,s,x (•) q n,s,x (•) 1/2 2 ds 2 = h 2 4 nu 2 n 1 0 R
qn,θ+sunh,x (u) 2 q n,θ+sunh,x (u) du

1/2 ds 2 = h 2 4 1 0 (n 2-2/α I n,θ+sunh,x ) 1/2 ds 2 (83) n→∞ ---→ h 2 4 ḃ(x, θ) 2 R ϕ α (u) 2 ϕ α (u) du = R f 2 (x, u)du,
where, in the last line, we have used the Proposition 7 for the convergence of n 2-2/α I n,θ+sunh,x and the application of the dominated convergence Theorem.

We end the proof of the Proposition by showing the property 3). From (83) and Proposition 7 we get (81). The bound (82) is deduced by Proposition 7 as well.

Lemma 7 Assume that (f n ) n , (g n ) n are two sequences of real functions such that:

1) There exists f ∈ L 2 (R) such that f n (u) n→∞ ---→ f (u) and g n (u) n→∞ ---→ f (u)
for almost every u.

2) We have lim sup

n R f n (u) 2 du ≤ R f (u) 2 du and lim sup n R g n (u) 2 du ≤ R f (u) 2 du. Then, R (f n (u) -g n (u)) 2 du n→∞ ---→ 0. Proof We write (f n (u)-g n (u)) 2 ≤ 2f n (u) 2 +2g n (u) 2 and thus 2f n (u) 2 +2g n (u) 2 -(f n (u)-g n (u)) 2 ≥ 0.
Applying Fatou's lemma to this non negative function, we get

R 4f (u) 2 du ≤ lim inf n R [2f n (u) 2 + 2g n (u) 2 -(f n (u) -g n (u)) 2 ]du ≤ lim sup n R [2f n (u) 2 + 2g n (u) 2 ]du -lim sup n R (f n (u) -g n (u)) 2 du.
This yields to the inequality lim sup

n R (f n (u)-g n (u)) 2 du ≤ lim sup n R 2f n (u) 2 du+lim sup n R 2g n (u) 2 du- R 4f ( 
u) 2 du ≤ 0, and thus the lemma follows.

Proof of Theorem 2

Proof First, we use that

ṗθ 1/n (x,y) p θ 1/n (x,y) = qn,θ,x (n 1/α (y-x))
q n,θ,x (n 1/α (y-x)) , and as a result of the Markov property for the process X θ and (11), we have

E[(ξ θ i,n ) 2 | G i/n ] = I n,θ,X θ i/n .
From the Proposition 7, we know that the quantity sup 0≤i≤n-1

nu 2 n I n,θ,X θ i/n -ḃ(X θ i/n , θ) 2 R ϕ (u) 2 ϕ(u) du = sup 0≤i≤n-1 n 2-2/α I n,θ,X θ i/n -ḃ(X θ i/n , θ) 2 R ϕ (u) 2 ϕ(u) du
converges to zero as n → ∞. Then the convergence ( 6) is a consequence of the convergence of a Riemann sum.

To prove [START_REF] Hájek | A characterization of limiting distributions of regular estimates[END_REF] we use, again, the relation

ṗθ 1/n (x,y) p θ 1/n (x,y) = qn,θ,x (n 1/α (y-x))
q n,θ,x (n 1/α (y-x)) and the Markov property to

get, E[|ξ i,n | k | X θ i/n = x] = E qn,θ,x (Y n,θ,x 1 ) q n,θ,x (Y n,θ,x 1 ) k , for any k ≥ 1. It then follows from Proposition 4 that, E[|ξ i,n | k | X θ i/n = x] = E E H n θ ( Ẏ n,θ,x 1 ) | Y n,θ,x 1 k ≤ E H n θ ( Ẏ n,θ,x 1 ) k ,
where we used the Jensen inequality in the last step. As seen in the proof of Proposition 7, the random

variables n 1-1/α H n θ ( Ẏ n,θ,x 1 
) are bounded in L k -norm independently of n and x. From this, we deduce sup 0≤i≤n-1

n k-k/α E[|ξ i,n | k ] ≤ C(k), ∀k ≥ 1,
where the C(k) are some finite constants. It can be classically checked that the previous control, for instance with k = 4, is sufficient to imply the Lindeberg's condition (7).

Stable central limit theorem

This section is devoted to the proof of the stable convergence in law stated in Theorem 3.

Proof Since u n = n 1/2-1/α , we have

u n n-1 i=0 ξ θ i,n = n -1/2 n-1 i=0 n 1-1/α ṗθ 1 n (X θ i n , X θ i+1 n ) p θ 1 n (X θ i n , X θ i+1 n
) .

The Theorem 3 is an immediate consequence of the Lemmas 8-9 below.

Lemma 8

Set

η i,n = n 1-1/α ṗθ 1 n (X θ i n , X θ i+1 n ) p θ 1 n (X θ i n , X θ i+1 n ) -ḃ(X θ i n , θ) ϕ α (n 1/α (L i+1 n -L i n ) + κ n ) ϕ α (n 1/α (L i+1 n -L i n ) + κ n ) , then we have n -1/2 n-1 i=0 η i,n n→∞ ---→ 0.
Using the notations of Section 4, we define d n,θ,x 0 = E n 1-1/α qn,θ,x 0 (Y n,θ,x 0 1 ) q n,θ,x 0 (Y n,θ,x 0 1

) ḃ(x 0 , θ) ϕ α (L n,α 1 +κn) ϕα(L n,α 1 +κn) , so that the left hand side of (87) reduces, from the Markov property, to d n,θ,X θ i/n . From (37) and κ n → 0,

we have Y n,θ,x 0 1 -L n,α 1 + κ n ∞ n→∞ ---→ 0.
Using the fact that ϕ α ϕα has a bounded derivative (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]) together with Cauchy-Schwartz inequality and Proposition 7 ii), we can deduce that,

d n,θ,x 0 = E n 1-1/α qn,θ,x 0 (Y n,θ,x 0 1 ) q n,θ,x 0 (Y n,θ,x 0 1 ) ḃ(x 0 , θ) ϕ α (Y n,θ,x 0 1 ) ϕ α (Y n,θ,x 0 1 ) + o(1),
where the o(1) term is uniform with respect to x 0 . Using the Proposition 4, we have

d n,θ,x 0 = E n 1-1/α H n θ ( Ẏ n,θ,x 0 1 ) ḃ(x 0 , θ) ϕ α (Y n,θ,x 0 1 ) ϕ α (Y n,θ,x 0 1 ) + o(1).
From the convergence result (74), we deduce that sup

x 0 d n,θ,x 0 -ḃ(x 0 , θ) 2 E H L α (1) ϕ α (Y n,θ,x 0 1 ) ϕ α (Y n,θ,x 0 1 ) n→∞ ---→ 0.
From Lemma 3 and (37), we can deduce that,

d n,θ,x 0 n→∞ ---→ ḃ(x 0 , θ) 2 E H L α (1) ϕ α (L α 1 ) ϕ α (L α 1 )
, uniformly with respect to x 0 . Then, the relation (78) enables to rewrite this convergence as,

d n,θ,x 0 n→∞ ---→ ḃ(x 0 , θ) 2 E ϕ α (L α 1 ) 2 ϕ α (L α 1 )
2 , uniformly with respect to x 0 .

This result implies (87) and hence (85).

Lemma 9 On has the convergence in law,

n -1/2 n-1 i=0 ϕ α (n 1/α (L i+1 n -L i n ) + κ n ) ϕ α (n 1/α (L i+1 n -L i n ) + κ n ) ḃ(X i n , θ) n→∞ ---→ N (0, I θ ), ( 88 
)
where the convergence is stable with respect to G 1 .

Lemma 11 Let ξ : R → R be a bounded function with support included in [-1, 1], with bounded derivative and such that ξ ∈ L 1 ( dz |z| 1+α ) and let

I n (t) = (E n t ) p t 0 R (E n s ) -p ξ(z)µ(ds, dz), I(t) = t 0 R ξ(z)µ(ds, dz),
where p ≥ 1 is some real constant. Then, the following convergences hold in L q -norm for all q ≥ 1, -1)dt dz |z| 1+α , which is finite and bounded independently of n. This shows that the exponential moments of I are bounded. We deduce that R n (1) → 0 in L p norm, uniformly with respect to the parameter θ, and the lemma follows.

I n (1 

Lemma 12

We have

Γ n 1-1/α Ẏ n,θ,x 0 1 , n 1-1/α Ẏ n,θ,x 0 1 Γ Y n,θ,x 0 1 , Y n,θ,x 0 1 ≤ Cn 1-2/α ,
where C is some constant independent of n, θ, x 0 .

Proof The process Ẏ n,θ,x 0 is solution of From this, we can deduce that Q t = Γ( Ẏ n,θ,x 0 t , Ẏ n,θ,x 0 t

) is solution of the equation,

Q t = t 0 2n -1 Q s b (x 0 +n -1/α Y n,θ,x 0 s , θ)ds+2n -1-1/α t 0
Γ(Y n,θ,x 0 that we will not fully use the explicit expression of H L α (1) in the proof. For the sake of shortness, let us denote H K = H L α (1)χ K (H L α (1)). The crucial facts about H K is that H K ∞ ≤ K and that it is a smooth Malliavin functional, with

Γ(H K , H K ) ≤ c 2 K Γ(H L α (1), H L α (1)) is element of p≥1 L p ,
where c K is any upper bound of the derivative of x → xχ K (x).

We now prove (98). Let us denote by H any primitive function of h. We compute the following expectation using the Integration by Part Formula (19) in Proposition 2,

E[h(L n,α 1 + κ n )H K ] = E H(L n,α 1 + κ n )H L n,α 1 (H K ) ( 99 
)
where H L n,α 1 (H K ) is given by (20). Using the definition of Γ in [START_REF] Le | Asymptotics in statistics[END_REF], we get the following expression for the Malliavin weight

H L n,α 1 (H K ) = L( H K Γ(L n,α 1 , L n,α 1 ) 
)L n,α 1 -

L(L n,α 1 )H K Γ(L n,α 1 , L n,α 1 ) -L( H K L n,α 1 Γ(L n,α 1 , L n,α 1 ) 
) By (37) we have L n,α 1 -κ n -Y n,θ,x 0 1 ≤ b ∞ n 1/α-1 + κ n n→∞ ---→ 0, hence using that the function H is globally Lipschitz with a constant h ∞ , we deduce from (99) that

E[H K h(L n,α 1 + κ n )] -E H(Y n,θ,x 0 1 )H L n,α 1 (H K ) ≤ ε n h ∞ E H L n,α 1 (H K ) (100)
where (ε n ) n is some sequence converging to zero. We now compute E H(Y n,θ,x 0 1 )H L n,α 1 (H K ) using successively the self-adjoint property of the operator L and the chain rule, to obtain an I.P.P. formula in a reverse direction.

E H(Y n,θ,x 0 1 )H L n,α 1 (H K ) = E H(Y n,θ,x 0 1 ) L( H K Γ(L n,α 1 , L n,α 1 
) ))L n,α 1 }H K Γ(L n,α 1 , L n,α 1 )

)L n,α 1 - L(L n,α 1 )H K Γ(L n,α 1 , L n,α 1 ) -L( H K L n,α 1 Γ(L n,α 1 , L n,α 1 
= E H K Γ(L n,α 1 , H(Y n,θ,x 0

1

)) Γ(L n,α 1 , L n,α 1 )

= E H K h(Y n,θ,x 0 1 ) Γ(L n,α 1 , Y n,θ,x 0 1 ) Γ(L n,α 1 , L n,α 1 )

(101)

where α ∈ ( 1 , 2 )

 12 and τ is a non negative smooth function equal to 1 on [-1, 1], vanishing on [-2, 2] c and such that 0 ≤ τ ≤ 1. The introduction of the truncation function τ in the density of the Lévy measure ensures the integrability of |L t | p , ∀p ≥ 1.

Corollary 1 1 2 - 1 α

 111 The family (P θ n ) satisfies the LAMN property with rate u n = n , and information I θ

  n (1) -I(1), I n (1) -I(1)) n→∞ ---→ 0.Proof The convergence of I n (1) to I(1) is clear since s → E n s converges uniformly to the constant 1, and is bounded by above and below (recall (41)).We now focus on bracket Γ(I n (1) -I(1), I n (1) -I(1)). Let us remark that (I n (t)) t is solution to the linear equation,I n (t) = p t 0 I n (s)n -1 b (x 0 + n -1/α Y n,θ,x 0 s , θ)ds + I(t).

0 ( 1 , 1 ) 1 , Y n,θ,x 0 1 ) 1 , Y n,θ,x 0 1 ) 1 , Y n,θ,x 0 1 )

 011111111 We set W n (t) = I n (t)-I(t) and R n (t) = Γ(W n (t), W n (t)). The process W n satisfies the linear equationW n (t) = p t 0 n -1 [I(s) + W n (s)]b (x 0 + n -1/α Y n,θ,x 0 s , θ)ds.In turns, it can be seen that the processR n (t) is solution to R n (t) = pn -1/α-1 t 0 2(I(s) + W n (s))b (x 0 + n -1/α Y n,θ,x 0 s , θ)Γ(Y n,θ,x 0 s , W n (s))ds+ n -1 p t 0 2b (x 0 + n -1/α Y n,θ,x 0 s , θ)[Γ(I(s), W n (s)) + R n (s)]ds Using that Γ(Y n,θ,x 0 s , W n (s)) ≤ Γ(Y n,θ,x 0 s , Y n,θ,x 0 s ) 1/2 Γ(W n (s), W n (s)) 1/2 ≤ Γ(Y n,θ,x 0 s , Y n,θ,x 0 s )+Γ(W n (s), W n (s))and a similar control for |Γ(I(s), W n (s))| we get,R n (t) ≤ Cn -1/α-1 t |I(s)|+|W n (s)|)(Γ(Y n,θ,x 0 s , Y n,θ,x 0 s )+R n (s))ds+Cn -1 t 0 [Γ(I(s), I(s))+R n (s)]ds, where C is some constant depending on b ∞ , b ∞ Now, we recall the control Γ(Y n,θ,x 0 s , Y n,θ,x 0 s ) ≤CΓ(Y n,θ,x 0 Y n,θ,x 0 , for s ≤ 1, and use the controls|I(s)| + |W n (s)| ≤ C 1 0 R |ξ(z)| µ(ds, dz) := I Γ(I(s), I(s)) ≤ 1 0 R ξ (z) 2 ρ(z)µ(ds, dz) := J .We deduce,R n (t) ≤ C t 0 [n -1/α-1 I + n -1 ]R n (s)ds + Ct[n -1/α-1 I Γ(Y n,θ,x 0 + n -1 J ].We deduce thatR n (1) ≤ n -1 C exp Cn -1/α I + C (n -1/α I Γ(Y n,θ,x 0 + J ).Now, J and sup θ Γ(Y n,θ,x 0 have finite moments of any order, bounded independently of n.And using the exponential formula for Poisson measure, we have E exp Cn -1 1 0 R |ξ(z)| µ(ds,

Ẏ n,θ,x 0 t= n - 1 t 0 b

 010 (x 0 + n -1/α Y n,θ,x 0 s , θ) Ẏ n,θ,x 0 s ds + n 1/α-1 t 0 ḃ(x 0 + n -1/α Y n,θ,x 0 s , θ)ds.

1 )L n,α 1 ) 1 )L(L n,α 1 )

 1111 -H(Y n,θ,x 0 -L(H(Y n,θ,x 0 1

We turn now to the study of the derivative of q θ with respect to the parameter θ. By iterating the integration by part formula, since Y θ

This research benefited by the support of the '

Proof Using Lemma 9 in [START_REF] Genon | On the estimation of the diffusion coefficient for multidimensional diffusion processes[END_REF], it is sufficient to show :

We start by the proof of (84). Since a score function has an expectation equal to zero, and

is independent of G i/n , we deduce that

But, since (L t ) t has stationary increments, the law of

) is the same as the law of L n,α 1 . We know from Lemma 3, that P (L n,α

where we used that ϕ α ϕα is bounded (see e.g. Theorem 7.3.2 in [START_REF] Vassili | Markov processes, semigroups and generators[END_REF]). Using E ϕ α (L α 1 ) ϕα(L α 1 ) = R ϕ α (u)du = 0, we deduce [η i,n | G i/n ] ≤ Cn -1 for some constant C and (84) follows.

We now prove (85). Recalling the definition [START_REF] Jeganathan | Some asymptotic properties of risk functions when the limit of the experiment is mixed normal[END_REF], we have

With a method analogous to the proof of (84), we can show that E

. From Proposition 7, it appears that the first two terms in the Right Hand Side of (86) are asymptotically closed to the same quantities, and that (84) is proved as soon as we show the following control holds, uniformly with respect to i,

Proof Let us define the processes,

, θ),

We will apply Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF] to prove (88). Indeed, we will show that there exists a Gaussian random variable γ, independent of L 1 , such that one has the convergence

Then, by application of Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF], there exists a Brownian motion (Γ t ) t independent of (L t ) t such that one has the convergence in law for processes

This exactly implies the lemma, if we show furthermore var(Γ 1 ) = var(γ) = E ϕ α ϕα (L α 1 ) 2 . Let us focus on the derivation of the convergence (89). For (u, v) ∈ R 2 , let us set

Using the i.i.d. structure of the increments of the Levy process L, we easily get the following expression

Let us study the asymptotic behaviour of χ n (u, v). Using that ϕ α /ϕ α is bounded we get

First, we have

where ψ(v) is the Lévy Kintchine exponent of L 1 .

We now focus on the term χ

n (u, v). Using ( 35)-(36) of Lemma 3, and the fact that n 1/α L 1/n has the same law as L n,α 1 , we get

) using integration by part formula

For the term, χ

n (u, v) using Lemma 3 again, it is easy see that

Collecting together (90)-( 95), we have

and thus the convergence (89) with γ ∼ N 0, E ϕ α ϕα (L α 1 ) 2 .

Appendix

Proof of Lemma 10

We prove in this section the following result.

Lemma 10

We have for all p ≥ 1,

ḃ(x 0 , θ)H (2) , where H (2) is a random variable that can be expressed as a functional of the random measure µ and the function ρ.

Proof We first show two intermediate results that are useful for the proof of the lemma.

The lemma is proved.

We are now able to prove the Lemma 10.

From the definition (20) and the basic properties of (•,

We deduce that, for any p ≥ 1,

Now, the explicit expression for Ẏ n,θn,x 0

Thus, we need to prove the convergence of H Y n,θn,x 0 1 ( H n θn (1)) to H (2) , depending only on ρ and µ. Recalling (20) and using basic properties of the operator Γ, we have

The convergence of the first two terms of the Right Hand Side of this equation follows from computations analogous to the proof of Proposition 5. Indeed, in the proof of Proposition 5, it is

shown that H n θn (1) converges to H L α (1) defined by (54). The convergence of Γ(Y n,θn,x 0 1 , Y n,θn,x 0

1

),

)) and L(Y n,θn,x 0

1

) to quantities independent of b can be obtained by studying their respective explicit expressions (43)-(45).

It remains to study the convergence of Γ(Y n,θn,x 0 1 , H n θn (1)). After cumbersome computations relying on (40), (54), the fact that As a consequence, we have Γ(Y n,θn,x 0

. Using (37), we deduce

where at the last line we have used that the quantity Γ(Y n,θn,x 0 s , Y n,θn,x 0 s

) is bounded in L p norm and that Γ(H L α (1), H L α (1)) has finite moments of any order.

Recalling the expressions (33), (54) and using the basic properties of the operator Γ, one can see that the computation Γ(L n,α 1 , H L α (1)) can be reduced to the computation of the Γ-bracket between simple stochastic integrals. Moreover, since ρ is supported on [-1, 1], such computations show that

). This ends the proof of the lemma.

Regularity of the conditional expectation

Let us recall that we have defined the functions η n and η by the relations

The aim of the section is to show that the function η n and η are close in some sense.

We recall that κ n is defined in Lemma 3. Our first result is the following.

Proposition 9 There exists a sequence (ε n ) n , independent of x 0 and θ, with ε n → 0, such that the following holds true. For all h bounded smooth function,

Proof Remark that (97) is a result about the total variation distance between the laws of Y n,θ,x 0 1 and L n,α 1 + κ n , and (98) will be useful to control difference between the conditional expectations of

). We shall only prove (98) since (97) can be obtained in a similar way. Remark

Putting together (100) and (101) we deduce

-1

1

Hence the proposition will be proved if we show

-

To prove (102), we write from (20)

.

From the fact that H K is bounded and Γ(H K , H K ) admits finite moments, together with the fact that Γ(L n,α 1 , L n,α 1 )), Γ(L n,α 1 , Γ(L n,α 1 , L n,α 1 )) and L(L n,α 1 ) do not depend on n (this is due to the choice of the support of ρ), we easily see that H L n,α 1 (H K ) admits moments bounded independently of n.

To prove (103), we write by (37),

we easily derive

and thus (103).

Corollary 2 There exists a sequence (ε n ) n , independent of x 0 and θ, with ε n → 0, such that the following holds true. For all h bounded smooth function,

Proof From Lemma 3, we know that P (L n,α 1 + κ n = L α 1 )

n→∞ ---→ 1. Hence we deduce (104) from (97).

Using that

) is bounded we deduce (105) from (98).

Proposition 10 We have

))

and this convergence is uniform with respect to x 0 , θ.

Proof We estimate the L 1 norm appearing in (106) by duality. Let β : R → [-1, 1] be a measurable function, we evaluate :

) -η(Y n,θ,x 0