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Abstract

The study examines rupture of evaporating liquid bridges between
two glass spheres. Evolution of the bridge profile has been recorded with
the use of high-speed camera. Geometrical characteristics of the bridge
were then used to calculate evolution of the variables during the process:
Laplace pressure, capillary force, and surface tension force. For the pur-
pose of reference, the bridge evolution is followed also during kinematic
extension. During both processes the diameter of the neck decreases,
with an acceleration of about 1-2 ms before the rupture. Two distinct rup-
ture modes are observed, depending on the bridge aspect ratio. After the
rupture, the mass of liquid splits, forming two separate oscillating drops
attached to the spheres, and a suspended satellite droplet. Just before the
rupture, an increasing repulsive Laplace pressure, and decreasing nega-
tive surface tension force develop. Capillary force follows the trend of
the surface tension force, with an accelerating decline. Duration of the
whole process and liquid mass stabilization is from 10 to 60 ms.
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1. INTRODUCTION

Evolution of capillary bridges between solid surfaces and their rupture due to
evaporation is of relevance in a number of technologies. In the geophysics
and geoengineering context, evaporation affects capillary forces, which are
believed to generate an apparent cohesion of unsaturated soils in field condi-
tions. Rupture of capillary bridges is a precursor of drying-cracking affecting
negatively the stability of slopes, dikes, levees, efc. (see, e.g., Hoek and Bray
1981, Bievre et al. 2012). Exposure to evaporation of the free surface of soil
hydraulic barriers, including those in nuclear waste technology, leads to dry-
ing cracks, with worrying consequences to the hydraulic conductivity (Dixon
et al. 2002, Peron et al. 2009a, b).

Liquid bridges between grains have significant influence on mechanical
properties of granular media, due to intergranular forces causing an increase
of cohesion and mechanical strength of such materials. However, in a series
of environments, the liquid of the bridge tends to evaporate, which leads to
its gradual mass/volume reduction to zero and substantial evolution of its
shape and, consequently, Laplace pressure (suction) and capillary forces. In
some circumstances the bridges undergo rupture, while still containing a
substantial fraction of its original water volume. At a scale of an evaporating
granular medium, decreasing moisture content leads to the material shrink-
age, which in the presence of kinematic constraints or gradients of moisture,
induces stress. At certain tensile stress conditions, the material may crack.
Cracking of the material is observed at the moment coincident with the for-
mation and rupture of liquid bridges, when air entries into the body of the
porous material (Hu et al. 2007, 2011, 2013a,b, Kowalski and Mielniczuk
2007, Peron et al. 2009a,b, 2013, Hueckel ef al. 2014). Also other phenom-
ena, such as suction hardening and softening (wetting collapse), are related
to the evolution and rupture of liquid bridges (Gili and Alonso 2002). Previ-
ous studies at a micro scale revealed that rupture of a liquid bridge is coinci-
dent with a sudden decrease of intergranular forces (Hueckel et al. 2013).

In this study, rupture of elementary pendular liquid bridges between two
particles during natural convective evaporation is examined. To provide a
broader context, the evaporation test results are compared to those obtained
at rupture during extension tests of capillary bridges. The bifurcation and
rupture of the liquid bridges during evaporation have not been systematically
investigated earlier.

2. EXPERIMENTAL

Rupture of liquid bridges between two spheres has been examined during
evaporation of a liquid volume of initially 4 ul, at different values of separa-
tion D, from 0.1 to 2.0 mm. The liquid with surface tension of 0.05 N/m is
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distilled water with 8.5% of ethanol by volume used as a standard fluid in
LMGC Lab, Montpellier (Gras et al. 2013). The ethanol comes from stan-
dardized procedure of cleaning the glass beads. The auxiliary tests of exten-
sion of the bridge, with a pre-determined volume from 0.1 to 10 pl were also
conducted for comparison. The rate of change in separation was 16 pm/s.
Both types of experiments were carried on in the vertical and horizontal con-
figurations, with the use of precision borosilicate spheres, 8 mm in diameter.
Several tests were made also for different sphere diameters (3.5 and 9 mm),
showing no appreciable qualitative differences. To image the moment of
rupture, a high-speed digital camera (Vision Research Phantom v. 12) was
used, with the frame rate of more than 27 000 frames per second. The camera
was continuously recording the whole process. The images of the moment of
rupture were identified using a trigger just after the rupture, and then the
chosen portion of the recorded movie was saved on a PC. Each sequence in-
cluded the bridge evolution before rupture, the rupture proper, and stabiliza-
tion of the remnant liquid bodies. Obtained sequences were processed with
ImageJ, MBRuler Pro, and Mathlab programs, to determine geometrical pa-
rameters as follows: (i) radius of curvature of the surface of the liquid body
measured at the equator 7, (“neck” or gorge radius); (i1) radius of the exter-
nal curvature of the meniscus along a “meridian” of the bridge surface, 7e;
(111) water wire parameters (/y, 7v); (1v) satellite droplet radius r4; and (v) pa-
rameters of liquid drops after rupture (Fig. 1).

The measurements made it possible to calculate (under some assump-
tions): (i) Laplace pressure Ap and the corresponding resultant force compo-
nent F», of the interparticle force; (i1) surface tension component of the
interparticle force Fisr; (iii) total capillary force Feap; (1v) liquid volume, V at
the moment of rupture (calculated based on images after rupture); (v) fre-
quency of oscillations of post-rupture water bodies; (vi) axial stress; and oth-
er variables.

Fig. 1. Outline of the capillary bridge between two spheres at different moments of
rupture: thinning bridge, creation of water wire, rupture, and after rupture.
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Each of the tests has been repeated several times, with certain scatter,
usually corresponding to a non-symmetric initial shape of the bridge, most
likely due to the manual water placement procedure (errors up to 10%).

3. RESULTS

The record of the entire process of evaporation of capillary bridges, includ-
ing the pre-rupture evolution of the bridge shape and its geometrical charac-
teristics, as well as the measured and calculated capillary forces is presented
in a separate paper (Mielniczuk et al. 2014). In this study we examine the
very instant of rupture of liquid bridges caused by its evaporation. The rup-
ture during extension of the liquid bridges has been tested for the purpose of
comparison.

The identification of the onset of rupture is not an obvious task, as per se
rupture is a phase in the evolution of the bridge during drying. However,
what causes rapture during drying, and what is the dynamics of its develop-
ment, and what could be possible outcomes, are open questions. Without
making any judgment on the precursors of rupture, there are two ways in
which onset of rupture can be defined: (a) as an onset of irreversibility — by
performing an attempt to reverse the process via inducing a condensation or
adding a limited amount of liquid, or (b) as an onset of instability — by iden-
tifying a point at which a change of any of geometrical characteristics of the
bridge significantly accelerates.

It appears that rupture of the capillary bridge in itself develops during
evaporation in two distinct modes depending on the separation of the
spheres, or in other terms, given that all bridges have the same initial liquid
volume, on the bridge initial aspect ratio. The first one, called henceforth
Mode 1, occurs at higher separations, or high aspect ratio, that is, for tall and
slim bridges, consists in a relatively early transition from a classical curvi-
linear bridge shape into a straight water wire (Fig. 1). The wire has distinctly
different geometrical characteristics from the initial bridge. The wire then
ruptures in a short period of time.

Mode 2 develops at smaller separations, and hence at smaller aspect rati-
os of the bridge, that is, in short and wide bridges, with a much reduced vol-
ume at rupture. In Mode 2 water-wires are not observed at all. Instead, the
central part of the bridge becomes longer and thinner with time, but still with
a visible external curvature. Eventually the bridge breaks in the middle. The
high rate of rupture suggests that it is a mechanical phenomenon, rather than
one resulting from the mass loss, which is much slower.

Table 1 shows the timing and evaporation progress characteristics at the
instant of the instability, as seen on a time macro-scale (minutes).

It is realized from Table 1 that for substantial separations, in Mode 1 the
rupture can start very early, with about 75% of water remaining in a liquid
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Table 1
Main characteristics of rupture for evaporating liquid bridges

Grain separation, D [mm] 2 1.3 0.7 0.4 0.1
Time to rupture [min] 9 22 46 53 67
Relative separation, D* = D/R 0.5 0.266 | 0.176 0.1 0.026
Liquid volume at rupture, Dy, [pl] 3.09 2.28 0.89 | 0.31 0.16
Relative volume loss at rupture’ 0.227 | 0.43 | 0.777 | 0.92 0.959
Rupture mode Mode 1 Mode 11

DThe relative volume loss is defined as a ratio of the volume of the evaporated liquid
to its original volume.

state. The initial stage of the process with a continuously evolving bridge
shape lasts between 9 and 20 minutes. The rate of change of basic geometri-
cal parameters is practically equal to the rate of evaporation. The first stage
of rupture consists of formation of the liquid wire, which occurs on a micro-
time scale of milliseconds, i.e., at a much higher rate. Hence it is not driven
by evaporation, but rather by a presumed mechanical instability. It takes
from 0.2 to 0.4 ms. However, there is a precursor to this occurrence in terms
of a change in the rate of the radius evolution, starting 1 to 2 ms prior to the
water-wire formation. In the second stage of Mode 1, the water-wire 1is
pinched at two locations simultaneously (at the junction with the conical
mass of water between the water-wire and the spheres) in a time period less
than 1 ms.

Figure 2 presents all phases of Mode 1 rupture of the liquid bridge be-
tween two spheres, during its evaporation. Both vertical and horizontal con-
figurations are shown for optimal visualization. A clear difference between
the shape of the bridge can be seen between the shape of the mid-section of
the initial clepsydra-shaped bridge with a clear curvature and what it evolves
into which is an almost cylindrical columnar bridge of practically zero exter-
nal curvature. The water-wire is spanned between two conical drops adher-
ing to the glass spheres (Fig. 2, 0 ms). This stage of rupture bears strong
analogy to Plateau’s (1873) failure mode, which he observed in liquid jets
and which are reproduced in Fig. 2c; see also Bush (2004).

In the successive stage, the water-wire at nearly constant diameter ex-
tends its length at the expense of the height of the conical liquid bodies near
the grains to eventually be pinched off at the two ends simultaneously
(Fig. 2, 0.11 ms). This final stage, from the appearance of cylindrical shape
to the rupture, lasts about 0.1 ms. This rupture bears strong similarity to
pinch-off instability (Bernoff et al. 1998, Leppinen and Lister 2003), which
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Fig. 2. Rupture of evaporating capillary bridge between two spheres in: (a) vertical
configuration (separation 2000 um, spheres 8 mm), and (b) horizontal configuration
(separation 1400 um, spheres of 9 mm). Subsequent stages of rupture are visible:
necking of the bridge, creation of water wire, rupture (at two points), satellite drop-
let, and drops oscillations. (¢) Failure mode observed in water jets by Plateau (1873).

is observed in flowing water bodies. Immediately after rupture, the hanging
water-wire persists over some milliseconds in its cylindrical form and even-
tually transforms into a spherical satellite drop, presumably to minimize the
surface energy. The entire system of all involved liquid bodies suffers recoil
pulsations for 2-3 ms. The satellite drop stays in its central position for quite
some time (compared to the rupture time period) and subsequently falls
down due to the gravity (Fig. 2b, 0.26-1.2 ms). In several tests in the vertical
configuration the droplet moved upward (Fig. 2a, 0.26-1.2 ms) and then has
been adsorbed by the upper water hemisphere.

As an outcome of rupture, the liquid mass splits, forming two large, in-
dependently evolving hemispherical or tapered drops, attached to the glass
spheres (Fig. 2, 0.11-1.2 ms). The release of the intergranular forces at the
moment of rupture generates an oscillatory deformation of these drops with
an average frequency dependent on liquid volume and separation until a new
stable configuration is reached. The oscillations of the liquid cones are much
slower than the oscillations of the satellite droplet, presumably because of
their much higher mass.

For Mode 2 (in short and large bridges) the water-wires are not observed.
The central part of the bridge becomes longer and thinner with time, and the
bridge eventually breaks in the middle. The current liquid volume at rupture
1s much smaller than for Mode 1 rupture. Two parts of the split water bridge
are subsequently “attracted” by the two grains, creating two hemispherical
droplets, oscillating during several milliseconds. Such a behavior was ob-
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served in the evaporating bridges at separations of 1300 um (volume at rup-
ture of 2.28 pul) and lower, and in the extended bridges with the volume of
2 ul and lower, for both horizontal and vertical configurations.

During evaporation, the relative volume loss and geometric characteris-
tics at the moment of rupture depend on the separation of the spheres. The
volume at rupture ranges between 3.09 pl, corresponding to 0.227 of the rel-
ative volume loss, at the largest separation (2 mm), and 0.16 pl (0.959 of the
relative volume loss), at very small separations (Fig. 4, see also Hueckel et
al. 2013). Hence, it is concluded that for larger separations, i.e., for tall
bridges, the bridge failure interrupts a smooth drying process quite early,
whilst for very small separations, i.e., short and wide bridges, rupture of the
liquid bridge practically blends with the vanishing of all liquid mass via
evaporation.

The modes of rupture developing during extension of liquid bridges are
in general quite similar to those seen during evaporation. Mode 1, with the
water-wire, is likely to form at higher volumes of liquid (4 pl and over),
whereas for the bridge volumes lower than 2 pl the bridge ruptures in the
middle without formation of a cylindrical water column (Mode 2). Interest-
ingly, two versions of Mode 1 are seen. They differ in how rupture of water-
wire occurs. At the volumes of 4 and 6 ul, water-wire breaks at both end-
points simultaneously, like during evaporation in what we will call Mode 1a.
This event creates first a hanging water stick, subsequently evolving into
a spherical satellite droplet hanging between two, now separated parts of the
water body, to eventually fall in the gravity field. At volumes over 6 pl, wa-
ter-wire breaks (Mode 1b) first at a lower extremity, and after, in about
0.02 ms, at the upper extremity. It then transforms into the satellite droplet,
which later moves upwards, probably propelled by the momentum of the
henceforth un-balanced capillary force just after the rupture at the lower ex-
tremity. Figure 3 shows a sequence of images of the evolution of the water
bridge during an extension tests shortly before the rupture.

b 4
Fig. 3. Evolution of the liquid bridge between two spheres during extension, with
constant water volume: (a) Mode la (symmetric, two pinchings,volume 4 pl),

(b) Mode 1b (non-symmetric, one pinching, volume 8 ul), and (c¢) Mode 2 ( rupture
in the middle, volume 2 pl).
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Table 2
Main parameters of rupture for liquid bridges during extension
Liquid volume, V' [ul] 1 2 4 6 8 10
Time at rupture [s] 95 105 135 140 150 155

Separation at rupture, Dy, [mm] | 0.78 | 1.54 | 2.02 | 2.23 | 2.46 | 2.62

Relative separation at rupture,
D*.p= Dry/R

0.20 | 0.38 | 0.5 0.56 | 0.62 | 0.66

Table 2 shows time and separation at the instant of onset of rupture and
relative separation at rupture. Clearly, time to rupture in the case of exten-
sion tests is dependent on the chosen extension rate, and is anyway much
shorter than in the evaporation case.

In the studies on extension of liquid bridges at constant liquid volume it
is often postulated that there is a one-to-one relationship between separation
at rupture and the gorge radius (Mason and Clark 1965, Erle ef al. 1971)
or relative separation at rupture and the pre-established constant liquid vol-
ume (Lian et al. 1993, Willett et al. 2000). The principle behind that type of
postulates is that Young—Laplace equation relating the capillary pressure to
the mean curvature of the liquid body has two solutions, converging to one
solution at a specific separation of the grains (Lian et al. 1993). According to
the postulate of Erle ef al. (1971), there is no transition between the solu-
tions, and the point of convergence corresponds to the rupture point. An al-
ternative proposition of De Bisschop and Rigole (1982) is that rupture
corresponds to a minimum of a half-filling angle (see also Mazzone et al.
1986). In that context we have set up in Fig. 4 the experimental values of the
separation versus liquid bridge volume at rupture for evaporation and exten-
sion experiments. These results are compared with the values of separation
at rupture predicted by an empirical formula proposed by Lian et al. (1993)
based on their tests with the liquid bridges during extension. Contact angles,
which are required in the Lian et al. (1993) formula, were determined from
the experiments just before the rupture, as a mean value of four visible con-
tact angles, for several different tests, in horizontal and vertical configura-
tion, with the resulting values of Geany = 29.3° for horizontal, and Geany =
24.5° for vertical configuration, respectively. As one can observe, the exper-
imentally measured separations at rupture for vertical extension tests are in
good agreement with the Lian et al. (1993) prediction. This agreement we
see as a confirmation of the suitability of our experimental techniques to in-
vestigate rupture during evaporation, for which there is no analogous empiri-
cal formulae available.
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Fig. 4. Relation between relative separations at rupture Dy, and the normalized vol-
ume at rupture V,,, for evaporation and extension tests, compared with the calculated
separation at rupture as proposed by Lian et al. (1993) and Willett et al. (2000),
dashed lines. The ranges of the three main modes of rupture observed during inves-
tigations are indicated. Colour version of this figure is available in electronic edition
only.

The separations at rupture and corresponding volumes for horizontal
tests follow a separate trend, with noticeably smaller separations for horizon-
tal setups.

Rupture of a liquid bridge and conditions for its occurrence may be
viewed as an outcome of its prior evolution. The latter may be quantitatively
characterized based on the measured geometrical parameters of the bridge, in
particular the curvature radius of the neck (gorge radius, r,) and the curva-
ture radius of the external bridge profile (external radius, 7). The radii are
also represented as normalized with respect to grain separation, hence rg =
re/D and Fext = Fext/D. These two variables determine the mean curvature of
liquid bridge, and according to Young—Laplace law, the Laplace pressure
and hence the intergranular forces.

The evolution of the both radii of curvature observed several millisec-
onds before the rupture is consistent with their evolution on the time macro-
scale (in minutes), described separately (in preparation). On time micro-
scale, gorge radius, r,, decreases linearly in time, but with a sudden accel-
eration about 1-2 ms before the rupture. The final value of 7, is about 0.03 to
0.08 mm (rg from 0.075 to 0.02), for all tests, both of evaporation and ex-
tension.
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Fig. 5. Evolution of the radii of curvature at the gorge and external measured on the
time micro-scale over 5 ms before the rupture during evaporation. Colour version of
this figure is available in electronic edition only.

The external radius re decreases slightly from its initial values during
evaporation (initial 7e¢ =0.1 to 0.35 mm, depending on separation, initial
Fext = Fex/D i from 0.02 to 0.0875), and it is almost the same for all exten-
sion tests. At the moment of creation of the water-wire, the external radii,
measured at the neck level, increase significantly, as the bridge in the central
part becomes a long straight cylinder just before rupture.

The originally tallest and skinniest of the bridges are the thickest at the
moment of rupture during evaporation, while during extension all bridges
start at zero height and those first to rupture are the shortest and skinniest,
and last is the tallest and thickest (Figs. 5 and 6). Also created water-wire is
usually longer and thinner for extension tests, while during evaporation it
becomes short and thick (Fig. 6).

Based on both radii of curvature it is possible to calculate Laplace pres-
sure Ap, which is the difference of the liquid pressure inside the bridge and
the ambient pressure (of gas). This Laplace pressure results from Young—
Laplace law as proportional to the mean meniscus curvature Ap = y/(r, ' —
Fext'), where »=0.05 N/m is an experimentally determined surface tension
coefficient for water with 8% of ethanol, as used in experiments (Hueckel e?
al. 2013, Gras et al. 2013). Results of calculation of the Laplace pressure for
the last 5 ms prior to rupture in the evaporation tests are shown in Fig. 7.

Interestingly, while the Laplace pressure during most of the pre-rupture
processes of evaporation and of extension is negative (suction) in high aspect
ratio bridges, i.e., at high separations (see Fig. 8, reprinted from Mielniczuk
et al. 2014), during the final stages, prior to rupture in Mode 1, the average
value of pressure difference Ap evolves into positive values. It happens most
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Fig. 6. The moment shortly before the rupture for evaporation at different separa-
tions (a) and extension tests at different liquid volumes (b).
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Fig. 7. Normalized and direct Laplace pressure evolution (a) and surface tension
force evolution (b) before the rupture of evaporating capillary bridge in horizontal
and vertical configurations as calculated from the experimental data of radii of cur-
vature and experimentally determined surface tension. Colour version of this figure
is available in electronic edition only.

likely due to a very small external curvature of the water-wire for both proc-
esses (for evaporation — Fig. 7a). Most characteristically, in Fig. 9 the data
from time-micro-scale measurements are superposed on data from time
macro-scale-scale showing that within last minute there is a positive Laplace
pressure change over an order of magnitude.

The terminal Ap values are from 500 to 1900 Pa (Ap” = ApR/y from 40
to 120), depending on the separation and the current volume of water.

Indeed, the final evolution stages prior to rupture in Mode 1 are charac-
terized by quite a characteristic distribution of Laplace pressure across the
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Fig. 8. Evolution of Laplace pressure during the entire process over a time macro-
scale (the measurement points were taken at every minute intervals) versus the
variable: (a) relative volume loss during evaporation; and (b) separation in extension
tests — reproduced from Mielniczuk et al. (2014). Colour version of this figure is
available in electronic edition only.
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Fig. 9. Data from time micro-scale (Fig.7) and from time macro-scale (Fig. 8)
blended together. The dashed line and terminal points correspond to the data
retrieved at the time micro-scale. Colour version of this figure is available in elec-
tronic edition only.

bridge. The formation of the water-wire induces in it a positive Laplace pres-
sure, as the external curvature over its entire height is zero, while the curva-
ture of the convex and thinning gorge is clearly positive and increasing. The
two cones of water above and below the water-wire into which the top and
bottom part of the original bridge evolve (see Fig. 1), are also under positive
but much smaller Laplace pressure: the external curvatures of the cones are
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zero, while their principal curvatures are positive, even if much smaller than
in the water-wire. Most interestingly, at the close neighborhood of the transi-
tion perimeters between the water-wire and the cones, the situation is drasti-
cally different. The external curvature is negative and locally very high,
likely reaching values larger than that of the gorge (wire), hence yielding
a negative, localized suction. Such localized high gradients of pressure in the
neighborhood of the extremities of the water-wire may easily be viewed as
the cause of the observed pinching instability and eventual rupture of the wa-
ter bridge. Detailed analysis of the pinching instability is presented in a sepa-
rate paper.

The above-described evolution is consistent with pressures after the rup-
ture: positive Ap in the two water semi-drops and in the spherical satellite
droplet.

Mode 2 rupture of short and wide bridges (small separations) without
formation of the water-wire, exhibits an interesting precursor of rupture as
visible in Fig. 8. Such a precursor, observable at time macro-scale, occurs
for 0.7 and 0.4 mm separations about 7 to 10 minutes before the end of
evaporation. It consists in an inversion of suction growth into its decrease, or
in a change from negative to positive Laplace pressure rate of change. Dur-
ing extension (Fig. 8b) such inversion occurs for all water volumes. Howev-
er, it does not have any meaning of a precursor. In fact, it may take place at a
very initial stage of the process.

With the value of gorge radius and Laplace pressure it is possible to es-
timate pressure resultant force at the neck level, from the equation F,, =
nrngp (Haines 1925, Lian et al. 1993, Butt and Kappl 2009). The increas-
ing pressure difference several seconds before rupture is moderated by a de-
creasing surface area of the gorge cross-section and the resulting force Fis
remains almost constant, and it is always positive (repulsive). Its value in-
creases slightly with the bridge volume.

The second component of the intergranular force is the surface tension
force, acting at the bridge perimeter at its neck. The surface tension force
Fsr = 2nrgy 1s proportional to the gorge radius and it decreases with time, as
presented in Fig. 10a. Its value may be several times higher than the value of
the corresponding pressure resulting force, so it is found to play main role
during bridge evolution.

Both component forces increase significantly when the final water vol-
ume is larger for the evaporation tests, and are almost independent of the
critical volume at rupture for the extension tests (with a small increase of fi-
nal suction force with volume), as presented in Fig. 10.

Total intergranular (capillary) force may be calculated using gorge
method, as a sum of these two component forces: Fcap = Fa, + Fsr (Willett
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Fig. 10. Final values of surface tension force (a) and Laplace pressure resulting force
(b) for evaporation and extension tests. Colour version of this figure is available in
electronic edition only.
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Fig. 11. Final capillary force (capillary force jump) versus critical water volume (a)
or critical separation (b) for extension and evaporation tests. Colour version of this
figure is available in electronic edition only.

et al. 2000, Lian et al. 1993, Butt and Kappl 2009). The gravity force is ig-
nored here.

During the final stage of both processes, the total intergranular force val-
ue decreases, with a jump to zero at the moment of the rupture. The final
values of the intergranular force (or force jump) depend on whether the con-
figuration is horizontal or vertical and are different for evaporation and ex-
tension, as presented in Fig. 11. The final intergranular force decreases along
the increasing final volume and final separation at rupture for all the tests
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and configurations, except for the evaporation of liquid bridge in a vertical
arrangement of spheres, when an increase of this force with increasing vol-
ume (separation) is observed. The presented results are complementary to
the results obtained during the time macro-scale experiments, where decreas-
ing capillary force with decreasing water volume or increasing sphere sepa-
ration is observed.

4. DISCUSSION

The phenomenon of rupture of liquid bodies has been a subject of interest for
several decades, with the first detailed record of the moment of rupture pre-
sented by Edgerton et al. (1937) in an example of pendant drop breakage.
Notably, the changes in the water body shape, and hence the curvatures
which control the Laplace pressure and surface tension, undergo instabilities
that are observed in both time scales, the time macro-scale of minutes and at
the time micro-scale (of milliseconds). For Mode 2 it is clear that these are
two different processes, one occurring approximately 7-10 min before the
rupture (Fig. 8a), the other one taking a few milliseconds prior to rupture
(Fig. 5a and 7a). The latter process qualifies as mechanical Lyapunov insta-
bilities, when infinitesimal solicitations result in an uncontrollably large re-
sponse. For Mode 1, for high aspect ratio bridges, it is less clear. On time
macro-scale the process is seen within the last minute, while at micro-scale
the instability takes place within a few last milliseconds, or their fraction.

There are at least three ways of looking at the rupture: as a condition at
which basic laws of physics and geometry of the liquid bridge are violated,
as instability (bifurcation) of the geometry of the liquid body, or as a local
form of fracture or crack of the water body.

Since very early, the physical fact of rupture of liquid bridges was identi-
fied with the mathematical concept of loss of existence (or loss of unique-
ness) of the solution of the system of coupled equations expressing the
minimization of the surface of the liquid bridge. The surface is often of an
approximate geometry, fulfilling the Laplace theorem relationship, and con-
strained by the condition of constant volume (and hence ignoring evapora-
tion) (see, e.g., Haines 1925, Fisher 1926, Erle ef al. 1971, Melrose 1966)
or/and by constant pressure conditions (Lowry and Steen 1995, de Boer and
de Boer 2008, Gras ef al. 2013.). As all of these criteria refer to extension
tests, they are classically expressed via a critical separation Dy, correspond-
ing to the point of loss of existence of the solution, in this case as approxi-
mate closed form formulae, as presented by Lian et al. (1993) and Willett ez
al. (2000). Experimentally determined critical separations for evaporation
and extension are very close to the calculated values for extension (accord-
ing to Lian and Willett equations) with averaged contact angle (Fig. 4).
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Similar evolution of the water body profile is considered in discussions
about a steady-state fluid jet instability, known as Rayleigh—Plateau instabil-
ity, which would take on forms of alternative geometry (Plateau 1864, van
Honschoten et al. 2010). The last stage of the process, beyond a point of in-
stability, is considered as irreversible (Padday ef al. 1997). This stage may
be broken down into three periods: non-equilibrium Laplace shapes, bridge
elongation (with acceleration) and cylindrical neck (water wire) evolution, as
proposed by Padday er al. (1997) for pendant bridges. As postulated by
Padday et al. (1997) such evolution may be explained by a flow of water
from the neck region towards both supporting surfaces. The flow of water is
accompanied by a decrease in surface energy.

For higher separations, the mid-section of the bridge evolves into a wa-
ter-wire, which then breaks in two contact points simultaneously, or at first
at lower contact point, and very soon (in about 0.02 ms), at the upper contact
point. The presence of rupture (and bifurcations) at the both ends of liquid
bridge was described also for the break-up of a jet or liquid drop (Peregrine
et al. 1990, Eggers 1997), where evolutionary stages of bifurcation, for-
mation of cylindrical neck, breakage and a satellite drop with the double
breakage of the neck region were described.

The rupture of the wire in two points simultaneously was observed also
during rupture of pendant bridges in simulated low gravity, presented by
Padday et al. (1997). In these studies, each phase: bifurcation, breakage, and
recoil took place symmetrically, even for extension experiments, with mov-
ing upper sphere. Authors suggest that breakage is driven solely by a de-
crease in surface area of the liquid -fluid interface.

For the smallest pendant bridges, the neck region is stretching and thin-
ning, until it ruptures in the middle. After the rupture, two halves of the
bridge relax into semi-spherical cap shapes without visible recoil and wave
formation, as reported for experiments with low-gravity environment by
Padday (1992), Zhang et al. (1996), Brenner et al. (1994), and Shi et al
(1994). Non-symmetrical rupture was observed by Peregrine ef al. (1990) or
during experiments with falling drop. They explain that the rupture at the
upper contact point may be initiated by propagating wave generated by the
first rupture.

Several forces and phenomena may be responsible for the rupture of lig-
uid bridges: Laplace pressure, gravity force, van der Walls forces, extension
strain or surface tension of the liquid. All these elements are acting together,
but with a different impact and different influence on the liquid body.

According to Eggers (1997), the dynamics near the breakup is not de-
pendent on the particular setup (jet decay, dripping faucet, etc.) but it is a re-
sult of the nonlinearities of the equations of motion. As the motion near
a location of the breakup gets faster, only fluid very close to that point is
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able to follow, making the breakup localized both in space and time. Thus
one expects the motion to become independent of initial conditions, and the
type of experiment becomes irrelevant to the study of the singular motion.
The observed rupture of the bridge caused by evaporation resembles
breakups of a liquid jet, falling droplet or others types of rupture.

Analogously, for the liquid jets Eggers (1997) has shown that the last
stages of pinching happen very fast. At the pinch point, the radius of curva-
ture goes to zero, and the small amount of fluid left in the pinch region is
driven by increasingly strong forces. Thus, the velocity goes to infinity, and
the separation of a drop corresponds to a singularity of the equations of mo-
tion, in which the velocity and gradients of the local radius diverge. Even in
the case of an infinite-time singularity of the equations of hydrodynamics,
the physical event of breaking may occur in finite time. That is, when the
fluid thread has become sufficiently thin, it may break owing to the micro-
scopic effects that are outside the realm of hydrodynamics (Eggers 1997).

Liquid wire evolution per se has been also identified with instability or
bifurcation of its equilibrium, the alternative form of which would be found
via geometrical (sinusoidal) perturbation. So, this is a structural, rather than
material instability, see, e.g., Lowry and Steen (1995), Bernoff et al. (1998),
Vaynblat et al. (2001), Eggers et al. (1997), Peregrine et al. (1990).

Peregrine et al. (1990) compared the characteristic times related to gravi-
ty effects and strain rate with a time of rupture, concluding that larger-scale
flow does not play important role at the stage of rupture. Van der Waals
forces considered by Vaynblat et al. (2001) in the study of instability of
a liquid column via method of perturbation through pinching concluded that
for van der Waals forces to become relevant the radii need to be of the order
of nanometers (which is by far smaller than ours) and still the contribution of
surface tension to instability was insignificant. Peregrine ef al. (1990) main-
tains that in the stage of creation of water-wire surface tension is presumed
to dominate the mechanics of the bridge.

In our experiments we find that the pressure inside the bridge is positive
(repulsive) just before the rupture. We concluded also that most likely there
1s significant gradient of pressure at the moment of creation of the water
wire, with positive pressure inside the bridge, negative pressure (suction) at
contact points, and positive pressure in hemi-spherical parts of water bridge.
Such a gradient of pressure (and positive pressure before creation of water
wire) could constitute a condition for rupture. But comparing pressure and
the resultant surface tension forces (two components of total intergranular
force), it may be concluded, that although the positive pressure may disjoin
the water body in the thinnest point, surface tension is high enough to coun-
teract. The sum of both resultant forces of pressure and surface tension (total
intergranular force) is always attractive before the rupture (Fig. 9).
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Calculated surface tension force is globally attractive, and it is much
higher than repulsive Laplace pressure resulting force. But during the evapo-
ration process, liquid bridge loses its volume, and becomes very thin in the
middle. There is in important remark concerning all the calculations, based
on geometrical parameters: all the variables are calculated at the neck level,
in the macro-scale approach. Local values and especially directions of the
locally acting forces are likely to vary across the bridge, because of space
variability of curvatures.

5. CONCLUSIONS

We recorded images of rupture of evaporating liquid bridge between two
identical glass spheres using fast camera with over than 27000 images/
second for a series of fixed separations. Rupture of kinematically extended
liquid bridges, at constant liquid volume was also recorded in similar condi-
tions for comparison. Based on measured principal radii of curvature at the
bridge gorge and a value of surface tension, we calculated Laplace pressure,
surface tension resultant force, as well as total intergranular force evolution,
for both processes, and for two geometrical configurations: horizontal and
vertical arrangement of spheres.

Rupture appears to take two modes. Mode 1, with a water-wire formed
and evolving at the center of a bridge, and Mode 2, with water evaporating
entirely followed by rupture at the center with a separation of the abutments
of the bridge. Mode 1 is characteristic for taller and slender bridges, at large
separations, Mode 2 arises in stouter bridges. Taller bridges at large separa-
tions develop instability at a significantly earlier stage: at 2 mm separation
the rupture occurs after 9 minutes when only one-fourth of water evaporated.
Mode 1 develops in a two stage process: first a Raleigh—Plateau type of in-
stability was observed with a transition from a catenoid form to nodoid. The
latter one consisted in development in the central part of the bridge of a cy-
lindrical water-wire defined as that of a constant gorge diameter and zero ex-
ternal (lateral) curvature over a certain length. Formally, the Raleigh instabi-
lity consists in transition of the mean principal curvature from negative to
positive.

The second stage of the process arises within 3 ms from the original one
and consists in pinching of the column either at two extremities of the water-
wire simultaneously, or first at the bottom followed by a second pinch at the
top. Pinching instability is a well-developed concept in fluid mechanics
(Vaynblat et al. 2001). It is observed that at the moment of pinching there is
a substantial singularity of Laplace pressure calculated from the principal
curvatures of the body of water consisting of two conical abutments of the
bridge and a cylindrical water-wire in the middle. Based on the curvatures,
there is a positive pressure in the water-wire and much less in the cones.
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However, in the isolated point (circle in 3D) of transition between the water-
wire and the cone there is a competition between positive contribution from
the gorge curvature and negative contribution of the principal external (lat-
eral) curvature at the cone-column corner. This competition leads to a highly
variable singularity of Laplace pressure that likely can reach localized nega-
tive values (suction).
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