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Abstract. We present a numerical analysis of a class of radial-anisotropic
collisonless spherical stellar systems in order to understand the physical ori-
gin of the radial-orbit instability. This work is motivated by new analytical
results based on the symplectic formulation of a generalised energy varia-
tionnal technique. We have obtained a first confirmation that the stability
of such systems is governed by their aptitude to receive a certain class of
perturbations.

1 Introduction

The study of the stability of equilibrium self-gravitating systems is a key-
problem in stellar dynamics. It is motivated by three general problems which
are modelling, formation and response.
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Actual observations enable us to measure physical characteristics of grav-
itating stellar systems. It is now possible to confront theory with numerical
experiences. The application of modern numerical methods allows a wide
range of model simulations. However, the problem remains to choose the
‘good’ or ‘real’ model between all possible models. It is natural to assume
that the stability of the system can be used to discriminate between choices.
A corresponding study is, however, not straightforward, the analytical struc-
ture of the inhomogeneous and, in general, anisotropic case make the classical
normal mode analysis very unadapted. The only real way to deal with this
problem is to use variational energy techniques. For isotropic spherical cases,
it is possible to use a variational principle and to obtain later the stability
of systems with a monotoneously decreasing distribution function. An ex-
tension of these techniques was made in the case of anisotropic, radially
perturbed systems (Sygnet et al. 1984, Kandrup and Sygnet 1985). How-
ever, the general anisotropic case is not totally tractable by this ‘Hermitian’
method.

A global analytical answer will perhaps come from the application of sym-
plectic methods. Introduced by the pioneering work of Bartholomew (1971),
revisited by Kandrup (1991) and improved by Perez and Aly (1993 hereafter
Paper 1), this approach gives a general stability criterion for any system.
Applying this result, we showed (Paper I) that the stability of an anisotropic
spherical system is directly related to the so-called ‘preserving’ perturbation.
It has been shown that systems which can only be perturbed by preserving
perturbations (i.e. isotropic systems for example) are stable. On the con-
trary, it is impossible to generate non vanishing preserving perturbations for
systems with stars only on radial orbits. These systems are known to suffer
‘radial orbit’ instability with a singular form for their distribution function.
One of the objective of this paper is to bring a numerical response for the
intermediate case (Perez et al. 1993).

To make our experiences, we need two kinds of numerical tools. First, we
need a relaxed initial condition generator (position and velocity). This set
of coordinates must have several important properties. The systems they fit
must be relaxed, in the equilibrium case, the virial ratio & = Fepn [2Fp0 = —1.
Moreover, physical parameters of the modelised system (total mass, size, dy-
namical time, number of components, ---) must be ajustable to describe
the largest class of possible systems. Finally, a large domain of the sys-
tem’s anisotropy must be considered. In this way, we have choosen the



Ossipkov-Merrit Algorithm (see Binney and Tremaine 1986 hereafter BT).
This method based on generalised Abel inversion, consists in the distortion
of a known isotropic model (here a polytropic one) into an anisotropic system
with essentially one control parameter, the anisotropy radius r,.

Secondly, the dynamical evolution of these initial conditions submitted
to their own gavitationnal potential is assured by a direct N-Body code with
softening parameter (see this volume the paper of H. Scholl & J.-M. Alimi).
This code has been developped on a Connection Machine (Massivelly parallel
supercomputer) (Alimi & Scholl 1993). This code and this machine allow
us to consider a large range of several sensible parameters like number of
particles, time resolution, conservation of energy, and number of experiences.

The architecture of this paper is the following : In the first part (section
2), we present briefly the main analytical results presented in Paper 1. In a
second part(section 3), we present the whole initial condition algorithm and
the dynamical code. In the two last sections we present some preliminary
results and their discussions.

2 Analytical Results

2.1 The Symplectic Formulation and Stability
Criteria

As it was shown by Morrison 1982 the standard Vlasov equation (dy-
namical equation of collisonless systems) can be expressed using functionals.
Indeed, if F'is any functional of the phase space, the motion evolution equa-
tion can be written

. OF 6H
FIfl = [ flgp G0 = (M) (1)
where [, ] denotes the standard Poisson bracket in the canonical conjugated
variables p and ¢. {,} have all the properties of a Lie bracket and 6/6f
meaning a functional derivative operation. Due to the fact that any phys-
ical perturbation of any initial state f, can be described by a generator g
which is an hamiltonian-like function representing the canonical transforma-
tion effected, (e.g. Bartolomew 1971), we can find (Paper I) a general Taylor
expansion for any functional F' during this perturbation
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where G is such that 6G/éf = g is the Functional generator. It is important
to note the development (2) is true for any functional, so we can apply it
to all functionals intervening in our problem as energy, entropy or more
complicated.

Applying (2) in the special case of the total energy of the system

and choosing for f, a steady state, the first order energy variation is clearly
vanishing, and the second order can be written
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where F, the functional derivative of H|[f], is the single-particle energy. The
stability of the system against some perturbations generated by some ¢, can
now be investigated in the anisotropic inhomogeneous case by the study of
the sign of H®[f,]. However, this development gives us only a sufficient
condition for stability. Indeed, we cannot make like in the paper of Laval
, Mercier , Pellat (1965) a connection between H®)[f,] and some definite
inner product in order to have a general energy principle. As it is quoted in
Larsson 1991, the inner-product related to our general problem is indefinite.
In this case, relations like Schwartz’s inequality fail and do not allow us to
connect our energy variation to some dynamical variable to diagnostic linear
instabilities.

As it is quoted in BT, stability problems of a collisionless stellar sys-
tem and of a gas volume in gravitational interaction are closely related. In
fact, in many cases, the hydrodynamic problem (when it is identifiable) is
simpler than its stellar analog case. Indeed, the hydrodynamic problem is
three-dimensional while stellar systems have six degrees of freedom. Hence
a technique to simplify the study of stellar systems consists to average over
velocities, when it is possible, to deal with the hydrodynamic counterpart of
the problem. One of the most important isotropic results, sometimes called



Antonov-Lebovitz Theorem(ALT) (see BT), is based on this technique and
assurse the stability of f,(£)’s systems against non-radial perturbations.

In a recent paper (Aly and Perez, 1992), we present a new demonstration
of this important result. This is the combination of this new method and the
symplectic approach of the stability criterion which allow us to obtain our
result on the stability of spherical stellar systems.

2.2 Preserving Perturbation

A stationary spherical system has a distribution function which depends
only on the energy E and on the squared norm L? of the angular momentum

L. f, = f,(FE,L*). We assume here that

dfo dfo
= — < 0Oand — <
I gp < Oand i oLz =
We want to consider the stability of such an equilibrium with respect to the
class of preserving perturbations, which are generated by all the functions ¢
satisfying [g, L*] = 0 This class of perturbations are quite general, indeed, in

the f(F) isotropic case all perturbations are preserving. In this anisotropic

0 ()

spherical case all g(L?, L., L,, L.) generate preserving perturbations like in
particular spherically symetrics ones. In such case one can split the pertur-
bation f; in two parts with one invariant against rotation

3 fio= T+ 6h
filg,p) = [ fi(R(q), R(p))dR and [¢fi(R(q), R(p))dR = 0

where the averaging is made over all possible rotations R. Hence, one can
show that the second order variation of the energy splits in H®)[f)] =
HO[f]+HP[6f,]. The first part being positive (Kandrup and Sygnet 1985)

)

we study the second non-radial part and show (using a revisited proof of ALT

ooEe > l/ (5'01)2d7“ _ Gm? /dr/drlm >0 (6)
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where the non radial part of the perturbed density 6p; is directly obtained
from ¢ f; by a velocity averaging. This result assures the stability of any
anisotropic spherical stellar system - having the properties (5) - against pre-
serving perturbations. More precisely we can say that if a g-generated per-
turbation makes the system unstable, then [g, L?] /0.
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As we said before, in the isotropic case all perturbations are preserving.
Moreover, in the purely radial orbit case where f, = ¢(F)é(L?), Paper I
shows the absence of such pertubations and exposes the instability case.
It has no sense to speak about a number of preserving perturbations that
can affect a given system. Indeed, any perturbation set is functional with
an infinite dimension. But, we can naturally make the conjecture that the
stability of such systems is closely related to the value of the [g, L?] real
random variable. This is the purpose of our tests explained in the following
sections.

3 Numerical techniques

3.1 The initial condition generator

In most papers presenting some numericals results about the stability of
spherical systems, the main objectif consists to show the radial orbit insta-
bility (Merritt and Aguilar 1985, Barnes et al.1986, Palmer and Papaloizou
1987,1988, Weinberg 1990, Saha,1991). This mechanism is roughly explained
by Antonov (1973) but it is not yet well understood. The best classic ex-
planation is given by an empiric formula (Fridmann and Polyachenko 1986)
which states that a spherical stellar system is unstable if
K, .
Ty = 5K > 1,7£0.2 (7)

K, and K; denoting respectively the kinetic energy of stars on radial and
transversal orbits. Most of previous works take for starting point a quantity
directly related to 7,. It is the case if one considers a distribution function
of the form f, ~ E™L?*™, or if one takes a special form for the velocity
dispersion tensor. However, in this optic, one looses all information about
the physical parameters of the system, and may be, one can speak about
unreallistic system.

Our choice is different and consist to study a fine aspect of the largest
possible class of physical systems, taking into account the radial orbit insta-
bility as a physical fact. The Ossipkov-Merritt algorithm is well adapted to
this kind of situation. This algoritm (e.g. Osipkov 1979; Merritt 1985a,b) is
built on the Abel inversion technique, and generates an anisotropic system



from a controlled deformation of an isotropic one. Starting with a known
isotropic gravitational potential 1;5,(r), we can, obtain via Poisson equation,
the associated density p;s,(r). The Ossipkov-Merritt algorithm consists then
to deform this density in the following way

i) = (145 el ®)

a

where the parameter r, , called anisotropic radius, controls the deformation.
In these conditions, we can form a class of anisotropic distributions functions

which depend both on E and L? through the variable

L2
= F+ — 9
Q = B+, ()
and which can be calculated by the following relation

\/5 d 0 d#}iso dpani

o = —— 10
f (Q) 472 dQ Q v 1/)2'50 - Q dﬁ)iso ( )
The velocity anisotropy at any radius r of this model is given by

ol <v:> r?

el A 11

o? 1<vl> + r? (11)

Anisotropy depends only on r and r,, this means that the model is always
isotropic in the center and becomes anisotropic outwards.
We have chosen for the isotropic potential, the polytropic model, solution
of the Lame-Emden differential equation
1 d ([ ,dy
——|r"—] = (=1)"4xGe, 00" 12
r:’dr(rdr) (=1)"4rGeny (12)
(27)2T(n — 1)

I'(n+1)

The potential range varies from a free parameter (0) < 0 to 0, and as there

Cn

should be no gravitationnal force at the center of the system, diy>/dr = 0 at
r = 0. To keep the mass finite, the polytropic index n must be < 5 and for
a Y—convergence n > % Tuning n and ¥(0), we can modify all the physical
parameters of the stellar system (mass, dynamical time, size, - -- ). Different
models are presented below



Table 1 : Physicals parameters

n | ra Mass Size Ty ¥(0) Ts n Ta Mass Size Ty ¥(0) Te
10 5.65 2.34 1.93 1.62 1.02 10 6.04 5.33 1.07 1.3 1.00
2 4.61 2.20 1.91 1.43 0.84 2 2.81 4.38 1.16 1.07 0.78
2 1.5 3.75 2.10 2.00 1.30 0.82 3 1.5 2.75 4.22 1.13 1.03 0.78
1.2 3.67 2.05 1.99 1.24 0.81 1.2 3.25 4.18 1.08 1.02 0.82
1 3.79 2.01 1.95 1.20 0.88 1 4.38 4.22 1.01 1.03 0.95
10 4.75 13.75 0.74 1.15 0.93 10 3.66 29.95 0.84 1.09 1.16
2 2.81 11.13 0.64 1.00 0.78 2 3.34 25.05 0.40 985 0.77
4 1.5 2.87 10.64 0.61 0.97 0.79 4.5 1.5 4.11 24.35 0.36 0.97 1.06
1.2 5.41 11.13 0.52 1.00 0.87 1.2 4.47 23.43 0.35 0.95 1.13
1 4.11 10.30 0.56 0.95 0.93 1 9.62 25.05 0.29 981 1.01

All this models are virial-relaxed, the adjustment to the relaxation is made
by a ¥(0) tuning. The corresponding distribution functions are plotted below
in same normalised frame (for the same value of r,)

Figure 1 : Phase space Distribution functions

An important physical limitation of this model can be seen on this figures.
Each value of polytropic index has a critical r,. For higher anisotropic sys-
tems, the distribution functions are negative in some region of the phase



space. This is an illustration of the fact that an arbitrary spherical mass
distribution cannot always be reproduced by radial orbits. Nevertheless our
initial condition generator is made robust to this problem and gives more
anisotropic models. But in this case we can’t have the real distribution func-
tion. At this moment it is important to remark that many authors haven’t
such scruple and push their models in the far anisotropy.

Using this distribution function it is now possible to generate N position-
velocity bodies.

3.2 Dynamical Evolution

For a complete analysis of our simulations we built several interpretation
tools
e An axial ratio calculator. Taking a set of positions (the same work is
possible for velocities) we compute the inertial matrix in the (0, z,y, 2)
frame. We diagonalize it to obtain its eigenvalues Ay > Ay > lambdas
and finally the two axial ratios

A3
= >land b= =<1 13
a N an N = (13)
The calculation of the axial ratio at each step of evolution giving
the evolution of the global system. In the initial spherical case, all
A = 1. This tool is well-known in this context (see Palmer and Pa-

paloizou,1987,1988, Binney and Aguilar,1985)

e A distribution funtion reconstructor. To follow the dynamical evolution
of the distribution function we have built a code which calculates the
energy and squared angular momentum and evaluates the distribution
function in the £ — L? plane.

e The preservant tool. In view to test our analytical conjecture, we elab-
orate a code which calculates the poisson bracket between the peculiar
displacement generator and the squared angular momentum of each
particle. This is possible because of the relation

. agi

dr; ;= 0: and dp; ;= or,

api

(14)



The statistical study of the random variable [g, L?] is the key point for
the preservance.

We have analysed three kinds of models with different physical parame-
ters. Model (1) with n = 2 and r, = 0.5, have a parameter stablity 7, = 1.75;
(2) and (3) respectively n = 4.5,r, = 1.2 and n = 3,r, = 10 are physically
different but they are both stable (in prevision). The dynamical experience
allows us to produce the following figures

Figure 2 : Axial ratio analyse

Figure 3 : [g, L*] histogram
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In figure 2 we have plotted the evolution of the star distribution in the
space. All initial models are spherical and their two axial ratios are 1. The
distributions of (2) and (3) do not change during the time evolution, and
(1) becomes elongated in one direction while the other stay the same. This
is the well known radial orbit instability. On the other hand figure 2 shows
a more original property. Having no significant difference in this analysis,
(2) and (3) have been merged in the same histogram. In these plots, we
make the histogram of the random variable [g, L?] calculated for each star.
The 6t corresponding to the ¢ f associated to the perturbation generator g,
is arbitrarily choosen equal to Ty,,/10. The effect seen on this figure is
clear, in the stable case (2),(3), [g, L?] is symetric and highly peaked around
the zero preserving value. On the other hand, in the unstable (1) case, we
note a non-symetry of the histogram which is moreover less peaked than
the previous. The effect, although not very inportant, exists according to
analytical predictions.

4 Discussion

As we said in the introduction, the objective of this work is not to see the
well known radial orbit instabillity. Our goal is more concentrated on the
mechanism of this phenomenon. Basing ourself on recent analytical state-
ments, we have tried to show that the stability susceptibility of a spherical
collisionless stellar system is governed by his ability to receive preserving
perturbations. However, there exists a criterion for this stability (see eq.(7)).
But as all empiric results, it has some interpretation problems, and it is
sometimes contested in its globality (Palmer et al,1991). Our study of [g, L?]
histogram is more complicated than the previous analysis but it has a solid
analytical result behind it, and we are able to undestand why the system is
stable or not.
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