
HAL Id: hal-01141496
https://hal.science/hal-01141496v1

Submitted on 13 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RIOT OS Paves the Way for Implementation of
High-Performance MAC Protocols
Kévin Roussel, Ye-Qiong Song, Olivier Zendra

To cite this version:
Kévin Roussel, Ye-Qiong Song, Olivier Zendra. RIOT OS Paves the Way for Implementation of High-
Performance MAC Protocols. SENSORNETS 2015, INSTICC; ESEO Angers, Feb 2015, Angers,
France. pp.5-14, �10.5220/0005237600050014�. �hal-01141496�

https://hal.science/hal-01141496v1
https://hal.archives-ouvertes.fr


RIOT OS Paves the Way for Implementation of
High-Performance MAC Protocols
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Abstract:
Implementing new, high-performance MAC protocols requires real-time features, to be able to
synchronize correctly between different unrelated devices. Such features are highly desirable for
operating wireless sensor networks (WSN) that are designed to be part of the Internet of Things
(IoT). Unfortunately, the operating systems commonly used in this domain cannot provide such
features. On the other hand, “bare-metal” development sacrifices portability, as well as the mul-
titasking abilities needed to develop the rich applications that are useful in the domain of the
Internet of Things.
We describe in this paper how we helped solving these issues by contributing to the development
of a port of RIOT OS on the MSP430 microcontroller, an architecture widely used in IoT-enabled
motes. RIOT OS offers rich and advanced real-time features, especially the simultaneous use of
as many hardware timers as the underlying platform (microcontroller) can offer. We then demon-
strate the effectiveness of these features by presenting a new implementation, on RIOT OS, of
S-CoSenS, an efficient MAC protocol that uses very low processing power and energy.

1 INTRODUCTION

When programming the small devices that
constitutes the nodes of the Internet of Things
(IoT), one has to adapt to the limitations of these
devices.

Apart from their very limited processing
power (especially compared to the current per-
sonal computers, and even mobile devices like
smartphones and tablets), the main specificity of
the devices is that they are operated on small
batteries (e.g.: AAA or button cells).

Thus, one of the main challenges with these
motes is the need to reduce as much as possible
their energy consumption. We want their bat-
teries to last as long as possible, for economical
but also practical reasons: it may be difficult—
even almost impossible—to change the batteries
of some of these motes, because of their locations
(e.g.: on top of buildings, under roads, etc.)

IoT motes are usually very compact devices:
they are usually built around a central integrated
chip that contains the main processing unit and
several basic peripherals (such as timers, A/D
and D/A converters, I/O controllers. . . ) called
microcontroller units or MCUs. Apart from
the MCU, a mote generally only contains some
“physical-world” sensors and a radio transceiver
for networking. The main radio communication
protocol currently used in the IoT field is IEEE
802.15.4. Some MCUs do integrate a 802.15.4
transceiver on-chip.

Among the various components that consti-
tute a mote, the most power-consuming block is
the radio transceiver. Consequently, to reduce
the power consumption of IoT motes, a first key
point is to use the radio transceiver only when
needed, keeping it powered-off as much as possi-
ble. The software element responsible to control
the radio transceiver in an adequate manner is



the MAC / RDC (Media Access Control & Radio
Duty Cycle) layer of the network stack.

A efficient power-saving strategy for IoT
motes thus relies on finding the better trade-off
between minimizing the radio duty cycle while
keeping networking efficiency at the highest pos-
sible level. This is achieved by developing new,
“intelligent” MAC / RDC protocols.

To implement new, high-performance MAC /
RDC protocols, one needs to be able to react
to events with good reactivity (lowest latency
possible) and flexibility. These protocols rely
on precise timing to ensure efficient synchro-
nization between the different motes and other
radio-networked devices of a Personal Area Net-
work (PAN), thus allowing to turn on the radio
transceivers only when needed.

At the system level, being able to follow such
accurate timings means having very efficient in-
terruption management, and the extensive use of
hardware timers, that are the most precise timing
source available.

The second most power-consuming element
in a mote, after the radio transceiver, is the
MCU itself: every current MCU offers “low-
power modes”, that consist in disabling the var-
ious hardware blocks, beginning with the CPU
core. The main way to minimize energy consump-
tion with a MCU is thus to disable its features as
much as possible, only using them when needed:
that effectively means putting the whole MCU to
sleep as much as possible.

Like for the radio transceiver, using the MCU
efficiently while keeping the system efficient and
reactive means optimal use of interruptions, and
hardware timers for synchronization.

Thus, in both cases, we need to optimally use
interruptions as well as hardware timers. Be-
ing able to use them both efficiently without too
much hassle implies the use of a specialized op-
erating system (OS), especially to easily benefit
from multitasking abilities. That is what we will
discuss in this paper.

2 PREVIOUS WORK AND
PROBLEM STATEMENT

Specialized OSes for the resource-constrained
devices that constitute wireless sensor networks
have been designed, published, and made avail-
able for quite a long time.

2.1 TinyOS

The first widely used system in this domain was
TinyOS (Levis et al., 2005). It is an open-source
OS, whose first stable release (1.0) was published
in september 2002. It is very lightweight, and as
such well adapted to limited devices like WSN
motes. It has brought many advances in this do-
main, like the ability to use Internet Protocol (IP)
and routing (RPL) on 802.15.4 networks, includ-
ing the latest IPv6 version, and to simulate net-
works of TinyOS motes via TOSSIM (Levis et al.,
2003).

Its main drawback is that one needs to learn
a specific language—named nesC—to be able to
efficiently work within it. This language is quite
different from standard C and other common im-
perative programming languages, and as such can
be difficult to master.

The presence of that specific language is no
coincidence: TinyOS is built on its own specific
paradigms: it has an unique stack, from which
the different components of the OS are called as
statically linked callbacks. This makes the pro-
gramming of applications complex, especially for
decomposing into various “tasks”. The multitask-
ing part is also quite limited: tasks are run in a
fixed, queue-like order. Finally, TinyOS requires
a custom GNU-based toolchain to be built.

All of these limitations, plus a relatively slow
development pace (last stable version dates back
to august 2012) have harmed its adoption, and it
is not the mainly used OS of the domain anymore.

2.2 Contiki

The current reference OS in the domain of WSN
and IoT is Contiki (Dunkels et al., 2004). It’s
also an open-source OS, which was first released
in 2002. It is also at the origin of many assets: we
can mention, among others, the uIP Embedded
TCP/IP Stack (Dunkels, 2003), that has been
extended to uIPv6, the low-power Rime network
stack (Dunkels, 2007), or the Cooja advanced net-

work simulator (Österlind et al., 2006).
While a bit more resource-demanding than

TinyOS, Contiki is also very lightweight and well
adapted to motes. Its greatest advantage over
TinyOS is that it is based on standard, well-
known OS paradigms, and coded in standard C
language, which makes it relatively easy to learn
and program. It offers an event-based kernel, im-
plemented using cooperative multithreading, and
a complete network stack. All of these features



and advantages have made Contiki widespread,
making it the reference OS when it comes to
WSN.

Contiki developers also have made advances
in the MAC/RDC domain: many of them have
been implemented as part of the Contiki net-
work stack, and a specifically developed, Con-
tikiMAC, has been published in 2011 (Dunkels,
2011) and implemented into Contiki as the de-
fault RDC protocol (designed to be used with
standard CSMA/CA as MAC layer).

However, Contiki’s extremely compact foot-
print and high optimization comes at the cost of
some limitations that prevented us from using it
as our software platform.

Contiki OS is indeed not a real-time OS:
the processing of “events”—using Contiki’s
terminology—is made by using the kernel’s sched-
uler, which is based on cooperative multitask-
ing. This scheduler only triggers at a specific,
pre-determined rate; on the platforms we’re in-
terested in, this rate is fixed to 128 Hz: this cor-
responds to a time skew of up to 8 milliseconds
(8000 microseconds) to process an event, inter-
ruption management being one of the possible
events. Such a large granularity is clearly a huge
problem when implementing high-performance
MAC/RDC protocols, knowing that the trans-
mission of a full-length 802.15.4 packet takes bout
4 milliseconds (4000 microseconds), a time granu-
larity of 320 microseconds is needed, correspond-
ing to one backoff period (BP).

To address this problem, Contiki provides a
real-time feature, rtimer, which allows to bypass
the kernel scheduler and use a hardware timer to
trigger execution of user-defined functions. How-
ever, it has very severe limitations:

• only one instance of rtimer is available,
thus only one real-time event can be sched-
uled or executed at any time; this limita-
tion forbids development of advanced real-
time software—like high-performance MAC /
RDC protocols—or at least makes it very
hard;

• moreover, it is unsafe to execute from rtimer,
even indirectly, most of the Contiki basic
functions (i.e.: kernel, network stack, etc.),
because these functions are not designed to
handle pre-emption. Contiki is indeed based
on cooperative multithreading, whereas the
rtimer mechanism seems like a “independent
feature”, coming with its own paradigm. Only
a precise set of functions known as “interrupt-
safe” (like process poll()) can be safely in-

voked from rtimer, using other parts of Con-
tiki’s meaning almost certainly crash or un-
predictable behaviour. This restriction prac-
tically makes it very difficult to write Contiki
extensions (like network stack layer drivers)
using rtimer.

Also note that this cooperative scheduler is
designed to manage a specific kind of tasks: the
protothreads. This solution allows to manage dif-
ferent threads of execution, without needing each
of them to have its own separate stack (Dunkels
et al., 2006). The great advantage of this mech-
anism is the ability to use an unique stack, thus
greatly reducing the needed amount of RAM for
the system. The trade-off is that one must be
careful when using certain C constructs (i.e.: it is
impossible to use the switch statement in some
parts of programs that use protothreads).

For all these reasons, we were unable to use
Contiki OS to develop and implement our high-
performance MAC/RDC protocols. We definitely
needed an OS with efficient real-time features and
event handling mechanism.

2.3 Other options

There are other, less used OSes designed for the
WSN/IoT domain, but none of them fulfilled our
requirements, for the following reasons:

SOS (Han et al., 2005) This system’s develop-
ment has been cancelled since november 2008;
its authors explicitly recommend on their web-
site to “consider one of the more actively sup-
ported alternatives”.

Lorien (Porter and Coulson, 2009) While its
component-oriented approach is interesting,
this system seems does not seem very
widespread. It is currently available for only
one hardware platform (TelosB/SkyMote)
which seriously limits the portability we can
expect from using an OS. Moreover, its de-
velopment seems to have slowed down quite
a bit, since the latest available Lorien release
was published in july 2011, while the latest
commit in the project’s SourceForge reposi-
tory (r46) dates back to january 2013.

Mantis (Abrach et al., 2003) While this project
claims to be Open Source, the project has
made, on its SourceForge web site, no public
release, and the access to the source repository
(http://mantis.cs.colorado.edu/viewcvs/)
seems to stall. Moreover, reading the project’s
main web page shows us that the last posted



news item mentions a first beta to be released
in 2007. The last publications about Mantis
OS also seems to be in 2007. All of these
elements tend to indicate that this project is
abandoned. . .

LiteOS (Cao et al., 2008) This system offers
very interesting features, especially the abil-
ity to update the nodes firmwares over the
wireless, as well as the built-in hierarchical
file system. Unfortunately, it is currently only
available on IRIS/MicaZ platforms, and re-
quires AVR Studio for programming (which
imposes Microsoft Windows as a development
platform). This greatly hinders portability,
since LiteOS is clearly strongly tied to the
AVR microcontroller architecture.

MansOS (Strazdins et al., 2010) This system is
very recent and offers many interesting fea-
tures, like optional preemptive multitasking,
a network stack, runtime reprogramming, and
a scripting language. It is available on two
MCU architectures: AVR and MSP430 (but
not ARM). However, none of the real-time fea-
tures we wanted seems to be available: e.g.
only software timers with a 1 millisecond res-
olution are available.

In any case, none of the alternative OSes cited
hereabove offer the real-time features we were
looking for.

On the other hand, “bare-metal” program-
ming is also unacceptable for us: it would mean
sacrificing portability and multitasking; and we
would also need to redevelop many tools and APIs
to make application programming even remotely
practical enough for third-party developers who
would want to use our protocols.

We also envisioned to use an estab-
lished real-time OS (RTOS) as a base for
our works. The current reference when it
comes to open-source RTOS is FreeRTOS
(http://www.freertos.org/). It is a robust,
mature and widely used OS. Its codebase con-
sists in clean and well-documented standard C
language. However, it offers only core features,
and doesn’t provide any network subsystem at
all. Redeveloping a whole network stack from
scratch would have been too time-consuming.
(Network extensions exist for FreeRTOS, but
they are either immature, or very limited, or
proprietary and commercial software; and most
of them are tied to a peculiar piece of hardware,

thus ruining the portability advantage offered by
the OS.)

2.4 Summary: Wanted Features

To summarize the issue, what we required is an
OS that:

• is adapted to the limitations of the deeply-
embedded MCUs that constitute the core of
WSN/IoT motes;

• provides real-time features powerful enough to
support the development of advanced, high-
performance MAC / RDC protocols;

• includes a network stack (even a basic
one) adapted to wireless communication on
802.15.4 radio medium.

However, none of the established OSes commonly
used either in the IoT domain (TinyOS, Contiki)
nor in the larger spectrum of RTOS (FreeRTOS)
could match our needs.

3 THE RIOT OPERATING
SYSTEM

Consequently, we focused our interest on
RIOT OS (Hahm et al., 2013).

This new system—first released in 2013—is
also open-source and specialized in the domain
of low-power, embedded wireless sensors. It of-
fers many interesting features, that we will now
describe.

It provides the basic benefits of an OS: porta-
bility (it has been ported to many devices pow-
ered by ARM, MSP430, and—more recently—
AVR microcontrollers) and a comprehensive set
of features, including a network stack.

Moreover, it offers key features that are oth-
erwise yet unknown in the WSN/IoT domain:

• an efficient, interrupt-driven, tickless micro-
kernel ;

• that kernel includes a priority-aware task
scheduler, providing pre-emptive multitask-
ing ;

• a highly efficient use of hardware timers: all
of them can be used concurrently (especially
since the kernel is tickless), offering the abil-
ity to schedule actions with high granularity;
on low-end devices, based on MSP430 archi-
tecture, events can be scheduled with a reso-
lution of 32 microseconds;



• RIOT is entirely written in standard C lan-
guage; but unlike Contiki, there are no re-
strictions on usable constructs (i.e.: like those
introduced by the protothreads mechanism);

• a clean and modular design, that makes devel-
opment with and into the system itself easier
and more productive.

The first three features listed hereabove make
RIOT a full-fledged real-time operating system.

We also believe that the tickless kernel and
the optimal use of hardware timers should make
RIOT OS a very suited software platform to op-
timize energy consumption on battery-powered,
MCU-based devices.

A drawback of RIOT, compared to TinyOS or
Contiki, is its higher memory footprint: the full
network stack (from PHY driver up to RPL rout-
ing with 6LoWPAN and MAC / RDC layers) can-
not be compiled for Sky/TelosB because of over-
flowing memory space. Right now, constrained
devices like MSP430-based motes are limited to
the role of what the 802.15.4 standard calls Re-
duced Function Devices (RFD), the role of Full
Function Devices (FFD) being reserved to more
powerful motes (i.e.: based on ARM microcon-
trollers).

However, we also note that, thanks to its mod-
ular architecture, the RIOT kernel, compiled with
only PHY and MAC / RDC layers, is actually
lightweight and consumes little memory. We con-
sequently believe that the current situation will
improve with the maturation of higher layers of
RIOT network stack, and that in the future more
constrained devices could also be used as FFD
with RIOT OS.

When we began to work with RIOT, it also
had two other issues: the MSP430 versions were
not stable enough to make real use of the plat-
form; and beyond basic CSMA/CA, no work re-
lated to the MAC / RDC layer had been done on
that system. This is where our contributions fit
in.

4 OUR CONTRIBUTIONS

For our work, we use—as our main hardware
platform—IoT motes built around MSP430 mi-
crocontrollers.

MSP430 is a microcontroller (MCU) architec-
ture from Texas Instruments, offering very low-
power consumption, cheap price, and good per-
formance thanks to a custom 16-bit RISC de-

sign. This architecture is very common in IoT
motes. It is also very well supported, especially
by the Cooja simulator (Österlind et al., 2006),
which makes simulations of network scenarios—
especially with many devices—much easier to de-
sign and test.

RIOT OS has historically been developed
first on legacy ARM devices (ARM7TDMI-based
MCUs), then ported on more recent microcon-
trollers (ARM Cortex-M) and other architectures
(MSP430 then AVR). However, the MSP430 port
was, before we improved it, still not as “polished”
as ARM code and thus prone to crash.

Our contribution can be summarized in the
following points:

1. analysis of current OSes (TinyOS, Contiki,
etc.) limitations, and why they are incompat-
ible with development of real-time extensions
like advanced MAC / RDC protocols;

2. add debugging features to the RIOT OS ker-
nel, more precisely a mechanism to handle fa-
tal errors: crashed systems can be “frozen” to
facilitate debugging during development; or,
in production, can be made to reboot immedi-
ately, thus reducing unavailability of a RIOT-
running device to a minimum;

3. port RIOT OS to a production-ready,
MSP430-based device: the Zolertia Z1 mote
(already supoorted by Contiki, and used in
real-world scenarios running that OS);

4. debug the MSP430-specific portion of RIOT
OS—more specifically: the hardware abstrac-
tion layer (HAL) of the task scheduler—
making RIOT OS robust and production-
ready on MSP430-based devices.
Note that all of these contributions have been
reviewed by RIOT’s development team and
integrated into the “master” branch of RIOT
OS’ Github repository (i.e.: they are now part
of the standard code base of the system).

5. running on MSP430-based devices also allows
RIOT OS applications to be simulated with
the Cooja simulator; this greatly improves
speed and ease of development.

6. thanks to these achievements, we now have a
robust and full-featured software platform of-
fering all the features needed to develop high-
performance MAC/RDC protocols—such as
all of the time-slotted protocols.

As a proof of concept of this last statement, we
have implemented one of our own designs, and ob-
tained very promising results, shown in the next
section.



5 USE CASE: IMPLEMENTING
THE S-COSENS RDC
PROTOCOL

5.1 The S-CoSenS Protocol

The first protocol we wanted to implement is S-
CoSenS (Nefzi, 2011), which is designed to work
on top of the IEEE 802.15.4 physical and MAC
(i.e.: CSMA/CA) layers.

It is an evolution of the already published
CoSenS protocol (Nefzi and Song, 2010): it adds
to the latter a sleeping period for energy saving.
Thus, the basic principle of S-CoSenS is to de-
lay the forwarding (routing) of received packets,
by dividing the radio duty cycle in three periods:
a sleeping period (SP), a waiting period (WP)
where the radio medium is listened by routers for
collecting incoming 802.15.4 packets, and finally
a burst transmission period (TP) for emitting ad-
equately the packets enqueued during WP.

The main advantage of S-CoSenS is its abil-
ity to adapt dynamically to the wireless network
throughput at runtime, by calculating for each
radio duty cycle the length of SP and WP, ac-
cording to the number of relayed packets during
previous cycles. Note that the set of the SP and
the WP of a same cycle is named subframe; it is
the part of a S-CoSenS cycle whose length is com-
puted and known a priori ; on the contrary, TP
duration is always unknown up to its very begin-
ning, because it depends on the amount of data
successfully received during the WP that precedes
it.

The computation of WP duration follows a
“sliding average” algorithm, where WP duration
for each duty cycle is computed from the average
of previous cycles as:

WPn = α ·WPn−1 + (1− α) ·WPn−1

WPn = max(WPmin,min(WPn,WPmax))

where WPn and WPn−1 are respectively the av-
erage WP length at nth and (n−1)th cycle, while
WPn and WPn−1 are the actual length of re-
spectively the nth and (n − 1)th cycles; α is a
parameter between 0 and 1 representing the rel-
ative weight of the history in the computation,
and WPmin and WPmax are high and low limits
imposed by the programmer to the WP duration.

The length of the whole subframe being a pa-
rameter given at compilation time, SP duration
is simply computed by subtracting the calculated
duration of WP from the subframe duration for
every cycle.

The local synchronization between a S-
CoSenS router and its leaf nodes is done thanks
to a beacon packet, that is broadcasted by the
router at the beginning of each cycle. This bea-
con contains the duration (in microseconds) of the
SP and WP for the currently beginning cycle.

The whole S-CoSenS cycle workflow for a
router is summarized in figure 1 hereafter.

Beacon
(broadcasted)

SP WP TP

P1 P2 P3 P1 P2 P3

Subframe

Figure 1: A typical S-CoSenS router cycle.
The gray strips in the SP represents the short wake-
up-and-listen periods used for inter-router communi-
cation.

An interesting property of S-CoSenS is that
leaf (i.e.: non-router) nodes always have their
radio transceiver offline, except when they have
packets to send. When a data packet is gener-
ated on a leaf node, the latter wakes up its radio
transceiver, listens and waits to the first beacon
emitted by an S-CoSenS router, then sends its
packet using CSMA/CA at the beginning of the
WP described in the beacon it received. A leaf
node will put its transceiver offline during the de-
lay between the beacon and that WP (that is:
the SP of the router that emitted the received
beacon), and will go back to sleep mode once its
packet is transmitted. All of this procedure is
shown in figure 2.

R SP WP

TP

LN

Beacon

packet arrival

P1

P1

Figure 2: A typical transmission of a data packet
with the S-CoSenS protocol between a leaf node and
a router.

We thus need to synchronize with enough ac-
curacy different devices (that can be based on dif-
ferent hardware platforms) on cycles whose peri-



ods are dynamically calculated at runtime, with
resolution that needs to be in the sub-millisecond
range. This is where RIOT OS advanced real-
time features really shine, while the other compa-
rable OSes are for that purpose definitely lacking.

5.2 Simulations and
Synchronization Accuracy

We have implemented S-CoSenS under RIOT,
and made first tests by performing simulations—
with Cooja—of a 802.15.4 PAN (Personal Area
Network) constituted of a router, and ten motes
acting as “leaf nodes”. The ten nodes regularly
send data packets to the router, that retrans-
mits these data packets to a nearby “sink” device.
Both the router and the ten nodes use exclusively
the S-CoSenS RDC/MAC protocol. This is sum-
marized in figure 3.

S

R

6 7 8 9 10

1 2 3 4 5

Figure 3: Functional schema of our virtual test PAN.

Our first tests clearly show an excellent syn-
chronization between the leaf nodes and the
router, thanks to the time resolution offered by
RIOT OS event management system (especially
the availability of many hardware timers for di-
rect use). This can be seen in the screenshot
of our simulation in Cooja, shown in figure 4.
For readability, the central portion of the time-
line window of that screenshot (delimited by a
thick yellow rectangle) is zoomed on in figure 5.

On figure 5, the numbers on the left side are
motes’ numerical IDs: the router has ID number
1, while the leaf nodes have IDs 2 to 11. Grey
bars represent radio transceiver being online for
a given mote; blue bars represent packet emission,
and green bars correct packet reception, while red
bars represent collision (when two or more devices
emit data concurrently) and thus reception of un-
decipherable radio signals.

Figure 5 represents a short amount of time
(around 100 milliseconds), representing the end of
a duty cycle of the router: the first 20 milliseconds
are the end of SP, and 80 remaining milliseconds
the WP, then the beginning of a new duty cycle

(the TP has been disabled in our simulation).
In our example, four nodes have data to trans-

mit to the router: the motes number 3, 5, 9, and
10; the other nodes (2, 4, 6, 7, 8, and 11) are
preparing to transmit a packet in the next duty
cycle.

At the instant marked by the first yellow ar-
row (in the top left of figure 5), the SP ends and
the router activates its radio transceiver to enter
WP. Note how the four nodes that are to send
packets (3, 5, 9, and 10) do also activate their
radio transceivers precisely at the same instant:
this is thanks to RIOT OS precise real-time mech-
anism (based on hardware timers), that allows
to the different nodes to precisely synchronize on
the timing values transmitted in the previous bea-
con packet. Thanks also to that mechanism, the
nodes are able to keep both their radio transceiver
and their MCU in low-power mode, since RIOT
OS kernel is interrupt-driven.

During the waiting period, we also see that
several collisions occur; they are resolved by the
S-CoSenS protocol by forcing motes to wait a ran-
dom duration before re-emitting a packet in case
of conflict. In our example, our four motes can
finally transmit their packet to the router in that
order: 3 (after a first collision), 5, 10 (after two
other collisions), and finally 9. Note that every
time the router (device number 1) successfully re-
ceives a packet, an acknowledgement is sent back
to emitter: see the very thin blue bars that follow
each green bar on the first line.

Finally, at the instant marked by the second
yellow arrow (in the top right of figure 5), WP
ends and a new duty cycle begins. Consequently,
the router broadcasts a beacon packet contain-
ing PAN timing and synchronization data to all
of the ten nodes. We can see that all of the six
nodes waiting to transmit (2, 4, 6, 7, 8, and 11)
go idle after receiving this beacon (beacon pack-
ets are broadcasted and thus not to be acknowl-
edged): they go into low-power mode (both at
radio transceiver and MCU level), and will take
advantage of RIOT real-time features to wake
up precisely when the router goes back into WP
mode and is ready to receive their packets.

5.3 Performance Evaluation:
Preliminary Results

We will now present the first, preliminary results
we obtained through the simulations we described
hereabove.

Important: note that we evaluate here the im-



Figure 4: Screenshot of our test simulation in Cooja. (Despite the window title mentioning Contiki, the simulated
application is indeed running on RIOT OS.)

Figure 5: Zoom on the central part of the timeline of our simulation.



Figure 6: PRR results for both ContikiMAC and S-
CoSenS RDC protocols, using default values for pa-
rameters.

PAI \ Protocol ContikiMAC S-CoSenS
1500 ms 49.70% 98.10%
1000 ms 32.82% 96.90%
500 ms 14.44% 89.44%
100 ms 0.64% 25.80%

Table 1: PRR results for both ContikiMAC and S-
CoSenS RDC protocols, using default values for pa-
rameters.

plementations, and not the intrinsic advantages
or weaknesses of the protocols themselves.

We have first focused on QoS results, by com-
puting Packet Reception Rates and end-to-end
delays between the various leaf nodes and the sink
of the test PAN presented earlier in figure 3, to
evaluate the quality of the transmissions allowed
by using both of the protocols.

For these first tests, we used default parame-
ters for both RDC protocols (ContikiMAC and
S-CoSenS), only pushing the CSMA/CA MAC
layer of Contiki to make up to 8 attempts for
transmitting a same packet, so as to put it on
par with our implementation on RIOT OS. We
have otherwise not yet tried to tweak the various
parameters offered by both the RDC protocols to
optimize results. This will be the subject of our
next experiences.

5.3.1 Packet Reception Rates (PRR)

The result obtained for PRR using both protocols
are shown in figure 6 as well as table 1.

The advantage of S-CoSenS as shown on
the figure is clear and significant whatever the
packet arrival interval constated. Excepted for
the “extreme” scenario corresponding to an over-
saturation of the radio channel, S-CoSenS achieve
an excellent PRR (' 90%), while ContikiMAC’s

Figure 7: End-to-end delays results for both Con-
tikiMAC and S-CoSenS RDC protocols, using default
values for parameters; note that vertical axis is drawn
with logarithmic scale.

PAI \ Protocol ContikiMAC S-CoSenS
1500 ms 3579 ms 108 ms
1000 ms 4093 ms 108 ms
500 ms 6452 ms 126 ms
100 ms 12913 ms 168 ms

Table 2: End-to-end delays results for both Contiki-
MAC and S-CoSenS RDC protocols, using default
values for parameters.

PRR is always / 50%.

5.3.2 End-To-End Transmission Delays

The result obtained for PRR using both protocols
are shown in figure 7 and table 2.

S-CoSenS has here also clearly the upper
hand, so much that we had to use logarithmic
scale for the vertical axis to keep figure 7 eas-
ily readable. The advantage of S-CoSenS is valid
whatever the packet arrival interval, our proto-
col being able to keep delay below an acceptable
limit (in the magnitude of hundreds of millisec-
onds), while ContikiMAC delays rocket up to tens
of seconds when network load increases.

5.3.3 Summary: QoS Considerations

While these are only preliminary results, it seems
that being able to leverage real-time features is
clearly a significant advantage when designing
and implementing MAC/RDC protocols, at least
when it comes to QoS results.



6 FUTURE WORKS AND
CONCLUSION

We plan, in a near future:

• to bring new contributions to the RIOT
project: we are especially interested in the
portability that the RIOT solution offers us;
this OS is indeed actively ported on many
devices based on powerful microcrontrollers
based on ARM Cortex-M architecture (espe-
cially Cortex-M3 and Cortex-M4), and we in-
tend to help in this porting effort, especially
on high-end IoT motes we seek to use in our
works (e.g.: as advanced FFD nodes with full
network stack, or routers);

• to use the power of this OS to further advance
our work on MAC/RDC protocols; more pre-
cisely, we are implementing other innovative
MAC/RDC protocols—such as iQueue-MAC
(Zhuo et al., 2013)—under RIOT, taking ad-
vantage of its high-resolution real-time fea-
tures to obtain excellent performance, opti-
mal energy consumption, and out-of-the-box
portability.

RIOT is a powerful real-time operating sys-
tem, adapted to the limitations of deeply em-
bedded hardware microcontrollers, while offer-
ing state-of-the-art techniques (preemptive mul-
titasking, tickless scheduler, optimal use of hard-
ware timers) that—we believe—makes it one of
the most suitable OSes for the embedded and
real-time world.

While we weren’t able to accurately quan-
tize energy consumption yet, we can reasonably
think that lowering activity of MCU and radio
transceiver will significantly reduce the energy
consumption of devices running RIOT OS. This
will be the subject of some of our future research
works.

Currently, RIOT OS supports high-level IoT
protocols (6LoWPAN/IPv6, RPL, TCP, UDP,
etc.). However, it still lacks high-performance
MAC / RDC layer protocols.

Through this work, we have shown that
RIOT OS is also suitable for implementing high-
performance MAC / RDC protocols, thanks to
its real-time features (especially hardware timers
management).

Moreover, we have improved the robustness
of the existing ports of RIOT OS on MSP430,
making it a suitable software platform for tiny
motes and devices.
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