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Dynamics of Anisotropic Universes

Jérôme Perez
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Paris cedex 15 - jerome.perez@ensta.fr

Abstract. We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein
General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about
Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in
some precise sence.
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HOMOGENEOUS UNIVERSE AND BIANCHI MODELS

Considering the usual synchronous frame of General Relativity 1 ds2 = gµν dxµ dxν = g̃i j dxi dx j −dt2. A Universe is
said homogeneous when there exists an isometry group wich preserves the infinitesimal spacial lenght dl2 = g̃i j dxi dx j

A characterization of the isometry group is possible writing structure constants

C c
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(

∂ie
c
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i

)

e j
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where dxi = ei
j dy j. Constants C c

ab are tensorial, low components are antisymetrics, and follow the Jacobi rule :
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Decomposing C c
ab = εabd Ndc + δ c

b Aa − δ c
a Ab , where Nab is a symetric tensor, one can show that equivalence classes

of homogeneous universes are equivalence classes of Nab with NabAb = 0. Without less of generality, the symetry of
Nab allows us to write

Nab =





n1 0 0
0 n2 0
0 0 n3



 and Ab = [a,0,0] (3)

Models split then into Class A with a = 0 and Class B with a 6= 0 and can be arranged in the well known Bianchi
models

n1 n2 n3 a Model

0 is a triple eigenvalue of N 0 0 0 0 BI
0 0 0 ∀ BV

0 is a double eigenvalue of N 1 0 0 0 BII
0 1 0 ∀ BIV

0 is a simple eigenvalue of N 1 1 0 0 BVIIo

0 1 1 ∀ BVIIa

1 −1 0 0 BVIo

0 1 −1 6= 1 BVIa

0 1 −1 1 BIII

0 is not an eigenvalue of N 1 1 1 0 BIX
1 1 −1 0 BVIII

1 without contrary indications greek indexes run from 0 to 3, latin indexes from 1 to 3, metric signature is (−,+,+,+), ε and δ are respectively
the completely antisymetric Levi-Cevita tensor and the Kronecker symbol



EINSTEIN EQUATIONS

Following [1], one writes ds2 = γ (τ)ω iω j −N2 (τ)dτ2 with γ (τ) = diag
[

eA1(τ),eA2(τ),eA3(τ)
]

and dt = N (τ)dτ .

The so called invariant differential forms basis ω i are linear combinations of dxi with exponential or trigonometric
coefficient in xi (See [1]). Finally, τ and N (τ) are respectivelly the conformal time and the lapse function.

BKL Formalism

This formalism was introduced in the 70’s by [3]. Filling Universe by a barotropic fluid with pressure P and energy
density ρ such that P = (Γ−1)ρ , taking N2 (τ) = V 2 = eA1+A2+A3 for the lapse function, some algebra then gives
from Einstein equations, the equations for the dynamics of Bianchi Universes



















0 = Ec +Ep +Em = H
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where χ = 8πGc−4, Ec = 1
2

3
∑
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iA
′
j, Ep =

3
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i e2Ai , Em = −4χρ V 2 and a ′ stands for d/dτ

Hamiltonian formalism

This formalism was introduced by [4], at almost the same time than the precedent. It consists to diagonalize the
quadratic form Ec by introducing new variables such that
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q := [q1 q2 q3]
T = M [A1 A2 A3]

T

p := [p1 p2 p3]
T = M [A′

1 A′
2 A′

3]
T = q′

(5)

Dynamical equations for Bianchi Universes then becomes

q′1,2 = − ∂H
∂ p1,2

, p′1,2 = − ∂H
∂q1,2

and q′3 =
∂H
∂ p3

, p′3 = − ∂H
∂q3

(6)

where H = 1
2 〈p,p〉+

7

∑
i=1

kie
(ai,q) with the following products

∀x,y ∈ R3 (x,y) := +x1y1 + x2y2 + x3y3 and 〈x,y〉 := −x1y1 − x2y2 + x3y3 (7)

and the constants k1 := 2n1n2, k2 := 2n1n3, k3 := 2n2n3, k4 := −n2
1, k5 := −n2

2, k6 := −n2
3, k7 = −4ρoχ . The set of

vectors ai=1,··· ,7 is highly symetric (see Fig. 1): It allows to use algebraic techniques based on Lie algebra in some
dynamical treatments of this problem.

INTEGRABILITY OF BIANCHI MODELS

Kovalevskaya stuff and autosimilar ODE

If an ODE
ẋ = f(x) with x ∈ Rn and ˙≡ d/dt (8)



a
1

a
2

a
3

a
4 a

5

a
6

a
7

e
1

e
2

FIGURE 1. Projection of ai vectors on (e 1,e2) plane

admits a self-similar solution
x̃ =

[

c1 (t − to)
−g1 , ...,cn (t − to)

−gn
]T

(9)

with the weight vector g and the constant vector c lying respectively Zn and Rn. One can then prove that the linearized
system around x̃, admits too an auto-similar solution

z =
[

d1 (t − to)
k1−g1 , ...,dn (t − to)

kn−gn
]T

(10)

where d is a constant vector, and, this time the Kovalevskaya vector k, wich components are the so-called Kovalevskaya
exponents, lies Cn. In practice, one can compute this vector : it is easy to show that Kovalevskaya exponents are
eigenvalues of K := D [f(x)] (c) + diag(g). A theorem by Poincaré shows that each component of the non linear
general solution of equation (8) is on the form

xi (t) ∝ (t − to)
−gi S

[

(t − to)
k1 , ...,(t − to)

kn
]

(11)

where S [.] stands for a multiple series. This result is at the basis of a sufficient condition (known as Yoshida’s Theorem
see [5],[6]) : if all the Kovalevskaya exponents are in Q, then the system is algebraicly integrable.

Kowalevskaya exponents and Bianchi Universes

Such a work was Pioneering by [7], applied for the first time to some special cases by [8], and more recently,
developed with some imprecisions and incompletude by [9]. We present here results obtained in a precise way in [10].
Introducing new variables

{q,p} 7→ {u,v} where







u ∈ R7, ui=1,...,7 := 〈ai,p〉

v ∈ R7, vi=1,...,7 := exp(ai,q)
(12)

Einstein’s Hamiltonian equations become

∀i = 1, · · · ,7















v′i = uivi

u′i =
7
∑
j=1

Wi jv j

with Wi j := −k j
〈

ai,a j
〉

(13)

This dynamical system admits an autosimilar solution x̃ =
[

λ t−1,µt−2
]T

where the constants [λ ,µ ] ∈ R7 ×R7 are
solutions of the algebraic system

∀i = 1, · · · ,7















7
∑
j=1

Wi j µ j = −λi

λi µi = −2µi

(14)



Taking into account that Rank(W ) = 3, it exists 45 distincts non trivial solution for system (14), and then 45 sets of
14 Kovalevskaya exponents for all Bianchi Universes. Analysis of such sets let us claim that :

• In vacuum or with stiff matter (Γ = 2), excepted BIX and BV III , all other class A Bianchi models have fractional
Kovalevskaya exponents.

• With non stiff matter (0 ≤ Γ < 2) class A Bianchi models have at least one real or complex Kovalevskaya

exponent, except for BI with fractional values of Γ and BII with Γ fractional in
[

0, 11+
√

73
3 ' 0.82

]

These integrability indications are conforted by [12] for BV III using Morales-Ruis Theory and by [11] using Painlevé’s
analysis for BIX .

EXACT SOLUTIONS

BI dynamics : The fundamental state

In vacuum, the general solution of BI model could be explicited. The line element is

ds2 = t2p1 dx2
1 + t2p2dx2

2 + t2p3dx2
3 −dt2 (15)

where

∃!u ∈ [1,+∞[ such that







p1 = −Ωu/(1+u+u2)
p2 = Ω(1+u)/(1+u+u2)
p3 = Ωu(1+u)/(1+u+u2)

(16)

The real Ω is directly proportional to Universe Volume variation wich is constant in BI . Toward singularity (t → 0), x1
expands when x2 and x3 contracts, all with a constant exponential rate. Any couple [u,Ω] ∈ [1,+∞[×R associated to
an order of axis defines a Kasner state.

BII dynamics : One Kasner transition

As noted by [3], BII dynamics corresponds to a transition between 2 asymptotic Kasner states :

[u,Ω] (�4♦)
p1 < p2 < p3
� 4 ♦

Initial Kasner State : t → +∞






 













[u−1,Ω(1−2p1)] (4♦�) if u ≥ 2

[

(u−1)−1 ,Ω(1−2p1)
]

(4�♦) if u < 2

Final Kasner State : t → 0

(17)

Conjectures (partially proven)

As indicated by the rigorous proof by [16], all classes of Bianchi models converge generically toward a simple
Kasner state or a closure of Kasner states when t → 0. Numerical analysis, more precisely Billiard analogy (see next
section), let us think that :

• BVIo and BVIIo dynamics correspond to a finite number of Kasner transitions
• BVIII and BIX dynamics correspond to an infinite number of Kasner transitions



BILLIARD ANALOGY

Those works was pionneered by [4], and more recently by [13] or [15]. Introducing the super-time t̃ such that
dt̃ = V 1/3dt, a "mass" m = V 4/3 and an "energy" E = (dV/dt)2/2V 2/3, dynamical equation (6) in vacuum becomes























dq1,2

dt̃
=

p1,2

m
=

∂E
∂q1,2

d p1,2

dt̃
= − ∂ξ

∂q1,2
=

∂E
∂ p1,2

with E =
p2

1 + p2
2

2m
−ξ (q) , ξ (q) =

6
∑

i=1
kie(π(ai),q)

q ∈ R2 ,π : normal projector onto(e 1,e2) plane
(18)

Toward singularity, E → +∞ and m → 0. When we go through time backward, equations (18) are ones of a ball
with a decreasing mass m and with an increasing energy. The exponential nature of the potential ξ allows a precise
description of he dynamics, namely, the billiard analogy. When ξ is exponentially negligible, solutions of (18) are
almost straight lines in phase plane (q1,q2) : these are almost Kasner states in BKL representation. When ξ cannot be
neglected anymore, it is mainly due to one of it exponential term, equation of motion − for a linear combination y of
(q1,q2) − takes a form equivalent to2

d2y
dx2 = −k2ey with y(0) =

dy
dx

∣

∣

∣

∣

x=0
= 0 (19)

This equation could be solved analytically in

y(x) = ln

[

1− th2
(

kx√
2

)]

= −2ln

[

ch

(

kx√
2

)]

(20)

It shows clearly a transition between the two Kasner states associated to the straight lines which are the asymptotes of
this solution (see Fig. 2). This generalized BII transition corresponds to a bounce of a ball in an amazing billiard. As
a matter of fact, when p2

1 + p2
2 = 0, all ball’s energy is concentrated in the potential term ξ , this situation corresponds

to the maximum of the y function plotted in Fig. 2 : this is a bounce. It happens effectivelly against the isocontour line
ξ = ξ (q∗) where dq∗/dt̃ = 0. As we go toward singularity (t̃ → 0) these lines move outward as one can see in Fig. 3.
The Universe ball then moves in a expanding billiard. It is easy to prove that ball’s velocity norm | dq/dt̃ | is always
greater than the one of cushions which is the energy variation (see [18] for instance). This property remains true when
barotropic matter fills Universe provided that Γ < 2. The amplitude of the bounce depends on k : the largest k is, the
smallest is the bounce angle between the two asymptotic linear regimes. Between the two ideal cases (quasi Kasner
state and bounce) the parameter k is dynamical, its variations remains negligible during each phase.

DYNAMICAL PROPERTIES OF BIANCHI BILLIARDS

In the billiard formulation, dynamics of Bianchi Universe is fully understood considering isocontours of the potential
ξ which are presented on Fig. 3. Excluding BIX and BVIII all isocontours are open curves. Hence after a finite number
of bounces, the ball representing Universe find a hole and go away to reach the asymtotic regime solution of equation
(19) which is a Kasner state. By opposite, for the two closed curves potential, there is no hole in the billiard, cushion
allways expands less quickly than the ball, and there is an infinite sequence of BII transitions toward singularity.
Although BVIII cushions seems open along a vertical channel, the bounce process makes the ball which enter the
channel goes back. As sketched on Fig. 2, in the channel k ∼ q2, then as the ball sinks into this region, q2 grows and
bounces are more and more pinched. By consequence, as the cushion is not strictly vertical, the ball finally goes back
and leaves the channel. These results are surely well known and one remaining question could be : Is BVIII dynamics
equivalent in some precise sence to BIX one ? In terms of complexity the two dynamics seems equivalent as they have
exactly the same set of Kovalevskaya exponents. Let us show that they are also equivalent by the fact that they present
the same kind of transition to chaos, and they have the same kind of attractor.

2 The x variable represents the supertime t̃ such that when t̃ ∼ x one has ξ ∼−k2ey
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FIGURE 2. Reflexion on a straight cushion (left) and in a corner (right)

FIGURE 3. Isocontours of potential ξ for all distincts Bianchi Universe in vacuum. Arrows indicate the increasing values of ξ

BIX and BVIII Poincaré map analysis

Detailled analysis show that Bianchi Universe volume is a regular variable. It is the only variable attached to
cushions expansion in the billiard formalism. Therefore, the complexity of the dynamics is contained in the cushions’s
shape. In order to study this complexity in the two relevant cases which are BIX and BVIII Universes, we have studied
dynamical propertied of temporal sections of the hamiltonian E involving in equation (18). As V, t, t̃ and τ are all
related in a bijective way, by temporal section we mean sections of the dynamics described by equation (18) with
m = cst and E = cst. For convenience we use always a ball with unit mass, we focuss attention under Poincaré maps
associated to growing values of E. Such maps are obtained by considering the intersection between an orbit (a solution
of the 4D differential system) and a fixed plane, namely Π = {q2 = 0, p2 = 0} for maps plotted in Fig. 4. The greater
are values of the energy E, the closest from singularity sections are. Analysis of such maps is clear using KAM Theory
: When periodic or quasiperiodic orbits correspond to Poincaré sections disposed along curves, chaotic orbits sections



FIGURE 4. Poincaré maps toward singularity of temporal sections of m = cst and E = cst of BIX (top : m = 1 and E =
−2.8,−2.1,0 from left to right) and BVIII (bottom : m = 1 and E = 5.0,10.0 from left to right) dynamics. For each map a set
of 9 homogeneously distributed initial conditions have been choosen.

fill dense regions. We can then conclude that far from singularity orbits are regular in both BIX and BVIII. Approaching
singularity, a transition to chaos seems to appear in the dynamics of both these closed cushions expanding billiards.
In order to produce a comparative measure of this chaos we propose to produce an analysis base on BIX and BVIII
Universes truncated dynamics.

BIX and BVIII fractal attractors

As suggered by all previous indicators (Kovalevskaya exponents, Poincaré maps), we suspect BVIII dynamics to
possess the same kind of attractor exhibited initially by [17] for BIX. In order to confirm this suspition we have applied
the truncated dynamical technique used by [17] in the context of Hamiltonian formalism described above.

Initial conditions we used are qo =
[

0,−
√

6ln2,Ω
]

and po = [cosθ ,sinθ ,ω] where the constraint H = 0 is fullfilled

provided that

Ω =
3√
6

ln

[

±
(

1−ω2
)

24 (1∓2)

]

(21)

The upper and lower signs are associated respectively to BIX and BVIII Universes. The two free parameters ω and
θ fixe respectively the initial variation rate of Univers volume (or the initial escape speed of cushions in the billiard
formalism) and the orientation of the initial velocity vector. These initial conditions are represented on Fig. 5. The
numerical integration of the dynamics from these initial conditions shows an unlimited sequence of BII transitions
between Kasner states (see formula (17)). We stop numerical integration when the Kasnerian u parameter is greater
than a critical value (for maps presented on Fig. 6 we have used uexit = 8). When the dynamic is stopped, we affect to
the corresponding point in the θ −ω plane a color which correspond to the expanding axe of stopped Kasner state (Red
↔ A1, Blue ↔ A2 and Green ↔ A3). We have studied the [0,π/2]× [−2,−3] portion of the θ −ω plane, projected
on a regular 500× 500 grid. The corresponding maps are presented in Fig. 6. From this map we can compute the 3
Haussdorf dimensions associated to each color set. We can resume these three numbers into one by averaging each
dimension weighted by the surface proportion occupied by the corresponding color. We then obtain a mean Haussdorf
dimension of each map which is d = 1.6976± 8.9× 10−3 for BVIII’s map and d = 1.7141± 8.5× 10−3 for BIX’s



FIGURE 5. Initial conditions θ and ω for fractals maps represented on Fig. 6

FIGURE 6. BVIII (left) and BIX (right) fractal maps in the [0,π/2]× [−2,−3] portion of the θ −ω plane

map. These two numbers are then numerically indistinguable. In this sense we claim that BVIII and BIX universes are
dynamically equivalent
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