N

N
N

HAL

open science

Formal Architecture Specification for Time Analysis

Hajer Herbegue, M Filali, Hugues Cassé

» To cite this version:

Hajer Herbegue, M Filali, Hugues Cassé. Formal Architecture Specification for Time Analysis. In-
ternational Conference on Architecture of Computing Systems (ARCS 2014), Feb 2014, Lubeck, Ger-

many. pp.98-110, 10.1007/978-3-319-04891-8 9. hal-01141443

HAL Id: hal-01141443
https://hal.science/hal-01141443
Submitted on 13 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01141443
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Cuverte

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12944

To link to this article : DOI :10.1007/978-3-319-04891-8 9
URL : http://dx.doi.org/10.1007/978-3-319-04891-8 9

To cite this version : Herbegue, Hajer and Filali, Mamoun and Cassé,
Hugues Formal Architecture Specification for Time Analysis. (2014)
In: International Conference on Architecture of Computing Systems -
ARCS 2014, 25 February 2014 - 28 February 2014 (Lubeck,
Germany).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12944/
http://dx.doi.org/10.1007/978-3-319-04891-8_9
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Formal Architecture Specification
for Time Analysis

Hajer Herbegue, Mamoun Filali, and Hugues Cassé

CNRS-IRIT, Université de Toulouse
Toulouse, France
firstname.lastnameQirit.fr

Abstract. WCET calculus is nowadays a must for safety critical sys-
tems. As a matter of fact, basic real-time properties rely on accurate tim-
ings. Although over the last years, substantial progress has been made
in order to get a more precise WCET, we believe that the design of
the underlying frameworks deserve more attention. In this paper, we are
concerned mainly with two aspects which deal with the modularity of
these frameworks. First, we enhance the existing language Sim-nML for
describing processors at the instruction level in order to capture modern
architecture aspects. Second, we propose a light DSL in order to describe,
in a formal prose, architectural aspects related to both the structural as-
pects as well as to the behavioral aspects.

Keywords: Hardware, microarchitecture, pipeline, WCET, architecture
language, formalization, constraints.

1 Introduction

System-on-chip and processor modeling methodologies are continuously improved
to overcome the increasing complexities of critical embedded systems. Designers
have to deal with complex features of new architectures and develop applica-
tion/domain specific processors. It is highly desirable, as intending to reduce the
costs and time-to-market, that the software design tool can be synthesized auto-
matically from high level processor specifications. In this scope, there is a surge
in architecture description languages. ADLs have been used in retargetable tools
generation, design space exploration, hardware synthesis, verification and time
analysis [14,16]. In order to have reliable and powerful design and analysis flows,
ADLs have to convey the informal processor specification provided by vendors to
the development tools, as closely as possible. Furthermore, the validation (and
verification) is an important task in the system-on-ship design process, that en-
sures the correction of the system with respect to the correctness requirements
and real-time constraints. Such a task is arduous because of the architecture
complexity and lack of clear and explicit syntax and semantics in currently used
architecture languages. Indeed, to ensure the completeness of the architecture
requirements at the design stage, it is essential to have a precise and formal pro-
cessor specification. ADL-driven flows for worst case execution time (WCET)

analysis, like the OTAWA framework [4], need a clear and explicit syntax and
semantics for the architecture description to provide the required accuracy.

At the present time, OTAWA allows the time analysis using a constraint-based
approach, in addition to the validation and the animation of time results [12]
and the generation of fine-grained simulators at pipeline level. In this paper,
we enhance the OTAWA work flow with a logic-based description that formal-
ize the architecture properties. This description is used, with the architecture
model described in the Sim-nML language, to generate a constraint-based de-
scription for the WCET computation. We first present how advanced architec-
ture features, specially instruction with complex behaviors, can be handled by
the OTAWA ADL description. Second, we give, in a formal prose, the oper-
ational properties of the hardware components and the instruction set. These
properties describe the instructions behavior regarding to resources allocation,
dependencies, parallel execution, etc. This description also provides a good basis
for formal verification of time analysis methods.

The paper is organized as follows. Section 2 gives an overview of the ADL-
based approach and our contribution. In Section 3, we present the Sim-nML
language and its extension to describe advanced features of real-life architec-
tures. In Section 4, we present the logic-based description, illustrated through
a processor use case. In Section 5, we present an overview of related works and
draw a comparison between their respective description languages. Section 6
concludes the paper.

2 ADL-Based Approach for Time Computation

OTAWA [4] is a framework dedicated to WCET computation of a program ex-
ecuted on a given processor. The time analysis is based on an abstraction of
the target architecture and the binary. The WCET of a program corresponds
to the execution time of the longest execution path, which is identified on the
control flow graph (CFG) of the program. An execution path is a sequence of
code snippets, called basic blocks. The WCET is a function of the time cost of
the basic blocks and their execution counts [18]. In this paper, we focus on the
computation of the basic block execution time. The pipeline analysis consists
of modeling the instruction behavior of the pipeline and evaluating the impact
of the hardware features on the instruction execution times [17]. The frame-
work OTAWA was enhanced with an ADL-based approach [11] that aims at
computing the time cost of a basic block considering the pipeline features. The
carried analysis considers as input (1) the program binary, (2) the basic block
as an instruction sequence and (3) the architecture description in the Sim-nML
language [10] (see figure 1). Sim-nML was extended to support, in addition to
the ISA description, the micro-architecture description of the target processor.
The architecture description includes the resources accessed by the instructions
such as pipeline stages, buffers, etc. and the execution model of instructions.
The execution model describes the instruction behavior in terms of resource al-
location. From the Sim-nML language and the binary, we generate an internal

Processor specification
Reference manual

l Library of
Sim-nML description Quantitative properties
— .

—
ISA Hardware
description description

> Internal representation

Architecture and basic block Processor properties

> abstraction /

—> Automatic transformation
$ —» Manual derivation
<€--- Validation

R

Fig. 1. ADL-based flow for time analysis

representation of the architecture and of the basic block. Then, a constraint-
based description is automatically generated from the execution models of the
instructions and the pipeline description. These constraints are combined to for-
mulate a constraint satisfaction problem (CSP) [8], whose resolution provides
the time cost of the basic block.

In this paper, we intend to provide a formal description of the architecture
constraints, in which we can express the architecture elements and properties,
regardless of the resolution method and the language used later for time com-
putation. We propose a domain specific language that allows a logic description
of the architecture properties. The idea is to provide a library in which the
architect-user can find a set of reusable quantitative properties that assist him
in (1) the definition of architecture high-level constraints that would be used for
time analysis and (2) the validation of the correctness and the consistency of the
architecture model with respect to the initial specification. Indeed, according to
the initial Sim-nML description and what is provided in the properties library,
the user defines a set of properties that will be used further to compute WCETSs.

3 The Sim-nML Description Language Extension

Sim-nML [10] is a hierarchical and a highly structured language that describes
the processor at instruction level, using an attributed grammar. The instructions
and the addressing modes are described using pre-defined attributes. The syntax
attribute defines the assembly representation of the instruction. The attribute
1mage gives the binary representation and action defines the semantics of the in-
struction (register transfer). Our extension to the Sim-nML language [11] allows
the definition of the processor resources and the execution model of the instruc-
tion set, giving how and when the resources are accessed by each instruction.
The properties of the hardware components are specified as attributes. So, we
can declare stages, buffers, registers and memories. Concerning stages, we can
specify out-of-order execution, superscalarity, cache characteristics, if relevant
for time analysis, etc. The instructions definition is extended with an attribute

Re-order
Buffer

Fetch

P Buffer

=[]

uife
e
=

MD : Multiply/Divide
floating point units

Instruction
Cache

Fig. 2. An out-of-order superscalar pro- Fig. 3. Floating point pipeline
cessor

Register
File Data
Cache

uses that describes the execution model. In fact, to start execution on a stage, an
instruction has to wait for its resources to be available, including the operands,
the executing stage, the memory, etc. Therefore, the execution time of an in-
struction is impacted by the resources state. The uses attribute defines, in a
timed sequence called clause, the resources required by an instruction in each
step of its execution. A sequence is defined using commas. Every clause in a se-
quence represents a step of the instruction execution. In every step, one or more
resources are required, and access can be in read or write mode. Parallel access
is expressed by the operator &. Access to some resources takes a fixed duration
t, that is specified as #{t}. An example of a 2-scalar out-of-order processor is
illustrated in figure 2 and described in Sim-nML in lines 1-12 of listing 1.1. The
language extension was amenable to describe some complications of instruction
set architectures. In next paragraphs, we show how we extend the Sim-nML in
order to handle pipelines with complex and long-running instructions.

Not-fully symmetric ALU. Specialized functional units are designed for
specific operation patterns to achieve shorter delays. In the processor of figure 2,
we assume that the first ALU occurrence implements a multiplier component
executing multiply operations and ordinary data processing operations. Usually,
processors include only one specialized ALU because it is expensive and there
are more additions than multiply operations. Thus, arithmetic instructions are
executed by any of the ALU. So no occurrence is specified in the ADD execution
model (lines 18-19 of listing 1.1). While, in the execution model of MUL, we
specify ALU|0] as the required stage occurrence (lines 23-24 of listing 1.1). This
will be used when scheduling instructions to be issued to the ALU units. Different
latencies has been associated to the execution of the ADD and MU L instructions
on the ALU unit.

Listing 1.1. Sim-nML processor description
I stage FE , DE , ALU[2] , MEM , CM
2 extend FE , DE , CM
3 capacity = 2 // super—scalarity degree
4 inorder = true // in—order stages
5 extend ALU , MEM

inorder = false // out—of—order stages

buffer FBuf [4] , RoB [8] // Fetch Buffer and Re—order Buffer

© 00 3 O

10 reg PC [1l,card(32)] // 82—bit PC register

11 reg R [16,card(32)] // 16 registers of 32 bits

12 mem M [32,card(8)]// a memory of 2°82 8—bit words

13

14 op ADD (rd:card (4),rs:card (4),rn:card (4))

15 syntax = format (”add r%d r%d r%d” ,rd,rs,rn)

16 image = format (700%2b%2b%2b” ,rd,rs,rn)

17 action = {R[rd] = R[rs] + R[rn] ;}

18 uses= FE & FBuf & PC.read, DE, ALU & RoB & R[rs].read &R[rn].read
19 & Rlrd]. write#{1}, CM

20

21 // Multiply instruction exzecuted on the specilized ALU

22 op MUL
23 uses= FE & FBuf & PC.read, DE, ALU[0] & R[rd]. write & R[rm].read
24 & R[rs].read & RoB#{5},CM

25

26 // load multiple instruction

27 op load_multiple (rlist: card(16) , rn: card(4))

28 uses = FE & PC.read & FBuf, DE |,

20 if r1<0..0>==1 then MEM & M.read & R[rn].read & R[0]. write & RoB

endif ,
30 if rl<1l..1>==1 then MEM & M.read & R[rn].read & R[1]. write & RoB
endif , .. ,CM

31

32 // branch instruction dumped after decode

33 var taken[1l,ul]

34 extend B_Cond

35 uses = FE & PC.read & FBuf,DE & (if (taken==1) then PC.write endif)

Multi-cycle instructions. Some complicated arithmetic operations, such
as multiply, divide and floating point operations, can require complex hardware
with significantly longer delays than a single ALU. One solution is to have
parallel pipelines for different multi-stage instructions. For example, division is
frequently implemented using this scheme even in high performance superscalar
processors. In addition, such an instruction stays many cycles on the same stage,
mostly the first. In the pipeline of figure 3, we have a pipelined multiply/divide
functional unit M D. The ALU unit executes simple operations. Instructions are
issued in the M D floating point pipeline out-of-order. The listing 1.2 presents
the execution model of the divide and multiply instructions. The DIV and MU L
instructions have different latencies on the first stage of the pipelined M D unit.
In fact, stages with different latencies is also a relevant pipeline property for
hazards detection and the instructions scheduling, which is critical in an out-
of-order issue processor. These latencies will be considered when generating the
timing constraints to compute the execution time of instructions.

Listing 1.2. Floating point pipeline

| stage FE, DE, ALU, MDO , MDl , MD2 , MD3, CM

2 extend FE , DE , CM

3 capacity = 2 // 2—superscalar stages
4 extend ALU , MDO

5 inorder = false // out—of—order stages
6 extend MUL

7

uses= FE#{1}, DE#{1}, MDO & R[rd]. write & R[rm].read & R[rs].read
#{1},

8 MD1# {1}, MD2#{1}, MD3#{1}, CM#{1}
9 extend DIV
10 uses= FE#{1}, DE#{1}, MDO & R[rd]. write & R[rn].read & R[rm].read

#{21},
1 MDI1# {1}, MD2#{1}, MD3#{1}, CM#{1}

Micro-coded Instructions. Multiple register transfer instructions provide
an efficient way of moving the contents of several registers to and from memory.
These instructions take one cycle to issue but then use multiple memory cycles
to load/store all the registers. We consider the pipeline of the figure 2. The load
multiple instruction is given in lines 27-30 of listing 1.1. The list of registers to
load is given by the operand rl coded on 16 bits. Every bit refers to a register
and is set to one if the register is to load. So, if the register is loaded, then we
have a clause in which the M EM unit, the memory and the register with the
appropriate access mode are required. Otherwise, we have an empty clause. In
order to have a wellformed final clause, with a valid pipeline path, we defined a
semantic rule that states that: in a clause sequence, if a clause is empty, then it
is removed from the sequence: cl , () , cl’ = ¢l , cl’. For example, we have the
following instantiated clause for the instruction ldmia r13, {, r11, r13, r15}:

FE & PC.read&FBuf, DE , MEM&M.read&R[13].read&R[11].write&RoB , MEM&M.read&
R[13].read&R[13].write&RoB ,MEM&M.read&R[13].read&PC.write&RoB , CM.

Branch Instruction. Some processors resolve branch target at the decode
stage. The branch instruction is no longer used on next stages. So a branch
instruction is dropped after the decode stage (lines 33-35 of listing 1.1). This
is useful in out-of-order pipelines, since it reduces the structural hazards on
functional units.

4 Formal Architecture Description

We formalize an architecture description through the architecture denoted by A
and the instruction clauses of the basic block BB. We generate an equation sys-
tem Eq(BB, A) representing the analyzed BB, with respect to A. In Eq(BB, A),
the execution times are not computed. In order to do that, we formulate a set
of structural and temporal high-level constraints Constraints_A. The resolu-
tion of £q(BB,.A) and Constraints_A provides an equation system where the
instructions execution times have been computed (figure 4).

Eq(BB,A)

(Constraints A]/

Fig. 4. Formal approach for time analysis

Solver —» ResEq (BB, A)

4.1 A Light DSL for Architecture Constraints

We introduce a light DSL (Domain Specific Language) for expressing the archi-
tecture and basic block properties. We derive from every instruction of the basic
block a set of tasks that are divided into levels:

— ISA level. The task represents the lifetime of the instruction on the pipeline.
It starts when the instruction enters the pipeline and finishes when it leaves.
The task is given by the instruction index in the basic block.

— Step level. The task models the execution of an instruction on a stage or a
functional unit, what we call a step. Hereinafter, we use processing units to
refer to stages or functional units.

— Resource level. Basic tasks or leaves represent the resource allocation within
an instruction step. This includes stages, functional units, buffers, registers
and memory allocation.

The lifetime of every task is modeled using an interval. Table 1 summarizes
the architecture DSL. We also consider the predefined functions scal(st) and
nb(r) returning respectively a stage scalarity and a resource occurrences number.
We consider the instruction sequence of figure 5 executed on the processor of
figure 2 as a use case. From the Sim-nML description, the non terminal (Stage),
(Register) and (Memory) are instantiated as in (1).

Table 1. Architecture DSL

Architecture domain

(Stage) , (Register)y , (Memory) , (Buffer) , (Resource) ::= (Register | Buf fer | Memory)

Basic block domain (of length n)

(instruction) :=nat , (step) i=mnat , (interval) ::= string

ISA level tasks: Step level tasks:
(intervaly (intervaly

(ISA) (instruction) (Step) (instruction),(step)

Resource level tasks (leaves):

(intervaly | [r|w]

St (intervaly
(occurrence|?) (Stage) (instructiony, (step) (occurrence|?)

(Resource) (instruction),(step)

(Stage) :={FE,DE,ALU MEM,CM} , (Register) ::= {R, PC}, (1)
(Memory) == {M}, (Buf fer) := {FBuf, RoB}
We assume the following semantic sets that we automatically generate from the
architecture and the basic block:

— 7 denotes the set of tasks of the ISA level.

— & denotes the set of steps of all the instructions in the basic block,

— L denotes the set of synthesized leaves,

— U denotes the subset of leaves concerning stages or functional units,

— B,R and M denote respectively the subset of leaves concerning buffers,
registers and memories.

We consider the following dedicated quantifiers where Vz,Vs, V., Vi, V5 quan-
tifies respectively over the basic block instructions, the steps, the leaves, the
processing units and the buffers. We also use the predefined functions Lasts(7),
Buf fer(i,s) and Unit(i, s) that return respectively the last step task of i, the
set of buffers and processing units of ¢ at the step s.

I:{O(t—)'o, 03‘1, 05‘2} N S:S()U81U82 y /:, == £0U£1U£2

In the following, we detail the sets So, Us,Ro,B2 and Mo which are respectively
the set of steps, stages, registers, buffers and memories of 0. The instruction o
is a load multiple and loads 3 registers from memory. So, we can observe that,
based on the execution model in listing 1.1, 6 steps are generated, including 3
relative to the execution on the M EM unit. The instruction decomposition is
illustrated in figure 6.

So={s35", S5, suaT s shaT, sEET, shET)

Lo=Ujo U Rz U Bz UM;o

Uy ={,FE}s*° , (DEJ*' | (MEM3'%?? | (MEM}'?% OMEM;;;?-‘* , 0CME%E>P
Ro={pPC35*" , 13RY5?, MIRY* 2, 1Ry, BRY , 3Ry, “PCY**)
By={,FBuf}’%*° , ;RoBi’** , ;RoBY’*® , ,RoBL"**}

_yr tm-2_2 r tm-2_3 r tm-_2_4
M2—{0M2,2 ’ 0M2,3) 0M2,4

ISA level : 7 @
Step level : Sy @
/ /
Eeseatly
00 level :Lg (FBuf, 20
o1 sub sp, fp, #12 ;
02 ldmia sp, {, fp, sp, pc}
Fig. 5. Basic block Fig. 6. Decomposition of instruction o9

4.2 Architecture Properties

In this section we give a set of structural and dynamic properties that describes
the architecture and instruction behavior. We use Allen intervals to express
temporal relations between intervals. The properties are parametrized by the
architecture and the basic block equations presented in the previous section.

Instruction Continuity. An instruction starts when its first step (s = 0)
starts and terminates when its last step terminates. Considering two successive
steps of an instruction, a current step finishes when the next step starts (2).

/7

Vz ol Vs Sﬁ’o. Starts t’
Vs 5?,5. Vs s §:8+1. t Meets t/ (2)
V1 0f. Vs 5§/Last5(z‘)' t Finishes t/

Instruction Support. We assume that, within a step, an instruction re-
quires one and only one stage and at the most one buffer resource (3a). This is a
structural property used for architecture correctness validation. Two cases arise.
First, if a buffer is required within a step, then this buffer is unique and is the

support of the instruction during that step. Indeed, the instruction is contained
in the buffer slot throughout the step. The buffer is allocated since the instruc-
tion starts execution within the step, and remains so until the resources on the
next step become available. The buffer is released when the instruction starts
the next step (3b). Second, if no buffer is used, thus, the stage is the instruction
support. It is blocked until the instruction starts the next step, i.e. next step
resources are available (3c).

Vi. Vs. card (Buf fer(i,s)) < 1Acard (Unit(i,s)) = 1 (3a)
Vs s ,. card (Buf fer(i,s)) = 1 = EI!?bf:S € Buffer(i,s). t =t (3b)
Vs si .. card (Buffer(i,s)) = 0 = EI!Ost§:S € Unit(i,s). t =t/ (3¢)

Resources Allocation Policy. An instruction executes on a given stage,
once it gets all its required resources, including the stage. Thus, all required
resources are allocated at the beginning of the step (4a). After the execution
latency elapses, all or some of the owned resources are released. Actually, we
assume that an instruction keeps the resources that are going to be asked on
further steps. This allocation policy is defined to avoid deadlocks. Such a situ-
ation occurs when a micro-coded instruction, as the multiple load presented in
section 3, uses the same register on several successive steps. Such instruction
must not be preempted during its execution on the processing unit. When an
instruction uses a resource through two successive steps, we force the temporal
continuity on the allocation intervals, as presented in the constraint (4b). Some
resources, like stages and buffers, can be required in non-deterministic way: the
instruction requests for any of the available occurrences, or in a deterministic
way: the instruction requests for a specific occurrence. For a resource r, we have
to insure that no more then nb(r) occurrences are allocated at the same time.
This contention problem occurs in case of non-deterministic resources with dy-
namic scheduling. Currently, the property (4c) concerns stages and buffers.

Ve aresﬁjs. t Starts t' A ¢’ During t (4a)
Ve 9t LV, grf:sﬂ. t Meets t' (4b)

78.

Yuus o2} - card ({Oa:f:ﬁ, ceUUB|tOverlaps t'}) < nb(x) (4c)

Stage Specific Constraints. These constraints depend on the stages ex-
ecution features. For a simple-scalar stage with in-order execution, only one
instruction is issued to the stage per cycle and is issued before its successor in
the program (5a).

Yu o5th - Yu Ostﬁf,s,. i < i =t Before t’ (ba)
Vi osth,. card ({,sth, , €U |t Overlaps t'}) < scal(st) (5b)
Y o5t o Yu Ostfj,s,. i’ <1+ scal(st) = t StartsBeforeBegin ' (5¢)
Y o5t o Yu Ostf;scal(st%s,. t Before t/ (5d)

In case we have a super-scalar stage st, at most scal(st) successive instruc-
tions can be issued in parallel (5b). However the overall program order must
be maintained. Thus, an instruction of index ¢ can be executed in parallel with
an instruction of index j such that j < ¢ 4+ scalst. We introduce a new time
relation StartsBeforeBegin that define a priority relation between two inter-
vals (5c). The scalarity limit of the stage is expressed by a forced precedence
between instruction ¢ and instruction ¢ 4 scal(st) (5d). For out-of-order stages,
no precedence is defined except those implied by the data dependencies.

Data Dependencies. Memories and registers can be owned in a read or
a write mode. For example, when a register is accessed by two successive in-
structions such that the first request is a read access and the second is a write
access, then, the read access must occur before the write access. Read After Write
(RAW) hazards are explicited when instructions access registers and memories.
Write After Write (WAW) hazards must be explicited for memory accesses.

Vr Iregfh. Vr Yregd .. i < i’ = el Before el’
) /) (6)
Vr emi. Ve ¥m¢ . i <i' = el Before el’
To elaborate the constraints Constraints_A, we instantiate all (or some of) the
constraints presented in equations from 2 to 6, with respect to the architecture
A and the basic block sets. We detail here the constraints of the instruction og
which is a branch (the corresponding execution model is in listing 1.1):

t_2 Starts t 2.0 ANt.2.0 Meets t 2.1 A ... t_.2_1 Finishes t_2
th20=1t20 AN tu2.1=t21 N th22=1t22 AN th23=1t23 N ...
tu_2_2 Meets tu2_3 Ntu_2_.3 Meets tu_2_4 A tb2.2 Meets tb. 2.3 A ...
t_.0_1 Before t 2.0 Nt_1.2 Before t 2.2 N ...

Ll

These high-level constraints are used to generate a constraint description to be
processed by a given solver. In [11], we show how to solve these constraints with
the CSP/CHOCO [1]. The resolution of the constraints for the basic block of the
figure 5 executed on the processor of figure 2 gives the following values, among
others 1.0 = [0,2] ; -1 = [2,6] and t-2 = [2,9]. In [12], we also show how to
animate such properties through the timed automata provided by the UPPAAL
tool [7].

5 Related Work

There have been a lot of research efforts in architecture description languages
that aim to formalize the processor specification provided in user manuals. Most
of these efforts was based on ADLs like ArchC [15], LISA [13], HARMLESS [5]
and Sim-nML [11], that was used to generate retargetable tools. Since these
ADLs are actually mature regarding the ISA level description, modern ISAs
are currently supported and accurate simulators can be generated. Nevertheless,
these approaches assume simple pipelines like DLX, since the micro-architecture

is not handled or limited to its structure. Our general approach based on Sim-
nML supports the retargetable tool generation, in addition to complex instruc-
tion execution models. Retargetable WCET analysis tools based on processor
description are presented, among others, in [14] [19] [6] [9]. Timed automata was
observed in [6] [9] as a formal processor description. This model is difficult to
elaborate and is hand-made, which limits experimentations to simple five stage
pipelines with in-order execution. Our approach offers a high-level processor de-
scription that can be used to generate timed automata. The work of [19] is close
to ours. The authors use the EXPRESSION language to describe the ISA and
the micro-architecture and generates execution graphs for the analysis. However,
the ADL description only includes the pipeline structure. The hardware compo-
nents behavior, such as out-of-order execution and superscalarity, are specified
in C++ external libraries. The use of many formalisms to processor description
makes it not suitable for validation. Other methods verify program behavior and
the memory design [3] on PowerPC and ARM architecture using a formaliza-
tion. This approach uses the L3 language [2] for the ISA description and the
generation of a HOL specification used for verification. The formal description
is limited to the ISA level and cannot be used for time analysis. The table 2
summarizes the architecture languages capabilities.

Table 2. Architecture languages summary table

ArchC|Chronos|LISA |Harmless|Expression |L3|Otawa

Code optimization

Simulation ° ° °
Retargetable tool generation °
Design space exploration °

Time analysis ° ° °
Formalization ° ° ° ° °
Verification/Validation . o| o
Out-of-order pipeline ° °
Superscalar pipeline ° °
Complex instruction set ° °

6 Conclusion

In this paper, we have showed how advanced architecture features can be de-
scribed through an extension of the Sim-nML architecture description language.
We have presented the syntax for describing advanced pipelines structure and in-
structions with complex execution models. We have also presented a specification
language that aims to formalize the architecture features. We have elaborated
a set of generic properties that can be used for the generation of architecture
constraints for time analysis and the validation. This formalization can be a
basis for formal verification, required to obtain certified WCET computation
methods. The proposed approach for time analysis is modular since it is based

on the hardware description and the basic block, each one independent from the
other. Modularity also comes from the fact that the Sim-nML description of the
ISA and the micro-architecture are separated in implementation terms, so that
the same ISA description can be reused for different pipelines. High-level con-
straint description present a significant advantage since the user is free to choose
the resolution method for WCET computation. We have drawn a comparison
between currently used description languages and formalism. In this paper we
have used a processor model that possess real word processor features to test our
approach. We are currently validating our formalization on real-life processors
that are rolling out on the market, among which the Cortex-AS.

References

1. CHOCO: An Open Source Java Constraint Programming Library,
http://choco.mines-nantes.fr

2. L3: An ISA Specification Languag, http://www.cl.cam.ac.uk/~acj£3/13/

3. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The semantics of power and arm multiprocessor machine code. In: Workshop on
Declarative Aspects of Multicore Programming (DAMP), pp. 13-24 (2008)

4. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.. OTAWA: An Open Toolbox
for Adaptive WCET Analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T.
(eds.) SEUS 2010. LNCS, vol. 6399, pp. 35-46. Springer, Heidelberg (2010)

5. Béchennec, J.L., Briday, M., Alibert, V.: Extending harmless architecture descrip-
tion language for embedded real-time systems validation. In: International Sym-
posium on Industrial Embedded Systems, pp. 223-231 (2011)

6. Béchennec, J.L., Cassez, F.: Computation of wcet using program slicing and real-
time model-checking. CoRR (2011)

7. Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0. In: QEST, pp. 125-126 (2006)

8. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present and future. Constraints 12, 21-62 (2007)

9. Dalsgaard, A., Olesen, M., Toft, M., Hansen, R., Larsen, K.: METAMOC: Mod-
ular execution time analysis using model checking. In: Workshop on Worst-Case
Execution Time Analysis (WCET), vol. 15, pp. 113-123 (2010)

10. Fauth, A., Van Praet, J., Freericks, M.: Describing instruction set processors using
nML. In: European Design and Test Conference (EDTC), pp. 503-507 (1995)

11. Herbegue, H., Cassé, H., Filali, M., Rochange, C.: Hardware architecture speci-
fication and constraint based wcet computation. In: International Symposium on
Industrial Embedded Systems (SIES), pp. 259-268 (2013)

12. Herbegue, H., Filali, M., Cassé, H.: A constraint-based wcet computation frame-
work. In: Junior Researcher Workshop on Real-Time Computing (JRWRTC), pp.
33-36 (2013)

13. Hohenauer, M., Scharwaechter, H., Karuri, K., Wahlen, O., Kogel, T., Leupers, R.,
Ascheid, G., Meyr, H., Braun, G., Someren, H.V.: A methodology and tool suite
for ¢ compiler generation from adl processor models. In: Design, Automation and
Test in Europe Conference and Exhibition, vol. 2, pp. 276-1281 (2004)

14. Li, X., Roychoudhury, A., Mitra, T.: Modeling out-of-order processors for WCET
analysis. Real-Time Systems 34, 195-227 (2006)

15.

16.

17.

18.

19.

Miele, A., Pilato, C., Sciuto, D.: An automated framework for the simulation of
mapping solutions on heterogeneous mpsocs. In: International Symposium on Sys-
tem on Chip (SoC), pp. 1-6 (2012)

Mishra, P., Dutt, N.: Modeling and validation of pipeline specifications. ACM
Trans. Embed. Comput. Syst., 114-139 (2004)

Rochange, C., Sainrat, P.: A context-parameterized model for static analysis of ex-
ecution times. High-Performance Embedded Architectures and Compilers 1T (2009)
Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenstrom, P.: The Worst-Case Execution-Time
problem—overview of methods and survey of tools. ACM Transactions on Embed-
ded Computing Systems (TECS), 36:1-36:53 (2008)

Xianfeng, L., Abhik, R., Tulika, M., Prabhat, M., Xu, C.: A retargetable software
timing analyzer using architecture description language (2007)

