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Abstract. In this paper, a new Monte Carlo algorithm to improve pre-
cision of information retrieval by using past search results is presented.
Experiments were carried out to compare the proposed algorithm with
traditional retrieval on a simulated dataset. In this dataset, documents,
queries, and judgments of users were simulated. Exponential and Zipf
distributions were used to build document collections. Uniform distribu-
tion was applied to build the queries. Zeta distribution was utilized to
simulate the Bradford’s law representing the judgments of users. Empir-
ical results show a better performance of our algorithm compared with
traditional retrieval.

1 Introduction

A wide range of approximations in information retrieval (IR) are devoted to im-
proving the list of documents retrieved to answer particular queries. Among these
approaches, we can find solutions that involve efficient assignments of systems
to respond to certain types of queries, by applying data mining techniques [1].
Nonetheless, some tasks of data mining can imply not only long periods of time,
but also a high cost in money [2]. In addition, solutions that involve an exhaustive
analysis of all possible alternatives to find the best answer to a query (i.e., the
best precision for each type of query) can be found in IR context. Prior solutions
correspond to approaches based on learning techniques (e.g., neural networks,
genetic algorithms, and machines support vectors). However, these approaches
should imply a high cost in learning time as well as diverse convergence times
when the datasets used are heterogeneous [3]. Additionally, characteristics, such
as the scopes where these types of algorithms are applied and the performance
achieved in different environments, are complex to address [4].

In the IR literature, two types of approaches used in the context of past queries
are easily identifiable. The first approaches are based on TREC collections. Most
of these approaches use simulation to build similar queries with the aim to
provide a suitable framework of evaluation. The second type of approaches rooted
in the use of historical queries on the Web, most of which are supported on
repetitive queries. As a result, having ad-hoc collections which allow to evaluate
the use of past queries in an appropriate way, is a hard task. Therefore, one way
to provide an ad-hoc environment for approximations based on past queries is
simulation.



Our main contribution is a Monte Carlo algorithm, which uses relevant doc-
uments from the most similar past query to answer a new query. The algorithm
splits the list of retrieved documents from the most similar past query in subsets
of documents. Our algorithm is simple to implement and effective. Moreover,
it does not require learning time. Documents, query collections, and relevance
judgments of users were simulated to built a dataset for evaluating the perfor-
mance of our algorithm. A wide range of experiments have been carried out.
We have applied the Student’s paired t-test to support the experimental results.
Empirical results show better results of our algorithm (in particular the precision
P@10) than traditional retrieval.

The paper is organized as follows. In section 2, related works on past searches,
randomized algorithms, and simulation in IR context are presented. In section 3,
we present our approach to simulate an IR collection, in the context of past
search results. Section 4 details our approach using past search results, with
mathematical definitions. In section 5, empirical results are described. Finally,
conclusions are presented in section 6.

2 Related Work

Two categories of approaches employed in the context of past queries are eas-
ily identifiable. The first category is based on TREC collections. In a recent
work [5], a distributed approach is presented in the context of past queries.
Similar queries are simulated from a traditional set of queries. Moreover, the
judgments of users are omitted. In [6], two strategies aiming at improving pre-
cision were implemented. The first strategy corresponds to the combination of
results from previous queries, meanwhile the second implies the combination of
query models. An extended work is exposed in [7]. The authors address models
based on implicit feedback information to increase precision. Implicit feedback
information is given by queries and clickthrough history in an active session. It
is important to emphasize that TREC collections used here have been modified
to evaluate approximations based on past queries.

The second category of approaches focuses on log files in the context of the
Web. In [8], an automatic method to produce suggestions based on previously
submitted queries is presented. To achieve this goal, an algorithm of association
rules was applied on log files. The 95 most popular queries were considered.
Nonetheless, the percentage of these 95 queries over 2.3 millions of records is
unknown. Hence, it is infeasible to estimate the impact of this approximation.
Moreover, [9] claims that there is no easy way to calculate the real effect of
approximations founded on association rules. It is mainly due to the complexity
to determine the successive queries that belong to the same session (i.e., for the
same user). In [10], an approximation based on repeated queries is exposed. The
aim is the identification of identical queries executed in the same trace. In [11],
two contributions, which take advantages from repeated queries, are presented.
The first contribution is aligned on efficiency in execution time and the second
is focused on repetitive document access by the search engines.



Simulation to evaluate information retrieval systems (IRSs) is presented as a
novel branch of research [12]. Simulation in IR is an automatic method, where
documents, query collections, and judgments of users can be built without user
intervention [13].

In addition, the IR literature is crammed with contributions based on prob-
abilistic algorithms. The major part of probabilistic algorithms in IR can be
categorized in two classes, learning techniques and optimization. Typically, ap-
proximations rooted in learning techniques involve the use of Bayesian Networks
and their variants. The PrTFIDF algorithm, which is a probabilistic version of
TFIDF algorithm is presented in [14]. Pr'TFIDF provides a new vision of vector
space model, where the theorem of total probability, the Bayes’ theorem, and a
descriptor for every document are used. Final results show a better performance
than TFIDF. In [15], the classification of documents in an unsupervised manner
is carried out. It uses Poisson distribution according to the query or topic.

Several optimization techniques involve the use of Genetic Algorithms (GA).
Inspired by the formula proposed by Salton [16] (where the term weights for
documents and queries are the product between the term frequency multiplied
by an inverse collection frequency factor), a new fitness function is presented
in [17]. Both, vectors of documents and queries are normalized by using the
formula. Experimental results show better effectiveness when using this approach
than traditional retrieval (i.e., using cosine distance). Eventually, the Probfuse
algorithm proposed in [18], whose aim is to combine results from several IR
algorithms, outperforms the widely used CombMNZ algorithm.

Different to Bayesian Networks and GA, Monte Carlo and Las Vegas algo-
rithms are used usually when the problem is hard to solve like NP problems
or when algorithm input is non-deterministic. Las Vegas algorithms provide an
answer, which is always correct and where in the worst case the execution time
is the same as the deterministic version. In contrast to Las Vegas algorithms,
Monte Carlo algorithms give an answer, which can be incorrect (i.e., the algo-
rithm returns ¢rue, when the answer should be false, or vice-versa). When one
of these answers is correct, it is called true-biased (the correct answer is true) or
false-biased (the correct answer is false). When both answers can be incorrect,
it is called two-sided errors.

Our Monte Carlo algorithm corresponds to the type two-sided errors. This
is due to the fact that we are not sure about judgments of users with respect
to whether a document is either relevant or not relevant regarding the query.
Nonetheless, we assume that documents that appear at the top of the result list
have more probability to be relevant than documents that appear at the bottom
of the list.

3 Simulating IR Collections

Our method consists of two steps, based on prior work [19]. The first step aims at
creating terms, documents, and queries. Both Heaps’ and Zipf’s laws are consid-
ered to build document collections. We assume that both processes, elimination



of stop words, and stemming were carried out. Due to terms which compose a
document can belong to several subjects, Zipf’s law is applied to select terms
from topics [20]. Exponential distribution can be applied as an alternative to
Zipf’s law. Then, past queries are created from documents and new queries are
built from past queries. In the final step, to simulate judgments provided by users
about relevance of documents for a specific query, Bradford’s law is applied [21].

The most basic element that composes a document is a term. A term is
composed of letters from the English alphabet. Both documents and queries
are composed of terms. Each document is unique. Past queries are built from
documents and their intersections are empty. A topic (i.e., subject of docu-
ments) is defined by terms. Several topics are used to built a document. The
intersection among topics is empty. Aiming to build documents, Zipf and Ex-
ponential distributions are used to select terms from different topics. Uniform
distribution is used to select documents, where terms are selected to built the
past queries. Then, past queries are built from the documents. New queries
are made up from past queries by either adding a new term or deleting a
term. Bradford’s law has been applied through Zeta distribution. In order to
explain the mechanism to obtain the precision, we can assume two lists of doc-
uments. The first list of documents (for the query 1) is composed of the docu-
ments dy(1),ds(1),ds(1),ds(0),ds(0),dg(0) where d;(1) is a relevant document,
meanwhile d;(0) is irrelevant. In the same way, the second list of documents is
composed by the documents ds(0), ds(1),ds(1), ds(0),d7(1), d10(0). Thus, first, a
subset of common documents is found (ds, ds and dg). Second, from the common
subset, relevant documents are determined for both queries by using Bradford’s
law (ds and d5). Third, Bradford’s law is applied for each list by conserving the
relevant documents that belong to the common subset (for the first list dy, ds

and ds are relevant documents). As a consequence, the precision (in our case
P@10) is different for both queries.

4 Retrieval Using Past Queries

At the beginning, each submitted query is saved with its documents. After-
wards, each new query is compared with the past queries stored in the sys-
tem. If there is a past query quite similar, then the relevant documents are
retrieved from the most similar past query using our algorithm. Broadly speak-
ing, our algorithm divides the list of documents retrieved from the past query,
in groups of power two. For example, if the list of documents comprises 30 doc-
uments, the number of documents will be rounded up to the next number in
power two, i.e., n = 32. Later on, groups of documents are defined as follows.
The first group comprises 2° documents. The second group involves 2! docu-
ments, the third group is composed of 22 documents, and so on, in such a way
that the sum of the documents does not outperform n = 32. Thus, the num-
ber of groups is 5. The biggest group is composed of documents that appear
in the first positions (between the position 1 and 16). The next biggest group



comprises documents that appear from the position 17 to 24, and so on. The
likelihood of a document to be relevant is determined by two factors: the group
it belongs to and its position in the group. The algorithm and a more detailed
example are displayed in the next sections.

4.1 Definitions and Notations

Let DB be an IR dataset, composed of a set of documents D, and a set of past
queries (). Besides, let Q' be the set of new queries. Viy(q) is a set of N retrieved
documents given ¢, and sim(q, d;) is the cosine distance between query ¢ and the
document d;. Besides, Vy(q) = A(q) U A’(q), where A(q) corresponds to the set
of all relevant documents for the query q. A’(q) is the set all irrelevant documents
for the query q. C = Jc(q, Va(q)) is the set of all retrieved documents with their
respective queries.

Definition 1. 0: R.(¢') = A(q’) is a function, which assigns the most relevant
documents to the new query q', such as ¢ € Q' and R.(q") corresponds to a set

of retrieved documents, from the most similar past query. (see Definition 2 and
Definition 4).

In addition, let ||z|| be the integer part of a real number x, [x] corresponds
to the upper integer of x and |z]| corresponds to the lower integer of x. B[] is
a binary array such as B has N elements, and ¢ is the proportion of values in B
(see Algorithms 1, lines from 9 to 12), which have the value 1 (true). This array is
the base to provide a level of general probability for all documents. Nevertheless,
the probability of each document according to the position in Vy(q), is computed
by the Algorithm 1.

Definition 2. M(N) =min{m | m € NAY " 28 > NAN < 2™ %1} be the up-
per bound set, which involves documents of Vi (q) (in power two) (see Algorithm
1, lines from 2 to 4).

Definition 3. Let i be the position of a document in Vy(q), such as the first
element (i = 1) represents the most similar document, then f.(i, N) = min{z |
reNAL<>T #}, corresponds to the number of set assigned for the

document i (see Algorithm 1, line 5).

Definition 4. Let '
v(i, N) = @MM=0N) — 1) — [((TF M aMNI=ky — jymod(2M (N)=£(.N)))
be the value assigned to i, from 0 to 2MN)=f=(uN)(see Algorithm 1, line 15).

Definition 5. &(i, N) = logo(2MWN)=f=(6N) (4, N)) — ||logo(2M V)= f=(5.N) _
v(i,N))|| a decimal number, which is [0,1] (see Algorithm 1, lines from
16 to 19).



Definition 6. Let

’ 00, N)| + [M(N) — £, N)| = if (i, N) <05
ber of iterations to look for a hit in the array B (see Algorithm 1, lines from 20
to 25).

be the num-

Thus, 5 : F(i) — {0,1}, is the hit and miss function.
_ K (i,N) 2l M(N) = fa (.Ml
F(Z) _ L Pri(l) — Zul=1 : (M) )

o i Pri0)=1-Pri1)

where Pr;(1) is the probability of a hit (1), and Pr;(0) corresponds to the
probability of a miss (0) for the element 1.

Our algorithm works as follows. The list of retrieved documents is split in subsets
of elements in power two. In our case, Vy(¢q) has 30 documents, however it can be
approximated to 32 documents. Thus, if we apply Definition 2, then M(N) = 5.
Therefore, Vi (g) is split in 5 subsets. In general terms, Pr;(1) for every subset is
different. Specifically on 2llM ((Z;’])\;(J;V?)(;’N)H . Thus, the space of possible candidates

for the first subset is %:%, for the second subset is %:%

To show how the probability decreases according to the subsets, two examples
are provided, for the first subset and the third subset. The second element of
the first subset is i = 2, thus applying the Definition 3, f.(2,30) = 1, therefore,
v(2,30) = (2°71 - 1) — [<(le<;:1 2°=1) — 2)) mod 2°71] = 1 (see Definition 4).
Applying Definition 5.

(2,30) = log2(2°71 — 1) — |llog2(2°~! — 1)|| = 3.906 — 3 = 0.906. Applying
Definition 11, K(2, 30) [@(2,30)] % [|[b—1|| =1x4 = 4.

and so on.

Thus, Pry(1) = Y, Qy;)l = 0.757. In the same way, v(26,30) = (2573 —
1) — [((16 +8 +4) — 26)) mod 25~3] = 1. Finally, Prog(1) = Yr, 22\; 1 0.128

5 Experiments

5.1 Experimental Environment and Empirical Results

The experimental environment was instantiated as follows. The length of a term
is between 3 and 7. The length was determined using Uniform distribution. The
total number of terms used in each experiment corresponds to 800. A document
can contain between 15 and 30 terms. The number of topics used in each ex-
periment is 8. Each topic is defined by 100 terms. Each experiment used 800,
1600, 2400, 3200, and 4000 documents. Terms for a query were between 3 and
8. We built 15 past queries from documents. From the set of past queries, 15
new queries were built. Thereby, we used 30 distinct queries. Simulations were
implemented on C language and run on Linux Ubuntu 3.2.9, with Centrino 1350,
1.8 Ghz Intel processor, 1GB RAM, and gcc 4.6.3 compiler.

Three experimental scenarios were defined. For the first and second experi-
ments, Exponential distributions (with parameters # = 1.0 and § = 1.5 ) were



Algorithm 1. B[N, Apasi(q), VN (q),q

Require: B[N] is a boolean array, Apast(q) is a set of relevant documents for the
query q, Vn(q) is the set of retrieved documents for the query ¢, ¢’ is the most
similar query for ¢

Ensure: Ancw(q') is a set of relevant documents for the query ¢’

1: Anew(q) < 0
2: for i < 0,sum < 0,sum < N +1 do
3: sum < sum + 2°
4: end for
5: k<« i1—1
6: for i <+ 1, N do
T Bli] + false
8: end for
9: fori<—1,% do
10: j < random(1,...,N)
11: B[j] + true
12: end for
13: [+ 1
14: while dok > 0ANDI < N
15: for i < 0,7 < 2" do
16: I 28—
17: u < loga2(T)
18: U <+ ||ul
19: u+—u—U
20: if u—0,5>0 then
21: K < [log2(I)]
22: else
23: K « |log2(I)]
24: end if
25: for j < 1,7 <kx K do
26: if 2" x2 > N then
27: index = N
28: else
29: index =2 x2 — 1
30: end if
31: if Blindex] = true then
32: if ([idDoc = Position(l of Vn(q))] is in Apast(q)) then
33: ANew(q") ¢ ANew(q") Udiapoc
34: l+1+1
35: end if
36: else
37: l+—1+1
38: end if
39: end for

40: end for

41: k+—k—1

42: end while

43: return(Anew(q’))




applied to build the collection of documents D. In the third experiment, Zipf dis-
tribution (with parameter § = 1.6) was applied to build D. Simulations of user
judgments were carried out under Zeta Distribution. Zeta distribution with pa-
rameters 2, 3, and 4 were applied on the 30 most similar documents with respect
to the queries. Besides, the Student’s Paired t-Test (T'wo Samples test) over each
average P@Q10 (our approach with respect to traditional retrieval) were used to
support the results. Final results are summarized and displayed in Table 1.

Table 1. Results comparing our approach of reusing past queries with cosine distance

Experiment Relevance simulation Percentage of Average
Distribution to build Zeta distribution improved queries improvement
collection D with parameter S (Measure: P@10)
Experiment 1 S =2 83 % +21 Y%**
Exponential distribution S=3 74 % +17 %**
(with parameter 6 = 1.0) S=4 65 % +20 %**
Experiment 2 S=2 7T % +17 %**
Exponential distribution S=3 73 % +18 %**
(with parameter 0 = 1.5) S=4 65 % +16 %**
Experiment 3 S=2 85 % +21 %**
Zipf distribution S=3 84 % +18 %**
(with parameter 6 = 1.6) S=14 7% +23 Jo**

** p-value<0.01 (two sample t-test).

5.2 Discussion

Accepted ranges for Zipf’s law regarding the distribution of word frequencies in
a vocabulary are between 1.4 and 1.8. In our experiments, Zipf distribution was
used with value 1.6 to select terms from topics. It is important to emphasize
that every time the parameter S of Zeta distribution (to apply Bradford’s law)
was incremented, both averages of PQ10, using Past Result (i.e., our approach)
and Cosine (i.e., traditional IR) declined similarly. Additionally, if the number
of queries was increased in the experiments, it should not have different final
results. This is because for every past query it exists just one and unique query for
which the intersection is not empty. Also, the final results show that increasing
the number of documents have no impact on the significance test p-values.

6 Conclusions

In this paper, a new Monte Carlo algorithm for information retrieval using past
queries have been presented. It is easy to implement, does not require time to
learning, and provides acceptable results improving precision (i.e., P@10). Fur-
thermore, this algorithm can be implemented not only inside an information



retrieval system but also as external interface outside search engines. This algo-
rithm relies on reuse of relevant documents retrieved from the most similar past
query. In addition, different evaluation scenarios have been simulated. Simula-
tion provides two advantages. First, it provides an ideal environment to evaluate
our algorithm. Second it makes possible to build not only document and query
collections but also relevance judgments for documents given a query. Empirical
results showed better precision (P@10) of our algorithm compared with tradi-
tional retrieval.
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