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Our aim is to elaborate a multidimensional database reduction process which will specify aggregated schema applicable over a period of time as well as retains useful data for decision support. Firstly, we describe a multidimensional database schema composed of a set of states. Each state is defined as a star schema composed of one fact and its related dimensions. Each reduced state is defined through reduction operators. Secondly, we describe our experiments and discuss their results. Evaluating our solution implies executing different requests in various contexts: unreduced single fact table, unreduced relational star schema, reduced star schema or reduced snowflake schema. We show that queries are more efficiently calculated within a reduced star schema.

Introduction

Nowadays, decision support systems are based on Multidimensional Data Warehouse (MDW). A MDW schema is based on facts (analysis subjects) and dimensions (analysis axis). By definition, in a MDW, data is stored permanently and new data is periodically added. Hence a DW stores a huge volume of data in which the decision maker may well get lost during his analyses. On the other hand, the pertinence of MDW data decreases with age: while detailed information is generally considered important for recent data [START_REF] Skyt | Specification-based data reduction in dimensional data warehouses[END_REF], it may be of lesser interest for older data. As data value decreases with time, we implement selective deletion at low levels of granularity according to the users' needs. This reduction is achieved mainly through progressive data aggregation: older data is synthesized. Our objective is to provide a multidimensional analysis environment adapted to decision makers' needs, allowing them to remove the temporal granularity levels which are of little use for analysis.

This paper is composed of the following sections: Section 2 describes a state of the art of data reduction. Section 3 defines our model of multidimensional data based on reductions. Section 4 provides an evaluation of our solution in various implementation environments.

Related Work

Reducing data allows us both to decrease the quantity of irrelevant data in decision making and to increase future analysis quality [START_REF] Udo | Hybrid Data Reduction Technique for Classification of Transaction Data[END_REF]. In the context of decision support, data reduction is a technique originally used in the field of data mining [START_REF] Okun | Unsupervised data reduction[END_REF], [START_REF] Udo | Hybrid Data Reduction Technique for Classification of Transaction Data[END_REF].

In the DW context, [START_REF] Garcia-Molina | Expiring data in a warehouse[END_REF] were the first to propose solutions for data deletion. More precisely, they study data expiration in materialized views so that they are not affected and can be maintained after updates.

In the multidimensional area, [START_REF] Skyt | Specification-based data reduction in dimensional data warehouses[END_REF] presents a technique for progressive data aggregation of a fact. This study intends to specify data aggregation criteria of a fact due to higher levels of dimensions. The authors also propose techniques to query reduced multidimensional objects. As mentioned in [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF], this work is highly theoretical but it fails to provide us a concrete example of implementation strategy. In [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF], a gradual data aggregation solution based on conception, implementation and evaluation is proposed. This solution is based on a table containing different temporal granularities: second, minute, hour, month and year.

This previous work only focuses on the fact table. [START_REF] Iftikhar | Using a Time Granularity Table for Gradual Granular Data Aggregation[END_REF] and [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF] use a temporal table for gradual data reduction. Our goal is more ambitious as it aims to study data reduction of the complete multidimensional schema. This reduction depends only on the users' needs. We intend to provide a coherent analysis environment and thus facilitate the decision maker's task by limiting the analysis to semantically coherent data.

3

Our Model

Case Study

This case study shows a multidimensional schema progression that fulfills the decision maker's needs. During the last four years, sales analysis is carried out with reference to lowest levels of granularity: product, customer and sale date. In the previous period, from 2010 to 2000, analyses are summarized according to product ranges, dates and customer cities because no analysis referring to customers and product codes is required. Before 2000, only annual sales by product ranges make sense.

The following 3 figures represent the evolution of a conceptual multidimensional schema. Each schema represents a state; it is based on a subject of analysis (fact) related to different dimensions. Each fact is composed of one or more indicators. For example, in Figure 1, the fact named "Sale" is composed of two indicators: Quantity and Amount. A dimension models an analysis axis; it reflects information according to which subjects of analysis are to be dealt with. For example, in figure 1, the "Sales" fact is connected to 3 dimensions: Products, Customers and Time. Dimension attributes (also called parameters or levels) are organized according to one or more hierarchies. Hierarchies represent a particular vision (perspective) of a dimension. Each schema is based on the graphic notation introduced in [START_REF] Golfarelli | Conceptual design of data warehouses from E/R schemes[END_REF]. 

Concepts

A MDW is thus modeled present state of the MDW. over time. Each state consis To define T i , we adopt a linear and discrete time model approaching time in granular way through time observation units [START_REF] Wang | Logical Design for Temporal Databases with Multiple Granularities[END_REF]. A temporal grain is an integer relative to a time unit; we adopt the standard time units manipulated through functions: Year, Quarter, Month, Day... For example, Year (1990) defines the instant "1990" for the year time unit. An instant is a temporal grain. We note T now the current instant which is characterized by its dynamic nature, ie. T now changes constantly depending on the passage of time. A time interval is defined by a couple of instants noted "t start " and "t end ". These instants can be fixed (temporal grains) or dynamic (defined with the instant "T now ").

Definition. A MDW is defi -n S ∈N is the name -E = {E 1 ;… ; E n } i -Map: E → E | M named E
Example. The following figure represents the 3 states of our case study. It illustrates the principle of states derived by the reduction. This MDW is defined as follows: In the same way, the state named E2 stores data related to sales between 2000 and 2010, whereas the state denoted E3 stores data related to sales prior to 2000.

E = {E 1 ; E 2 ; E 3 } with Map = { (E 1 , E 2 ) ; (E 2 , E 3 )
In Figure 4, 1990 is a fixed instant representing the date when the database was created. In this figure, we can also find time-variant intervals (moving over time) defined by the following instants: Year(T now )-14, Year(T now )-4 and Year(T now ). So, next year, Year(T now ) = 2015, Year(T now )-4 = 2011 and Year(T now )-14 = 2001. At each change of year, the states denoted E1, E2 and E3 will be instantly updated.

Definition. A fact, denoted F i , ∀i∈[1.
.n], is defined by (n Fi , M Fi ) where -n Fi ∈N is the fact name; -M Fi = {m 1 ,..., m pi } is a set of measures or indicators.

Definition. A dimension, denoted D i , ∀i∈[1.
.m], is defined by (n Di , A Di , H Di ), where -n Di ∈N is the dimension name; -A Di = { ,..., } is the set of the attributes of the dimension;

-H Di = { ,..., } is a set of hierarchies.
Hierarchies organize the attributes of a dimension, from the finest graduation (root parameter, ID Di ) to the most general graduation (extremity parameter, All Di ). Thus, a hierarchy defines the valid navigation paths on an analysis axis.

Definition. A hierarchy, denoted H j (abusive notation of , ∀i∈[1..m], ∀j∈[1..h i ])
is defined by (n Hj , P Hj , Hj , Weak Hj ), where:

-n Hj ∈N is the hierarchy name; is an application that associates to each parameter a set of dimension attributes, called weak attributes (2 N represents the power set of N).

-P Hj = { ,...,
In the rest of the paper we denote each fact F i that is an abusive notation of . In the same way, D i corresponds to . The H_Ra hierarchy is defined by (n H_Ra , P H_Ra , H_Ra , Weak H_Ra ) where:

Example

-n H_Ra = H_Ra; -P H_Ra = { Range, Sector, ALL PRODUCTS }; -H_Ra = {(Range, Sector); (Sector, ALL PRODUCTS )};

Weak H_Ra = ∅. i D a 1 i i D r a i D H 1 j H p 1 j j H q p j H i D P A \ 2 3.3

Reduction Operators

Deriving the reduced schema denoted E k+1 from a schema denoted E k is performed through the composition of derivation operators. We define the set of these operators as O = {RollUp reduce ; Drop reduce ; Slice reduce } as the minimum core of elementary operators to define the derivation.

-

The RollUp reduce operator provides a new state in which the specified dimension is reduced by removing all the attributes under the parameter that is specified in the operator. If the specified parameter is an extremity parameter like , the dimension is completely removed in the reduced state. -

The Drop reduce operator provides a new state in which the fact is reduced by the deletion of the specified measure. -

The Slice reduce operator provides a reduced state in which the instances of the specified dimension denoted D Slice is reduced. The dimension instances that satisfy the predicate denoted pred slice are kept in the new state. Example. In the previous example, we defined two reduced states. Each of them is defined by a derivation function. The population of the analysis axis was done as follows: (a) the dimension Times contains all dates from 01/01/1990 to 31/12/2013, (b) the two other dimensions contain random data defined by generation of synthetic data. Allocation of random data was made so that father attribute of a hierarchy does not have the same number of sons while respecting the integrity constraints of strict hierarchies (any son attribute of a hierarchy has a single father attribute).

We have defined various versions of non-reduced databases by ranging the tuple numbers of the dimensions Customers and Products from 10 to 40 tuples.

- The second type of MDW corresponds to reduced databases. This type consists of three states according to the case study presented in this article (see Figure 4). We have defined two implementations of reduced databases:

a denormalized implementation (R-OLAP star schema defined in fig. 5 (a)), -a normalized implementation (snowflake schema defined in fig. 5 (b)).

The operations permitting to get the different states of MDB were implemented with the help of triggers in Oracle DBMS. 

Protocol

The experimental assessment compares the execution time and the cardinalities of queries executed in two unreduced R-OLAP implementations with two types of reduced R-OLAP implementations of the same multidimensional database. This experimental assessment takes into account three criteria:

-Database volumetry: As mentioned above, we will apply queries of 4 versions for the different types of databases. -Query types: (a) Queries containing only joins and no selection criteria on nontemporal dimensions (querying all the data of reduced database states), (b) Queries containing conditions restrictions on the data (querying certain data in certain states) -Scope of queries: (a) queries related to one or more dimension tables, (b) queries manipulating 1, 2 or 3 states.

Results and Discussion

Queries without Restriction Predicates on Non-temporal Dimensions

The first experimental assessment compares the theoretical execution time queries (explain plan of the Oracle DBMS) by varying the size of the MDW in accordance with the protocol previously described. We have defined 14 queries manipulating different tables and different states. Each query is implemented in SQL. educed and the table number is limited. In each versi 89.43% for the size 10 X 10 to 90.26% in size 40 X umetry, the execution time gain is significant: about 90% the highest average execution time for unreduced MD l table database 10 x 10) to 55221 (global table database cution time has increased by 1509%. The lowest aver ithin the Reduced Star databases: it ranges from 115.6 by 1388%, lower than 120% compared to the unredu atawarehouse volumetry increases, the more the execut W is important. 

Queries with Restri

This second experimental a in queries on the execution database based on the size ment are defined in the follo ows execution times and cardinalities of results for the f y to our expectations, the gains between unreduced same proportions whether we apply restriction or not. m 77.54% (Q 5 ) to 88.27% (Q 1 ) with an average of 84.61 cope of the restriction predicates (primary key, attrib or not), the standard deviation is not very high (0.1). ution times of Q 7 and Q 8 are similar, we can notice that Q 7 is three times higher than the cardinality of the resul MS must review all the tuples of the tables to get the qu me gain is independent of the cardinality of the result. 

Conclusion

This paper resides within the field of MDW. Our objective is to specify aggregated schema over time in order to retain only the data useful for decision support according to the needs of users. Firstly, we define a conceptual model which allows us to specify MDW schemata composed of a set of states varying over time. Each state consists of a star schema and is defined with a mapping function, itself defined with reduction operators based on an extension of classical OLAP operators adapted to the reduction context. Secondly, we defined experimental assessments. Evaluating our solution consists in executing different queries in various environments: ROLAP schema without reduction, single fact table schema without reduction as well as star and snowflake schemata with reductions. We use multidimensional databases with different sizes; the fact table size ranges from 840,100 to 13,441,600 tuples. Whatever the database volumetry, the execution time gain between unreduced and reduced databases is significant: about 90%. Moreover, the more the datawarehouse volumetry increases, the more the execution time gain is important. These gains remain in the same proportions when we apply restriction predicates or not on the queries. Finally, the execution time gain is independent of the cardinality of the result.

In the future, we intend to extend our conceptual proposal in order to integrate other operators in the definition of the reduction function. We also intend to extend our experiments by combining our own work on reductions with that concerning indexes in a multidimensional context [START_REF] Iftikhar | A rule-based tool for gradual granular data aggregation[END_REF]. At last we wish to apply the principles of reduction to a reel data sample of analytic domain such as banking or insurance etc.
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 13 Fig. 1. Current state of the MDW

  } where -E 1 = (F SALES ;{D PRODUCTS ; D TIMES ; D CUSTOMERS } ; [Year(T now )-4 ; Year(T now )[) ; -E 2 = (F SALES ;{D PRODUCTS ; D TIMES ; D CUSTOMERS } ; [Year(T now )-14 ; Year(T now )-4[) ; -E 3 = (F SALES ; {D PRODUCTS ; D TIMES } ; [Year(1990); Year(T now )-14[).

Fig. 4 .

 4 Fig. 4. Reduction principle of multidimensional schemas

  Output E k+1 = (F k+1 ; D k+1 ; T k+1 ) reduced state such as -F k+1 = F k ; -D k+1 = D k \ { D rollup } ∪ { D new } (*) with D new = = { a x ∈A Drollup | a x = p rollup ∨ ∀H j ∈H Drollup , p rollup Hj a x } -H Dnew = { H x ∈H Drollup | n Hx = n Hj ∧ P Hx = { p y ∈P Hj | p y = p rollup ∨ p rollup Hj p y } ∧ Hx = { (p Hj x1 , p Hj x2 )∈ Hj | p Hj x1 = p rollup ∨ p rollup Hj p Hj x1 } ∧ Weak Hx : = { (p x1 , A Hx x1 )∈Weak Hj | p y ∈P Hj }. Drop reduce (E k ; m drop ; T k+1 ) = E k+1 Inputs E k = (F k ; D k ; T k ) : initial state ; m drop ∈ M k is a measure of F k . Output E k+1 = (F k+1 ; D k+1 ; T k+1 ) reduced state such as -F k+1 = (n Fk , M Fk \ { m drop }) ; -D k+1 = D k . Slice reduce (E k ; D slice ; pred slice ; T k+1 ) = E k+1 Inputs E k = (F k ; D k ; T k ) : initial state ; D slice ∈ D k : dimension dedicated to a reduction; pred slice : selection predicate on a domain denoted dom(D slice ) of D slice . Output E k+1 = (F k+1 ; D k+1 ; T k+1 ) reduced state such as -F k+1 = F k ; -D k+1 = D k with dom(D slice ) = { v i ∈dom(D slice ) | pred slice (v i ) = TRUE }. (*) If A Dnew = { } then D k+1 = D k \ { D rollup }

Fig. 5 .
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 6 Fig. 6. Execution time in 4 versions

  } is a set of attributes called parameters, P Hj ⊆ A Di ;

	-	Hj = {(p Hj	x , p Hj	y ) | p Hj	x ∈ P Hj ∧ p Hj y ∈ P Hj } is an antisymmetric and transi-
		tive binary relation between parameters. Remember that the antisymmetry
		means that (p Hj	k1	Hj p Hj	k2 ) ∧ (p Hj k2	Hj p Hj	k1 )	p Hj	k1 = p Hj k2 while the transi-
		tivity means that (p Hj k1		Hj p Hj	k2 ) ∧ (p Hj	k2	Hj p Hj	k3 ) p Hj	k1	Hj p Hj k3 .
	-Weak Hj : P Hj →				

  . The E 3 state of the previous figure is composed of one fact and two dimensions and it is valid from 1990 to 2000. The fact table named SALES contains the measure Amount. The dimension PRODUCTS contains the hierarchy H_Ra on which the parameters are organized according to their granularity level: from the lowest level Range to the highest level ALL PRODUCTS . The other dimension is named D TIMES , it is graduated by the attributes Year and ALL TIMES on the hierarchy H_Time.

	The abstract representation is as follows:
	E 3 = (F SALES ; { D PRODUCTS ; D TIMES } ; [t 1990 ;t 2000 [) where:
	-F SALES = (SALES; { Amount });
	-D PRODUCTS = (PRODUCTS; {Range, Sector, ALL PRODUCTS }; {H_Ra});
	-D TIMES = (TIMES; { Year, ALL TIMES }; {H_Time}).

Table 1 .

 1 Reduction operators on schemata

	Operators	
	RollUp reduce (E k ; D rollup ; p rollup ; T k+1 ) = E k+1
	Inputs	E k = (F

k ; D k ; T k ) : initial state; D rollup ∈ D k : dimension dedicated to a reduction; p rollup ∈ A Drollup : reduction parameter of the D rollup dimension.

  These functions are defined bellow. The first Map function, composed of two RollUp reduce operators, permits to define the "E2" state. The second Map function, composed of two RollUp reduce operators and one Drop reduce operator, permits to define the "E3" state.

		-RollUp reduce (RollUp reduce (E 1 ;	D PRODUCTS ;	P RANGE ;	[Year(T now )-14 ;
		Year(T now )-4[) ; D CUSTOMERS ; P TOWN ; [Year(T now )-14 ; Year(T now )-4[) = E 2 ;
		-RollUp reduce (RollUp reduce (Drop reduce (E 2 ; Quantity ; [Year(1990) ; Year(T now )-
		14[) ; D CUSTOMERS ; ALL CUSTOMERS ; [Year(1990) ; Year(T now )-14[) ; D TIMES ;
		P YEAR ; [Year(1990) ; Year(T now )-14[) = E 3 .	
	4	Experimental Assessment		
	4.1	Data Collection		

In order to make experimental assessments, we implement two types of R-OLAP databases with the Oracle DBMS and each type has two different implementations. The first type of MDW corresponds to databases without reduction. Its first implementation is called Global Star, consists in an unreduced R-OLAP implementation based on 4 tables (Products, Customers, Times and Sales). The second implementation is called Global Table in which we merge the three analysis axis (dimensions Products, Customers and Times) with the fact table

(Sales)

; consequently this implementation is composed of a single fact table that encompasses all.

  Even though the dimensions Customers, Products and Times are integrated in the fact table of Global Table, the implementation details of MDW Global table are the same as MDW Global Star. The following table describes different values associated to the attributes of dimension containing variable data.

	|Customers| = 10, 20, 30, 40 tuples
	-|Products| = 10, 20, 30, 40 tuples
	-|Times| = 8401 tuples (from 01/01/1990 to 31/12/2013)
	-|Sales| = |Customers| x |Products| x |Times| = 840 100 to 13 441 600 tuples.

Table 2 .

 2 Implementation details of the dimensions in Global Star and Global Table. Departments, 3 Regions, 8 Types 8 Ranges, 5 Sectors, 8 Brands

	|Customers|	Contents of the dimension	Contents of the dimension
	x |Products|	Customers	Products
	10 x 10	2 Towns, 2 Departments , 1 Region, 2 Types 2 Ranges, 2 Sectors, 2 Brands
	20 x 20	4 Towns, 3 Departments, 2 Regions, 4 Types 4 Ranges, 3 Sectors, 4 Brands
	30 x 30	6 Towns, 4 Departments, 2 Regions, 6	6 Ranges, 4 Sectors, 6 Brands
		Types	
	40 x 40	8 Towns, 5	

Table 3 .

 3 Queries without restriction predicates on non-temporal dimensions

	Queries	States	Dimensions
	Q 1 : Amount of sales for the last three years	E 1	1 D: Time
	Q 2 : Amount and quantity of sales in 2008	E 2	1 D: Time
	Q 3 : Amount of annual sales before 2000	E 3	1 D: Time
	Q 4 : Amount of sales by cities from 2010 to 2012	E 1	2 D: Time, Custo-
			mers
	Q 5 :Amount of monthly sales by departments from 2000 to	E 2	2 D: Time, Custo-
	2005		mers
	Q 6 : Amount of annual sales by sector before 2000	E 3	2 D: Time, Products
	Q 7 : Amount of sales by cities, sectors and months in 2012	E 1	3 D: Time, Products,
			Customers
	Q 8 : Amount of annual sales by sectors and departments from	E 2	3 D: Time, Products,
	2000 to 2005		Customers
	Q 9 : Amount of monthly sales since 2000	E 1 ; E 2	1 D: Time
	Q 10 : Amount of annual sales per cities from 2002 to 2012	E 1 ; E 2	2 D: Time, Custo-
			mers
	Q 11 : Amount of sales per year and range from 1990 to 2009 E 2 ; E 3	2 D: Time, Products
	Q 12 : Amount of sales by cities and sectors from 2002 to 2012 E 1 ; E 2	3 D: Time, Products,
			Customers
	Q 13 : Amount of annual sales	E 1 ; E 2 ; E 3 1 D: Time
	Q 14 : Amount of annual sales per ranges	E 1 ; E 2 ; E 3 2 D: Time, Products

Table 4 .

 4 Queries w

	Qu
	Q 1 : Amount of sales of a c
	Q 2 : Amount of sales in a to
	Q 3 : Amount of sales in a de
	Q 4 : Amount of monthly s
	sold in the town X sinc
	Q 5 : Amount of monthly s
	sold in the town X sinc
	Q 6 : Amount of monthly sal
	town X since 2000
	Q 7 : Amount of annual sales
	Q 8 : Amount of annual sale
	range X is three times m
	Q 9 : Amount of annual sales
	The following figure sho
	implementations. Contrary
	reduced DW remain in the
	deed, this gain ranges from
	Moreover, whatever the sc
	containing different values
	In addition, even if execu
	cardinality of the result of Q
	Q8. This is because the DB
	result. So, the execution tim
	(a) Execution t
	Fig. 8. Execution times an

iction Predicates on Non-temporal Dimensions assessment

  aims to analyze the impact of restriction crite n time. This experimental assessment is only done on 40 x 40. The queries of this second experimental asse owing table.

	with restriction predicates on non-temporal dimensions
	ueries	States	Dimensions
	customer X from 2010 to 2012 E 1	1 D: Customers
	own X from 2010 to 2012	E 1	1 D: Customers
	epartment X from 2010 to 2012 E 1	1 D: Customers
	sales of products of a range X	E 1 , E 2	2 D: Products
	ce 2000		Customers
	ales of products of a sector X	E 1 , E 2	2 D: Products
	ce 2000		Customers
	les of products (All) sold in the E 1 , E 2	2 D: Products
			Customers
	s of a range X	E 1 ; E 2 ; E 3 1 D: Products
	es of a range Y (the products of	E 1 ; E 2 ; E 3 1 D: Products
	more than those of range Y)		
	s of a sector X	E 1 ; E 2 ; E 3 1 D: Products