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Abstract: In this note we consider the estimation of the differential en-
tropy of a probability density function. We propose a new adaptive esti-
mator based on a plug-in approach and wavelet methods. We prove that it
attains fast rates of convergence under the mean Lp error, p ≥ 1, for a wide
class of functions. A key result in our development is a new upper bound
for the mean Lp error, p ≥ 1, of a general version of the plug-in estimator.
This upper bound may be of independent interest.
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1. Introduction

The entropy is a measure of uncertainty which plays a fundamental role in in-
formation theory and engineering sciences. In this paper, we focus our attention
on the concept of differential entropy originally introduced by Shannon (1948).
We investigate the estimation of the differential entropy of a probability density
function f : [0, 1]d → [0,∞), d ≥ 1, defined by

H = −
∫
[0,1]d

f(x) log(f(x))dx. (1.1)

The literature on the estimation of H is very extensive, see, e.g., Beirlant et al.
(1997) and the references cited therein. Among the existing estimation methods,
we consider a plug-in integral estimator of the form :

Ĥ = −
∫
Â

f̂(x) log(f̂(x))dx,

where f̂ denotes an estimator for f and Â ⊆
{
x ∈ [0, 1]d; f̂(x) > 0

}
. Such plug-

in integral estimator was introduced by Dmitriev and Tarasenko (1973) with a
kernel density estimator. They showed its strong consistency. Other aspects
of this estimator have been studied by Prakasa Rao (1983), Mokkadem (1989),
Györfi and van der Meulen (1990, 1991) and Mason (2003). Recent developments
can be found in, e.g., Bouzebda and Elhattab (2009, 2010, 2011).

The contributions of this paper are twofold. Firstly, we establish a new
general upper bound for the mean Lp error of Ĥ, i.e., R(Ĥ,H) = E(|Ĥ −
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H|p), expressed in terms of mean integrated L2p error of f̂ , i.e., R∗(f̂ , f) =

E
(∫

[0,1]d
(f̂(x)− f(x))2pdx

)
. The obtained bound illustrates the fact that more

f̂ is efficient under the mean integrated L2p error, more Ĥ is efficient under the
mean Lp error. The advantage of this result is its great flexibility on the model

and the estimation method for f̂ . This result can also be viewed as an exten-
sion of the mean Lp error of Ĥ obtained by Mokkadem (1989) for the standard
density model and kernel method.

Secondly, we introduce a new integral estimator Ĥ based on a multidimen-
sional hard thresholding wavelet estimator for f̂ . Such wavelet estimator f̂ was
introduced by Donoho et al. (1996) and Delyon and Juditsky (1996). It has the
advantages of being adaptive ; its construction does not depend on the smooth-
ness of f , and efficient under the mean integrated Lq error, with q ≥ 1. Applying

our general upper bound, we prove that Ĥ attains fast rates of convergence un-
der mild assumptions on f ; it is supposed that f belongs to a wide function
sets : the Besov balls. Consequences of this results is the convergences Lp and
a.s. of our estimator. To the best of our knowledge, in this statistical context,
Ĥ is the first adaptive estimator for H based on wavelets.

The rest of this paper is organized as follows. In the next section, we present
an upper bound for the mean Lp error of Ĥ. Section 3 is devoted to our wavelet
estimator and its performances in terms of rates of convergence under the mean
Lp error over Besov balls. The proofs are postponed to Section 4.

2. A general upper bound

2.1. Notations and assumptions

We define the Lp([0, 1]d)-spaces with p ≥ 1 by

Lp([0, 1]d) =

{
h : [0, 1]d → R;

∫
[0,1]d

|h(x)|pdx <∞

}
.

We formulate the following boundedness assumptions on f :

(A1) There exists a constant c∗ > 0 such that

inf
x∈[0,1]d

f(x) ≥ c∗.

(A2) There exists a constant C∗ > 0 such that

sup
x∈[0,1]d

f(x) ≤ C∗.

These assumptions are satisfied by a wide family of probability density functions.
They have ever been used in the context of estimating the differential entropy
(see, for instance, (Beirlant et al., 1997, conditions T2 and P2)).
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2.2. Result

In this section, we adopt a general estimation setting : let f̂ : [0, 1]d → R be an
estimator of f constructed from random vectors defined on a probability space
(Ω,A,P). Various estimation methods can be found in, e.g., Tsybakov (2004).
Suppose that (A1) is satisfied. We study the following plug-in integral estimator
for H (1.1) :

Ĥ = −
∫
Â

f̂(x) log(f̂(x))dx, (2.1)

where
Â =

{
x ∈ [0, 1]d; f̂(x) ≥ c∗

2

}
.

Such plug-in integral estimator was introduced by Dmitriev and Tarasenko
(1973) with a kernel density estimator (and a different Â). Related results can
be found in Beirlant et al. (1997) and the references cited therein. In particular,
Mokkadem (1989) has explored the mean Lp error of Ĥ for the standard density

model and a kernel estimator (with a different Â).

Without the specification of the model and for any estimator f̂ for f , Propo-
sition 2.1 establishes a general upper bound for the mean Lp error of Ĥ in terms

of the mean integrated L2p error of f̂ .

Proposition 2.1. Let p ≥ 1. Suppose that (A1) and (A2) are satisfied and

f̂ ∈ L2p([0, 1]d). Let Ĥ be defined by (2.1) and H be defined by (1.1). Then we

have the following upper bound for the mean Lp error of Ĥ :

E(|Ĥ −H|p)

≤ K


√√√√E

(∫
[0,1]d

(f̂(x)− f(x))2pdx

)
+ E

(∫
[0,1]d

(f̂(x)− f(x))2pdx

) ,

where

K = 2p−1 max

((
3C∗
c∗

+

(
2C∗
c∗

+ 1

)
max(| log(c∗)|, | log(C∗)|)

)p
,

(
3

c∗

)p)
.

Proposition 2.1 illustrates the intuitive idea that more f̂ is efficient in terms
of mean integrated L2p error, more Ĥ is efficient in terms of mean Lp error. The
obtained bound has the advantage of enjoying a great flexibility on the model
and the choice of f̂ .

In order to highlight this flexibility, one can consider the standard density
model : f is the common probability density function of n iid [0, 1]d-valued
random vectors, d ≥ 1, X1, . . . ,Xn, or with no iid assumption, or f can be a
probability density function emerging from a more sophisticated density model
as the convolution one (see, e.g., Caroll and Hall (1988), Devroye (1989) and
Fan (1991)) . . . . On the other hand, one can consider several type of estimators
as kernel, spline, Fourier series or wavelet series, as soon as they enjoy good
mean integrated L2p error properties.
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Remark 2.1. If n is such that c∗ ≥ 1/ log(n), one can define Ĥ (2.1) by
replacing c∗ in Â by 1/ log(n) and Proposition 2.1 is still valid with 1/ log(n)
instead of c∗, implying that K ≤ C(log(n))p.

In the rest of the study we focus our attention on a nonlinear wavelet estima-
tor having the features to be adaptive and efficient under the mean integrated
L2p error for a wide class of functions f .

3. Adaptive wavelet estimator

Before introducing our main estimator, let us present some basics on wavelets
and the considered function spaces characterizing the unknown smoothness of
f ; the Besov balls.

3.1. Wavelet bases on [0, 1]

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of the scaling and wavelet functions φ and ψ from the Daubechies family
db2R, with R ≥ 1 (see Daubechies (1992)). We define the scaled and translated
version of φ and ψ by

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatment at the boundaries, there exists an integer
τ satisfying 2τ ≥ 2R such that, for any integer j∗ ≥ τ , the collection

{φj∗,k, k ∈ {0, . . . , 2j∗ − 1}; ψj,k; j ∈ N− {0, . . . , j∗ − 1}, k ∈ {0, . . . , 2j − 1}},

forms an orthonormal basis of L2([0, 1]). See Meyer (1992), Daubechies (1992),
Cohen et al. (1993) and Mallat (2009).

3.2. Wavelet tensor product bases on [0, 1]d

We use compactly supported tensor product wavelet bases on [0, 1]d based on the
Daubechies family. Their construction is recall below. For any x = (x1, . . . , xd) ∈
[0, 1]d, we set

Φ(x) =

d∏
v=1

φ(xv),

and

Ψu(x) =


ψ(xu)

d∏
v=1
v 6=u

φ(xv) for u ∈ {1, . . . , d},

∏
v∈Au

ψ(xv)
∏
v 6∈Au

φ(xv) for u ∈ {d+ 1, . . . , 2d − 1},
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where (Au)u∈{d+1,...,2d−1} forms the set of all non void subsets of {1, . . . , d} of
cardinality greater or equal to 2.

For any integer j and any k = (k1, . . . , kd), we consider

Φj,k(x) = 2jd/2Φ(2jx1 − k1, . . . , 2jxd − kd),
Ψj,k,u(x) = 2jd/2Ψu(2jx1 − k1, . . . , 2jxd − kd), for any u ∈ {1, . . . , 2d − 1}.

Let Dj = {0, . . . , 2j−1}d. Then, with an appropriate treatment at the bound-
aries, there exists an integer τ such that the collection

{Φτ,k,k ∈ Dτ ; (Ψj,k,u)u∈{1,...,2d−1}, j ∈ N− {0, . . . , τ − 1}, k ∈ Dj}

forms an orthonormal basis of L2([0, 1]d).
For any integer j∗ such that j∗ ≥ τ , a function h ∈ L2([0, 1]d) can be expanded

into a wavelet series as

h(x) =
∑

k∈Dj∗

αj∗,kΦj∗,k(x) +

2d−1∑
u=1

∞∑
j=j∗

∑
k∈Dj

βj,k,uΨj,k,u(x), x ∈ [0, 1]d,

where

αj,k =

∫
[0,1]d

h(x)Φj,k(x)dx, βj,k,u =

∫
[0,1]d

h(x)Ψj,k,u(x)dx. (3.1)

3.3. Besov balls

Let M > 0, s ∈ (0, R), p ≥ 1 and q ≥ 1. We say that a function h in Lr([0, 1]d)
belongs to Bs

r,q(M) if, and only if, there exists a constant M∗ > 0 (depending
on M) such that the associated wavelet coefficients (3.1) satisfy ∞∑

j=τ

2j(s+d/2−d/r)

2d−1∑
u=1

∑
k∈Dj

|βj,k,u|r
1/r


q

1/q

≤M∗.

In this expression, s is a smoothness parameter and p and q are norm parameters.
Besov spaces include many traditional smoothness spaces as the standard Hölder
and Sobolev balls. See Meyer (1992), Härdle et al. (1998) and Mallat (2009).

3.4. Wavelet estimation

Let X1, . . . ,Xn be n iid [0, 1]d-valued random vectors, d ≥ 1, with common
probability function f . We aim to estimate the differential entropy of f :

H = −
∫
[0,1]d

f(x) log(f(x))dx,
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from X1, . . . ,Xn. Under (A1), we consider the following estimator for H :

Ĥ = −
∫
Â

f̂(x) log(f̂(x))dx, (3.2)

where
Â =

{
x ∈ [0, 1]d; f̂(x) ≥ c∗

2

}
and f̂ is the following hard thresholding wavelet estimator for f :

f̂(x) =
∑
k∈Dτ

α̂τ,kΦτ,k(x) +

2d−1∑
u=1

∞∑
j=j∗

∑
k∈Dj

β̂j,k,u1{|β̂j,k,u|≥κλn}Ψj,k,u(x), (3.3)

where

α̂j,k =
1

n

n∑
i=1

Φj,k(Xi), β̂j,k,u =
1

n

n∑
i=1

Ψj,k,u(Xi),

j1 is the resolution level satisfying 2dj1 = [n/ log(n)] (the integer part of n/ log(n)),
1 is the indicator function, κ is a large enough constant and λn is the threshold

λn =

√
log(n)

n
.

This estimator was introduced by Donoho et al. (1996) for d = 1 and generalized
to the multidimensional case by Delyon and Juditsky (1996). The central idea
is to estimate only the wavelet coefficients with a high magnitude because they
contain all the necessary informations inherent to f . The others, less important,
are supressed instead of being estimated in order to avoid the cumulation of
superfluous errors in their estimation.

This estimator is adaptive ; its construction does not depend on the unknown
smoothness of f .

Let us mention that α̂j,k and β̂j,k,u are unbiased estimators for the wavelet

coefficients α̂j,k and β̂j,k,u respectively. They also satisfied powerful moment in-
equalities and concentration inequalities. Further details on wavelet estimation
can be found in, e.g., Antoniadis (1997), Härdle et al. (1998) and Vidakovic
(1999).

Theorem 3.1 below investigates the rates of convergence attained by Ĥ under
the mean Lp error over Besov balls for f .

Theorem 3.1. Let p ≥ 1. Suppose that (A1) and (A2) are satisfied. Let Ĥ
be (3.2). Suppose that f ∈ Bs

r,q(M) with s > d/r, r ≥ 1 and q ≥ 1. Then there
exists a constant C > 0 such that, for n large enough,

E(|Ĥ −H|p) ≤ Cϕn(p),
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where

ϕn(p) =

(
log(n)

n

)sp/(2s+d)
, for 2rs > d(2p− r),(

log(n)

n

)(s−d/r+d/(2p))p/(2s−2d/r+d)

, for 2rs < d(2p− r),(
log(n)

n

)(s−d/r+d/(2p))p/(2s−2d/r+d)

(log(n))max(2p−r/q,0), for 2rs = d(2p− r).

The proof of Theorem 3.1 is based on Proposition 2.1 and a result on the
rates of convergence of f̂ under the mean integrated L2p error. Among the
consequences of Theorem 3.1, note that :

• Ĥ converge to H under the mean Lp error, i.e., limn→∞ E(|Ĥ −H|p) = 0,
• under some restriction on s, r and q, one can find p such that, for any ε > 0,

by the Markov inequality,
∑∞
n=1 P(|Ĥ −H| ≥ ε) ≤ ε−p

∑∞
n=1 ϕn(p) < ∞

(convergent Bertrand series). Therefore Ĥ converge to H a.s. by the Borel-
Cantelli lemma.

Remark 3.1. As in Remark 2.1, if n is such that c∗ ≥ 1/ log(n), one can define
Ĥ (3.2) by replacing c∗ in Â by 1/ log(n) and Theorem 3.1 is still valid with the
rate of convergence (log(n))pϕn(p).

4. Proofs

Proof of Proposition 2.1. We have

Ĥ −H = −
∫
Â

(f̂(x) log(f̂(x))− f(x) log(f(x)))dx +

∫
Âc
f(x) log(f(x))dx.

The triangular inequality yields

|Ĥ −H| ≤ F +G, (4.1)

where

F =

∫
Â

|f̂(x) log(f̂(x))− f(x) log(f(x))|dx, G =

∫
Âc
f(x)| log(f(x))|dx.

Upper bound for G. Observe that, thanks to (A1), we have

Âc = {x ∈ [0, 1]d; f̂(x) < c∗/2} ⊆ {x ∈ [0, 1]d; f(x)− f̂(x) > c∗/2}
⊆ {x ∈ [0, 1]d; |f̂(x)− f(x)| > c∗/2}. (4.2)

By (A1) and (A2), (4.2) and the Markov inequality, we obtain

G ≤ C∗max(| log(c∗)|, | log(C∗)|)
∫
Âc
dx ≤ Co

∫
[0,1]d

|f̂(x)− f(x)|dx, (4.3)
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where Co = 2C∗max(| log(c∗)|, | log(C∗)|)/c∗.

Upper bound for F . Note that

f̂(x) log(f̂(x))− f(x) log(f(x))

= log(f(x))(f̂(x)− f(x)) + f(x)(log(f̂(x))− log(f(x)))

+ (f̂(x)− f(x))(log(f̂(x))− log(f(x))). (4.4)

Moreover, using the inequality : | log(x)| ≤ |1/x − 1| + |x − 1|, x > 0, for any

x ∈ Â (implying f̂(x) ≥ c∗/2 > 0), we have

| log(f̂(x))− log(f(x))|

=

∣∣∣∣∣log

(
f̂(x)

f(x)

)∣∣∣∣∣ ≤
∣∣∣∣∣f(x)

f̂(x)
− 1

∣∣∣∣∣+

∣∣∣∣∣ f̂(x)

f(x)
− 1

∣∣∣∣∣
=

(
1

f̂(x)
+

1

f(x)

)
|f̂(x)− f(x)| ≤ 3

c∗
|f̂(x)− f(x)|. (4.5)

It follows from (4.4), the triangular inequality and (4.5) that

|f̂(x) log(f̂(x))− f(x) log(f(x))|
≤ | log(f(x))||f̂(x)− f(x)|+ f(x)| log(f̂(x))− log(f(x))|
+ |f̂(x)− f(x)|| log(f̂(x))− log(f(x))|

≤
(
| log(f(x))|+ 3

c∗
f(x)

)
|f̂(x)− f(x)|+ 3

c∗
(f̂(x)− f(x))2. (4.6)

By (A1) and (A2), we obtain

|f̂(x) log(f̂(x))− f(x) log(f(x))|

≤ Coo|f̂(x)− f(x)|+ 3

c∗
(f̂(x)− f(x))2,

where Coo = max(| log(c∗)|, | log(C∗)|) + 3C∗/c∗.
Hence

F ≤ Coo
∫
[0,1]d

|f̂(x)− f(x)|dx +
3

c∗

∫
[0,1]d

(f̂(x)− f(x))2dx. (4.7)

Combining (4.1), (4.3) and (4.7), we have

|Ĥ −H| ≤ C ′
∫
[0,1]d

|f̂(x)− f(x)|dx +
3

c∗

∫
[0,1]d

(f̂(x)− f(x))2dx,

where

C ′ = Coo + Co =
3C∗
c∗

+

(
2C∗
c∗

+ 1

)
max(| log(c∗)|, | log(C∗)|).
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The inequality : |x+ y|p ≤ 2p−1(|x|p + |y|p), (x, y) ∈ R2, implies that

|Ĥ −H|p

≤ 2p−1

(
(C ′)p

(∫
[0,1]d

|f̂(x)− f(x)|dx

)p
+

(
3

c∗

)p(∫
[0,1]d

(f̂(x)− f(x))2dx

)p)

≤ K

((∫
[0,1]d

|f̂(x)− f(x)|dx

)p
+

(∫
[0,1]d

(f̂(x)− f(x))2dx

)p)
,

where

K = 2p−1 max

((
3C∗
c∗

+

(
2C∗
c∗

+ 1

)
max(| log(c∗)|, | log(C∗)|)

)p
,

(
3

c∗

)p)
.

The Hölder inequality applied two times gives

|Ĥ −H|p ≤ K

(√∫
[0,1]d

(f̂(x)− f(x))2pdx +

∫
[0,1]d

(f̂(x)− f(x))2pdx

)
.

It follows from the Cauchy-Schwarz inequality that

E(|Ĥ −H|p)

≤ K


√√√√E

(∫
[0,1]d

(f̂(x)− f(x))2pdx

)
+ E

(∫
[0,1]d

(f̂(x)− f(x))2pdx

) .

The proof of Proposition 2.1 is complete.

Proof of Theorem 3.1. First of all, let us present a result on the rates of
convergence of f̂ (3.3) under the mean Lθ error over Besov balls.

Theorem 4.1 (Delyon and Juditsky (1996) & Kerkyacharian and Picard (2000)).

Suppose that (A2) holds. Let θ ≥ 1 and f̂ be (3.3). Suppose that f ∈ Bs
r,q(M)

with s > d/r, r ≥ 1 and q ≥ 1. Then there exists a constant C > 0 such that

E

(∫
[0,1]d

|f̂(x)− f(x)|θdx

)
≤ CΨn(θ),
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where

Ψn(θ) =

(
log(n)

n

)sθ/(2s+d)
, for 2rs > d(θ − r),(

log(n)

n

)(s−d/r+d/θ)θ/(2s−2d/r+d)

, for 2rs < d(θ − r),(
log(n)

n

)(s−d/r+d/θ)θ/(2s−2d/r+d)

(log(n))max(θ−r/q,0), for 2rs = d(θ − r).

Theorem 4.1 can be proved using similar arguments to (Kerkyacharian and

Picard, 2000, Theorem 5.1) for a bound of the mean integrated Lθ error of f̂
and (Delyon and Juditsky, 1996, Theorem 1) for the determination of the rates
of convergence.

It follows from Proposition 2.1 and Theorem 3.1 with θ = 2p that, for any
f ∈ Bs

r,q(M) with s > d/r, r ≥ 1 and q ≥ 1, and for n large enough,

E(|Ĥ −H|p)

≤ K


√√√√E

(∫
[0,1]d

(f̂(x)− f(x))2pdx

)
+ E

(∫
[0,1]d

(f̂(x)− f(x))2pdx

)
≤ K max(

√
C,C)

(√
Ψn(2p) + Ψn(2p)

)
≤ 2K max(

√
C,C)

√
Ψn(2p)

= C?ϕn(p),

with C? = 2K max(
√
C,C).

This ends the proof of Theorem 3.1.
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