Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2016

Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions

Résumé

We prove local existence of solutions for a class of suitably renormalised coupled SPDE–ODE systems driven by space-time white noise, where the space dimension is equal to 2 or 3. This class includes in particular the FitzHugh–Nagumo system describing the evolution of action potentials of a large population of neurons, as well as models with multidimensional gating variables. The proof relies on the theory of regularity structures recently developed by M. Hairer, which is extended to include situations with semigroups that are not regularising in space. We also provide explicit expressions for the renormalisation constants, for a large class of cubic nonlinearities.
Fichier principal
Vignette du fichier
fhn_spde_submitted.pdf (589.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01141380 , version 1 (12-04-2015)
hal-01141380 , version 2 (16-06-2015)

Licence

Identifiants

Citer

Nils Berglund, Christian Kuehn. Regularity structures and renormalisation of FitzHugh-Nagumo SPDEs in three space dimensions. Electronic Journal of Probability, 2016, 21 (18), pp.1-48. ⟨10.1214/16-EJP4371⟩. ⟨hal-01141380v2⟩
389 Consultations
142 Téléchargements

Altmetric

Partager

More