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We propose an association between the phase-space mixing level of a self-gravitating system and
the indistinguishability of its constituents (stars or dark matter particles). This represents a re-
finement in the study of systems exhibiting incomplete violent relaxation. Within a combinatorial
analysis similar to that of Lynden-Bell, we make use of this association to obtain a distribution
function that deviates from the Maxwell-Boltzmann distribution, increasing its slope for high ener-
gies. Considering the smallness of the occupation numbers for large distances from the center of the
system, we apply a correction to Stirling’s approximation which increases the distribution slope also
for low energies. The distribution function thus obtained presents some resemblance to the “S” shape
of distributions associated with cuspy density profiles (as compared to the distribution function ob-
tained from the Einasto profile), although it is not quite able to produce sharp cusps. We also argue
how the association between mixing level and indistinguishability can provide a physical meaning
to the assumption of particle-permutation symmetry in the N-particle distribution function, when
it is used to derive the one-particle Vlasov equation, which raises doubts about the validity of this
equation during violent relaxation.

I. INTRODUCTION

Self-gravitating systems are known to present concep-
tual challenges for their description in terms of thermo-
dynamics and statistical mechanics, e.g. non-extensivity,
negative heat capacity and the inequivalence of (or even
the impossibility of defining) canonical and microcanon-
ical ensembles - see [1, 2]. The main source of these
difficulties lies in the long-range nature of the gravita-
tional interaction: differently from an ideal molecular gas
in which particles remain in uniform motion only mod-
ified by close-encounters, in self-gravitating systems the
particles (e.g. stars or dark matter constituents) are al-
ways interacting with the gravitational field collectively
produced. Also, differently from charged plasmas, in self-
gravitating systems the interaction is only attractive and
there is no shortening of the interaction range such as
the Debye shielding. As a consequence of gravitational
instability, density contrasts tend to increase, leading to
the appearance of non-linear phenomena that cannot be
treated perturbatively.

From the observational point of view, the common
shape of many elliptical galaxies seems to represent a final
equilibrium configuration, despite the fact that the relax-
ation time for two-body processes is larger than the age
of the Universe [2]. The process that can explain this re-
laxed state is violent relaxation: particles attain a quasi-
stationary state by interacting with the violently chang-
ing gravitational field during the first stages of structure
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collapse [3, 4]. The time-scale for this process is the cross-
ing time τcr, the time necessary for a particle to cross
the galaxy, which is much lower than τcol, the time-scale
of relaxation by two-body, or collisional, processes [5].
Thus, on time-scales smaller than τcol, self-gravitating
systems can be treated as collisionless, i.e. without two-
body interactions, in such a way that a test particle can
be considered as only interacting with the collectively
generated mean gravitational field.

N-body simulations also provide important informa-
tion about the stationary state achieved by these sys-
tems after the collapse. For example the cuspy, “univer-
sal” density profiles of dark matter halos [6] are well fit by
simple functions, such as the NFW or Einasto profiles [7–
9] - see Appendix A. Interestingly, the observed projected
density profiles of galaxy clusters measured via gravita-
tional lensing seem to be well fit by these same functions
[10, 11]. For galaxies, the situation is more complicated,
as some of them (the cored cases) are not well fit by these
functions, presumably due to the influence of baryonic
components such as stars, gas, supernovae explosions etc
[12], or because of a possible dark matter self-interaction
[13]. This is the so-called cusp-core problem.

Despite the success of numerical simulations in repro-
ducing some properties of the observed objects, a clear
explanation of the process driving a collisionless self-
gravitating system to equilibrium is lacking. Even glob-
ular clusters, classically viewed as being characterized by
collisional processes, seem to present evidences of colli-
sionless dynamics [14], which are yet to be clearly un-
derstood. See [5, 15–17] for some important papers on
the subject, [18, 19] for reviews and [20, 21] for recent
models.

http://arxiv.org/abs/1410.7677v2
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For collisionless systems, it is usually assumed that
the evolution of the one-particle distribution function
f (x,v, t) is governed by the Vlasov (or collisionless
Boltzmann) equation [see 2, 22]

df

dt
=
∂f

∂t
+ v · ∂f

∂r
−∇φ · ∂f

∂v
= 0, (1)

where φ is the self-consistent, collectively generated grav-
itational potential.

As we discuss in §II, in a study of violent relaxation
processes [5], Lynden-Bell translates the constraint pro-
vided by this equation into an exclusion principle when
maximizing the number of configurations (complexions)
compatible with the conservation of energy and total
mass. In this procedure, it is assumed that the system
is well mixed, i.e. that each particle1 has equal a priori

probability to be in any region of phase-space. This hy-
pothesis is known to be appropriate e.g. for ideal gases,
for each molecule is able to assume any position and ve-
locity due to the highly random motions provided by
collisions with other molecules. For instance, in a gas
in normal conditions of pressure and temperature, each
molecule suffers ≈ 105 collisions per second. In some
sense, we could say that each molecule approximately
occupies all available phase-space in a relatively small
time-scale. This is the reason why one can assume that
particles have equal a priori probability to be in any
region of phase-space, thus allowing the equivalence be-
tween temporal and phase-space averages, the so-called
Ergodic Hypothesis [23]. However, there are situations
in which such mixing is not complete (see [16, 24] and
references therein), in the sense that the particles are
not able to visit all regions of phase-space, particularly
in self-gravitating systems at the end of violent relax-
ation. This exposes the need for a model that deals with
intermediate mixing levels.

In this work, we propose a connection between the
mixing level and the concept of indistinguishability, and
study the implications of this association for the quasi-
stationary states generated by the violent relaxation pro-
cess. By “mixing” we do not mean “phase mixing”, which
is a process associated to deterministic orbits in an inte-
grable potential. Instead, we refer to “chaotic mixing”, i.e.
that related to the exponential divergence of stochastic
trajectories, that allows each particle to explore a large
region of phase-space and consequently different particles
to visit the same regions of phase-space. See [25] for an
overview of this distinction and for references to impor-
tant works on these lines. Although we did not make
this quantitative analysis, it would be possible to esti-
mate this mixing level in N-body simulations comparing
temporal and phase-space averages in different regions of

1 There is an interesting discussion regarding the use of particles
or phase elements (exploring the fluid analogy) - see [15]. Here
we will just refer to particles.

phase-space, for example. As we will see in §IV, in this
work we used a very simplified criterion to classify well
mixed and poorly mixed regions.

We start in §II by describing how to obtain the Lynden-
Bell distribution from combinatorial arguments, making
explicit the role of the distinguishability. In §III we dis-
cuss the concept of indistinguishability and present a cri-
terion to define it in terms of mixing. In §IV we de-
termine a new distribution function obtained according
to this criterion and calculate the density profile ρ(r)
generated by this distribution. Similar to the Isother-
mal Sphere, this density profile yields infinite mass due
to scaling in the external regions. As a solution to this
problem we take into account the smallness of occupa-
tion numbers in this region, as proposed by [20]. In §V
we introduce this correction and present the resulting
distribution function and density profile. In §VI we show
how the criterion proposed gives a physical interpreta-
tion to the hypothesis of permutation symmetry of the
N-particle distribution function, which is assumed in de-
ducing the Vlasov equation by means of the BBGKY
hierarchy. We argue that this symmetry hypothesis, and
consequently the Vlasov equation, may not be valid dur-
ing violent relaxation. Finally, in §VII we summarize our
results and discuss possible tests of this model.

II. LYNDEN-BELL DISTRIBUTION FUNCTION

The most important feature of Lynden-Bell’s statisti-
cal analysis of violent relaxation is the introduction of an
exclusion principle due to the constraint imposed by the
Vlasov equation, Eq. (1). Since in this case the phase-
space density is constant, it is argued that each particle
occupies its own region in phase-space (its own micro-
cell), without superposition with other regions.

In order to obtain the distribution function from a
combinatorial analysis, we divide the phase-space into J
macro-cells [see 5, 15]. Each macro-cell i is divided into νi
micro-cells, of which ni are occupied by one particle and
the other νi−ni micro-cells are empty. For simplicity, we
consider that all the particles have the same mass m. In
the case of the simplest models of dark matter particles,
this is exactly what is expected, but in the case of stars
in globular clusters or galaxies a mass distribution could
bring some differences - see [5, 15]. In this way the total
mass of the system is

M =

J
∑

i=1

nim = Nm, (2)

where N is the total number of particles. The objective
of the following calculation is to derive the distribution
function F , that represents the average number of parti-
cles per state (F ∝ ni/νi), maximizing the number of
complexions, i.e. the number of micro-sates W ({ni})
compatible with the macroscopic constraints of energy
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and mass conservation. The total energy is given by

H =

J
∑

i=1

nim

(

1

2
|vi|2 +

1

2
φi

)

, (3)

where

φi = −
J
∑

j=1,j 6=i

Gmnj

|xi − xj |
(4)

is the potential in the i-th macro-cell, with position and
velocity represented by xi and vi respectively. The cal-
culation of W involves two steps: determining the num-
ber of possible configurations inside a macro-cell and the
number of possibilities for exchanges between different
macro-cells.

Inside the i-th macro-cell, the number of ways to or-
ganize ni distinguishable particles in νi available micro-
cells, but no more than one particle per micro-cell, is

ωi =
νi!

(νi − ni)!
. (5)

The same happens for all macro-cells i = 1, 2, ..., J , and
so the total number of possibilities for exchanges inside
macro-cells is ω1 · ω2 · · ·ωJ .

For exchanges between different macro-cells, the num-
ber of ways to organize N distinguishable particles in the
J macro-cells, keeping fixed the number ni of particles in
each macro-cell is

NJ =
N !

n1! · n2! · · ·nJ !
, (6)

and the total number of complexions is

W ({ni}) =
[

N !

n1!...nJ !

] [

ν1!

(ν1 − n1)!
...

νJ !

(νJ − nJ)!

]

. (7)

To obtain the equilibrium configuration, we maximize the
entropy S = lnW with respect to the occupation num-
bers ni, introducing the constraints of mass and energy
conservation with Lagrange multipliers λ and η, which
implies

δ lnW − λδM − ηδH = 0. (8)

Now we use Stirling’s approximation

lnn! ≈ n (lnn− 1) , (9)

which is valid for n ≫ 1. Note, however, that in the ex-
ternal regions of self-gravitating systems, where the den-
sity goes to zero, this approximation is not expected to
be valid, as noticed by [20]. Neglecting momentarily this
point and using Eq. (9), we obtain

ln

(

νi − ni

ni

)

= λm+ ηmEi, (10)

where

Ei =
1

2
|vi|2 + φi < 0 (11)

is the energy per unit mass of the i-th macro-cell. Finally,
we obtain the Lynden-Bell distribution function

ni

νi
∝ f (εi)

f0
= F (εi) =

1

1 + e−β(εi−µ)
, (12)

where f0 is the fine-grained phase-space density, kept
constant during all violent relaxation process due to the
constraint of Vlasov equation. This distribution is iden-
tical to the Fermi-Dirac distribution, despite the use of
distinguishable particles. In the above expression, we
have defined dimensionless energies as:

εi = − Ei

|φi0|
= ϕi −

1

2
u2
i , (13)

where ϕi = −φi/|φi0| is the dimensionless gravitational
potential, ui = vi/|φi0|1/2 is the dimensionless veloc-
ity, φi0 = φi(0) is the central potential and finally
β = ηm|φi0| and µ = λ/η|φi0| are dimensionless param-
eters. The parameter µ, analogous to the chemical po-
tential, determines the position of the transition between
two-regimes of small and high occupation numbers (de-
generate situation). The parameter β, analogous to the
temperature, determines how abrupt this transition is.

If, in order to guarantee the dynamical exclusion prin-
ciple, we require that ni/νi ≪ 1, or F (εi) ≪ 1, we see
that the distribution function (12) tends to the Maxwell-
Boltzmann case F (ε) = exp [β(ε− µ)], that would be
obtained if we had not introduced the exclusion princi-
ple. Besides this conceptual problem, we know that the
Maxwell-Boltzmann distribution yields an infinite mass
system, which contradicts the assumption of finite mass
[15]. Another criticism to Lynden-Bell’s approach is that
it assumes equiprobability of all micro-states, but as vio-
lent relaxation occurs in such a short time scale, possibly
there is not enough time to complete the mixing process
(see [16, 24] and references therein).

Let us return to the calculation of W , but now treating
particles as indistinguishable [26]. The number of ways
to organize ni indistinguishable particles in νi micro-cells,
instead of Eq.(5), is

ωi =
νi!

ni! (νi − ni)!
. (14)

Now with indistinguishable particles, the exchange be-
tween different macro-cells, keeping the number ni of
particles per macro-cell fixed, does not produce different
micro-states and now we have NJ = 1 ⇒

W ({ni}) =
ν1!

n1! (ν1 − n1)!
· · · νJ !

nJ ! (νJ − nJ)!
. (15)

But since the only difference from Eq. (7) obtained with
distinguishable particles is the factor N !, and for the
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maximization only the occupation numbers ni are rel-
evant, the final distribution function is exactly the same
as Eq. (12).

At this point, one can argue that the above results in-
dicate the unimportance of (in)distinguishability in the
derivation of the distribution function. However, in
§IV we propose that indistinguishability must be asso-
ciated to the mixing level of the system. According to
this criterion, the scheme of [26] seems consistent be-
cause it assumes indistinguishable particles and complete
mixing (equiprobability of states). On the other hand,
the scheme of [5] seems inconsistent, because it assumes
equiprobability while taking distinguishable particles.

III. PARTICLE INDISTINGUISHABILITY

As discussed in the previous section, in the statistical
interpretation of entropy formulated by Boltzmann, the
most probable thermodynamic states (macro-states) are
those with the largest number of micro-states compati-
ble with the constraints of the problem, i.e. the largest
number of complexions W . In counting these states, the
distinguishability is conceptually important because one
needs to know whether the permutation between two par-
ticles characterizes a new micro-state. The particles are
called distinguishable when this permutation creates a
new micro-state and indistinguishable when the permu-
tation does not create a new micro-state.

According to the standard picture, as found in text-
books [27, 28], identical particles must be treated as in-
distinguishable in the context of quantum mechanics (due
to the superposition of wave functions) and as distin-
guishable in the context of classical mechanics [see 27].
In this respect, the ideal gas was originally treated as be-
ing constituted of distinguishable particles. Later it was
realized that this assumption leads to undesirable conse-
quences such as the Gibbs paradox (see Appendix B) and
required an ad hoc correction equivalent to treating the
system as consisting of indistinguishable particles. With
the advent of quantum mechanics, this solution has been
considered definitive, because the gas particles should ul-
timately have quantum behavior and thus be indistin-
guishable [27]. On the other hand, in the ideal crystal
model, particles are treated as distinguishable [27, 29].
The common justification is that each particle is con-
fined to a well-defined region of space, oscillating around
an equilibrium point without superposing the wave func-
tions of neighbor molecules.

Thus, it is commonly accepted that indistinguishabil-
ity is only justified in the presence of quantum effects and
that in the absence of such effects, particles have to be
treated as distinguishable. However, it has been shown
many years ago that it is perfectly possible to formulate
a statistical mechanics of indistinguishable particles in
the context of classical mechanics [30, 31]. Also, it is in-
triguing that when studying colloids (systems composed
of particles of intermediate size between large molecules

and small grains in suspension, i.e. macroscopic par-
ticles), the use of standard expressions for the entropy
with the assumption of distinguishable particles leads to
the same conceptual contradictions of the ideal gas of
distinguishable particles [32].

Therefore, a universal criterion for defining particle
(in)distinguishability does not seem to be a trivial issue
[see 33]. Before presenting our proposed criterion, we
note that in the study of N-body dynamical systems it is
common to observe the presence of separated regions (“is-
lands”) of phase-space inside which particles are mixed,
i.e. continuously filling the phase-space with stochastic
trajectories, but not mixed to particles in other islands
[23].

With this picture in mind, we propose that particles
in a mixed region of phase-space must be treated as
indistinguishable among themselves, but distinguishable
from particles in a different island. This criterion has
some similarity with that discussed by [34], according
to which the kind of permutations that are important
to distinguishability are not mere changes of index, but
those that can really (physically) be performed. In this
sense, the permutation of two identical particles in a re-
gion of phase-space accessible to both does not create a
new micro-state, thus particles should be treated as indis-
tinguishable. However, if these particles are each one in
a different region of phase-space, mutually inaccessible to
each other, a permutation represents a new micro-state
and particles should be treated as distinguishable.

Contrary to the standard scenario, the criterion pro-
posed here allows us to treat systems (under certain cir-
cumstances) as composed by indistinguishable particles
even if these components are macroscopic objects like
colloidal particles or stars2. The relation between this
proposed criterion and the incompleteness of violent re-
laxation will be discussed in the next section, where we
determine the resulting distribution function. In §VI we
apply this reasoning to argue that the Vlasov equation
may not be valid during violent relaxation.

IV. PARTIALLY MIXED DISTRIBUTION
FUNCTIONS

There are evidences that the violent relaxation process
in self-gravitating systems is not able to produce full mix-
ing in phase-space [19, 24, 36, 37], i.e. particles cannot
access all possible micro-states before the achievement
of a stationary state. With this in mind and following
the association discussed in §III, we make a combinato-
rial analysis similar to Lynden-Bell’s scheme but treating
particles as indistinguishable for exchanges inside well

2 It is worth mentioning that Saslaw [35], 45 years ago, had also
discussed the possibility of a parametrization of levels of dis-
tinguishability in gravitational systems, but with an approach
different from ours.



5

mixed regions (in phase-space), but distinguishable for
exchanges between disconnected regions, i.e. not mixed
together.

Using numerical simulations, [38] have concluded that
during violent relaxation, despite particles forgetting
their initial positions and velocities, the ordering of the
particles energies is approximately conserved during the
evolution of the system. In some sense, this is equiva-
lent to particles with similar energies being mixed among
them but not with particles of different energies. Since
the energy is defined in a coarse-grained sense for each
macro-cell, Eq. (11), we use the criterion proposed here
to treat particles as indistinguishable for exchanges in-
side a macro-cell but distinguishable for exchanges be-
tween macro-cells. A more precise classification could be
done defining some index measuring how randomic is the
energy ranking in respect to the initial energies. This in-
dex could be monitored in N-body simulations, but this
is out of the scope of the present work.

In our analysis, we do not use the Vlasov equation as a
constraint translated into an exclusion principle as done
by Lynden-Bell. The first reason for this is the theo-
retical problem already discussed in §II: requiring that
F (εi) ≪ 1 – in order to guarantee the exclusion princi-
ple – leads to a Maxwell-Boltzmann distribution, which
is exactly what would be obtained without the exclusion
principle. The second reason is due to the possible non-
validity of the Vlasov equation during violent relaxation,
as discussed in §VI.

The distribution function is calculated as follows: the
number of ways to organize ni indistinguishable particles
inside a macro-cell allowing co-habitation in the νi micro-
cells is given by

ωi =
(ni + νi − 1)!

ni! (νi − 1)!
, (16)

which is the same factor as in the Bose-Einstein distribu-
tion. Together with expression (6) for exchanges of dis-

tinguishable particles between macro-cells, and neglect-
ing unity terms, the number of complexions results

W ({ni}) =
[

N !

(n1!)
2 · · · (nJ !)

2

]

[

(n1 + ν1)!

(ν1)!
· · · (nJ + νJ)!

(νJ)!

]

.

(17)
Now following the same procedures as before and max-
imizing lnW subject to energy and mass conservation,
instead of Eq. (10), we obtain

ln

(

νi + ni

n2
i

)

= λm+ ηmEi, (18)

from which we finally have:

F (ε) =
1

2
eβ(ε−µ)−k

(
√

1 + 4e−β(ε−µ)+k + 1
)

, (19)

where k = ln νi. Note that, differently from the Lynden-
Bell or Maxwell-Boltzmann, this distribution function

depends on the number νi of micro-cells accessible in-
side each macro-cell. In principle, we could suppose that
this number has some dependence on energy, but here
we treat it as a constant, being a parameter degenerated
with β and µ 3.

This distribution function is shown as the thick blue
lines in Fig. (1) for µ = 0.5, β = (10, 15) and k = 0. We
see that it approaches the Maxwell-Boltzmann distribu-
tion in the region ε > µ, which represents the low veloc-
ity regime [see Eq. (13)]. On the other hand, for ε . µ
(high velocities), we have F (ε) ∝ exp

[

1
2β(ε− µ)

]

, which
represents another Maxwell-Boltzmann distribution with
twice the original “temperature”.

ε0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)ε
F

(

-410

-310

-210

-110

1

10

210

310

410

Partially mixed

Maxwell-Boltzmann

FIG. 1. Distribution function proposed in this work, Eq. (19)
(thick blue), in comparison with the Maxwell-Boltzmann dis-
tribution (thin green). The proposed distribution matches
the Maxwell-Boltzmann for ε > µ, but deviates to another
Maxwell-Boltzmann with twice the original “temperature” for
ε . µ. All curves are for µ = 0.5. Continuous curves are for
β = 15 and dashed curves for β = 10.

Having determined the distribution function F (ε),
Eq. (19), we can now calculate the density profiles ρ (r) of
spherically symmetric and isotropic structures generated
by the model. In order to do that, we define a dimension-
less distance from the center x = r/a, a density profile

ρ̃ = ρ/(f0|φ0|3/2) and the constant A = 4πG
√

|φ0|a2f0,
where a is a scale parameter and G is the gravitational
constant. In these units, we have

ρ̃ (ϕ) = 4π

∫ ϕ

−∞

F (ε)
√

2(ϕ− ε) dε. (20)

With this relation, we solve Poisson equation
(∇2ϕ = −Aρ̃) to determine ϕ(x) and consequently
ρ̃(x). Supposing spherical symmetry, this equation reads

d2ϕ

dx2
+

2

x

dϕ

dx
= −Aρ̃ (ϕ) . (21)

3 From now on, for simplicity we omit the indices in the variables
and parameters of the distribution function.
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We numerically solve this equation with a 4-th order
Runge-Kutta algorithm imposing the conditions ϕ(0) = 1
and dϕ(0)/dx = 0 and fixing A = 10. The results are
shown in Fig. (2), with the density profiles normalized
by their values at x = 0.1.

x-310 -210 -110 1

0.
1

ρ∼
(x

)/
ρ∼

-410

-310

-210

-110

1

10

210

Partially mixed

Maxwell-Boltzmann

FIG. 2. Density profiles generated by our model (thick blue),
in comparison with the Isothermal Sphere generated by the
Maxwell-Boltzmann distribution (thin green). Values of pa-
rameters are the same as in Fig. (1).

We see that our model generates a density profile sim-
ilar to that of the Isothermal Sphere generated by the
Maxwell-Boltzmann distribution: it has a core and it os-
cillates around ∝ x−2 in the external regions. This can
be more clearly seen in Fig. (3), that shows the den-
sity slope γ(x) = −d ln(ρ)/d ln(x). As is well known, a
density profile varying as ∝ x−2 in the external region
generates an infinite mass distribution, in contradiction
with the initial constraint of finite mass, and our model
is not able, per se, to solve this problem. Instead, we
need an extra ingredient related to a correction for the
smallness of occupation numbers in the external region,
which is discussed in the next section.

Although not used in the rest of the paper, we also
consider the case of introducing an exclusion principle,
since it can be tested in other applications. The num-
ber of ways to organize indistinguishable particles inside
a macro-cell, preventing co-habitation of micro-cells, is
given by expression (14). Together with expression (6)
for the number of ways to exchange distinguishable par-
ticles between macro-cells, it results in

W ({ni}) =
[

N !

(n1!)
2 · · · (nJ !)

2

]

[

ν1!

(ν1 − n1)!
· · · νJ !

(νJ − nJ)!

]

.

(22)
Following the same procedures as before, we obtain

ln

(

νi − ni

n2
i

)

= λm+ ηmEi, (23)

x-310 -210 -110 1

)/
d 

ln
 (

r)
ρ∼

 =
 -

d 
ln

 (
γ

0

0.5

1

1.5

2

2.5

3

3.5

4
Partially mixed

Maxwell-Boltzmann

FIG. 3. Density slope of the model proposed here (thick blue
lines) in comparison with that generated by the Maxwell-
Boltzmann distribution (thin green lines). The slope goes
to 2 in the external regions, what produces an infinite mass.
Parameters as in Fig. (1).

from which results

F (ε) =
1

2
eβ(ε−µ)−k

(
√

1 + 4e−β(ε−µ)+k − 1
)

. (24)

It is interesting to note that, as in Fermi-Dirac versus
Bose-Einstein distributions, the only difference between
Eqs. (19) and (24) is a ± sign.

V. CORRECTION FOR SMALL OCCUPATION
NUMBERS

In the external regions, as the density profile goes to
zero, the occupation numbers assume small values, inval-
idating the use of the Stirling’s approximation, Eq. (9),
in deriving the distribution function. With this in mind,
[20] proposed a correction that when applied to the
Maxwell-Boltzmann case, gives rise to a distribution
function identical to that of King models [4], which goes
smoothly to zero as ε approaches a free parameter ε0.

The maximization procedure done in §II can be repre-
sented identifying n! = Γ(n + 1) and remembering the
definition of the digamma function ψ(n) = d ln Γ/dn.
The Stirling’s approximation, Eq. (9), corresponds to
ψ(n+ 1) ≈ lnn and the correction proposed by [20] is
given by

ψ(n+ 1) ≈ ln(n+ e−γ), (25)

where γ = −ψ(1) ≈ 0.57721566 is Euler’s constant. This
approximation turns out to be excellent, even for very
small numbers - see Fig. (1) of [20].

In fact, if we take this correction for the Maxwell-
Boltzmann distribution, as done by [20], we obtain

ln

(

νi
ni + e−γ

)

= λm+ ηmEi, (26)
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which implies that

F (ε) =
[

eβ(ε−µ) − e−k−γ
]

. (27)

As F (ε) necessarily goes to zero for some energy, we see
that the correction for small numbers already introduces
a dependence on νi = ek, even in the Maxwell-Boltzmann
case. If we now impose that the distribution function is
zero for ε = ε0, we have

F (ε) = eβ(ε0−µ)
[

eβ(ε−ε0) − 1
]

, (28)

which corresponds to the King model [4].
If we now apply this correction to our model, instead

of Eq. (18), we obtain

ln

(

νi + ni − 1 + e−γ

(ni + e−γ)2

)

= λm+ ηmEi, (29)

implying that

F (ε) =
1

ek+γ
×

{

1

2
eβ(ε−µ)+γ

(

√

1 + 4(ek − 1)e−β(ε−µ) + 1

)

− 1

}

,

(30)
and again doing f(ε0) = 0 we have

ek = e−γ
(

e−β(ε0−µ)−γ − 1
)

+ 1. (31)

In Fig. (4), the thick blue lines show this distribution
function for β = (10, 15), µ = 0.4 and with ε0 = 0.03.
Again we see that for decreasing energies, the distribution
changes from a Maxwell-Boltzmann to another Maxwell-
Boltzmann, but for ε ≈ ε0 it goes to zero. The thin
green lines are the King’s models, obtained as a Maxwell-
Boltzmann corrected for small occupation numbers.

For a qualitative comparison, we also show the distri-
bution function associated with the Einasto density pro-
file [39] - see Appendix A, which describes the details of
this calculation, made here for the first time, as far as we
know. The two curves shown are for n = 2.5 and n = 5.0,
representing typical values for galactic and galaxy cluster
scale respectively.

Note that the distribution function associated with the
Einasto profile, as well as cuspy density profiles in gen-
eral [see 40] has a “S” shape, with F (ε) going to zero for
small ε and going to increasing slopes for large ε. It is
interesting that the model proposed here, although not
presenting exactly the same shape, gives a correction in
the same direction, increasing the slope for large values
of ε.

As done previously, we calculate the density profiles
generated by this function, which are shown in Fig. (5),
again normalized by the density at x = 0.1. We see
that now the density profile is steeper than ∝ x−2 in

ε0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)ε
F

(

-410

-310

-210

-110

1

10

210

310

410 Partially mixed
Maxwell-Boltzmann
Einasto - n = 2.5
Einasto - n = 5.0

FIG. 4. Distribution function corrected for the smallness of
occupation numbers, Eq. (30) (thick blue), in comparison
with the Maxwell-Boltzmann (also corrected, equivalent to
King’s) distribution (thin green). Distribution functions as-
sociated with cuspy density profiles (like the Einasto, shown
for two values of parameter n) have a “S” shape that our model
is not quite able to reproduce, although the correction being
in the right direction, i.e. increasing the slope of F (ε) for
high ε. All curves are for µ = 0.4 and ε0 = 0.03. Continuous
curves are for β = 15 and big dashed curves for β = 10.

x-310 -210 -110 1

0.
1

ρ∼
(x

)/
ρ∼

-510

-410

-310

-210

-110

1

10

210

Partially mixed
Maxwell-Boltzmann
Einasto - n = 2.5
Einasto - n = 5.0

FIG. 5. Density profiles generated by the model corrected for
small occupation numbers (thick blue), in comparison with
that generated by the corrected Maxwell-Boltzmann distri-
bution or King’s model (thin green) and with the Einasto
profile. Values or parameters are the same as in Fig. (4).

the external region, and in fact the problem of infinite
mass is solved. Also shown are the corrected Isothermal
Sphere (King’s model) and the Einasto density profile.
For completeness, we also show in Fig. (6) the density
slope obtained after the correction for small occupation
numbers.
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x-310 -210 -110 1

)/
d 

ln
 (

r)
ρ∼

 =
 -

d 
ln

 (
γ

0

0.5

1

1.5

2

2.5

3

3.5

4 Partially mixed
Maxwell-Boltzmann
Einasto - n=2.5
Einasto - n=5.0

FIG. 6. Density slope generated by the model corrected for
small occupation numbers (thick blue) in comparison with
that generated by the corrected Maxwell-Boltzmann distri-
bution or King’s model (thin green) and with the Einasto
profile. Parameters as in Fig. (4).

VI. VALIDITY OF THE VLASOV EQUATION

Let us return to the discussion of the violent relax-
ation process to see how the association proposed here
(between the mixing level and the indistinguishability)
can give a clearer meaning to an important hypothesis
assumed in the deduction of the Vlasov equation.

Intuitively, one expects that during violent relaxation,
a process that starts far from equilibrium, the total field
varies in a very complex way, producing chaotic motions
and driving the system to an equilibrium (or stationary)
state. In fact, as pointed out in [41], the presence of
chaotic motions combined with the rapid approach to a
stationary state observed in numerical simulations seems
to indicate this effect. However the Vlasov equation is
reversible in time, which is incompatible with a process
driving the system to an equilibrium (or relaxed) state
characterized by a maximum entropy. In fact, [42] have
shown that if the system is described by Eq. (1), there is
no upper limit for the entropy associated with any convex
function C(f), in particular for the Boltzmann entropy,
represented by C(f) = f ln f . The standard argument to
solve this problem is that the evolution to an equilibrium
state is given in a coarse-grained sense, while the Vlasov
equation concerns the fine-grained distribution function.

The deduction of the equation governing the evolu-
tion of the one-particle distribution function f is usually
done starting from the Liouville equation. It states that
an isolated system composed of N particles collectively
represented by the N -particle joint distribution function
f (N) (x1,p1, ...,xN,pN, t) necessarily respects [see 43]

df (N)

dt
= 0. (32)

This equation can be statistically interpreted as the evo-

lution of the system as a whole being smooth, free of
sudden changes, which is adequate since it describes an
isolated system (by definition free of external influences),
whose particles move according to Hamilton equations.

The next step to obtain the equation for the one-
particle distribution f is the construction of the so-called
BBGKY hierarchy [see 2, 22, 44], and it involves some
extra assumptions. The first one is the symmetry of
f (N) (x1,p1, ...,xN,pN, t) relative to changes of coor-
dinates and momenta of the particles. This makes the
phase-space averaged contribution of each particle to the
total force exerted on the test particle to be the same, im-
plying Eq. (C5) - see Appendix C. The second hypothesis
is that of molecular chaos, i.e., that the two-particle dis-
tribution function is just the product of two one-particle
distribution functions, the correlations being negligible,
as is expressed by Eq. (C8). With these two hypothesis,
one obtains Vlasov equation, Eq. (1).

Far from being just a calculation strategy, these as-
sumptions have a deep statistical meaning, and without
them it is not possible (to the best of our knowledge)
to obtain the Vlasov equation. The symmetry of f (N) is
commonly treated as a direct consequence of the assump-
tion of identical particles [see 2, 22]. However, there is no
mechanical principle that guarantees this symmetry. In-
stead, it is an extra hypothesis, with important statistical
content. In our context it is equivalent to treating par-
ticles not only as identical but as indistinguishable and,
according to the criterion discussed in §III, it refers to
the possibility of all particles to visit the same regions of
phase-space. As already pointed out by [22], the BBGKY
hierarchy was developed to describe molecules in fluids
and ions in plasmas close to equilibrium. These systems
are very different from a self-gravitating system during
violent relaxation, which is a phenomenon that starts
far from equilibrium. Besides, as discussed in §I, self-
gravitating systems are not able to fully mix the phase-
space, or at least are expected to be much less effective
in doing so than plasmas or fluids in laboratory.

From this discussion, it seems that there is no reason
to suppose that the symmetry of f (N) is a valid hypoth-
esis during violent relaxation. Besides that, the correla-
tions in situations far from equilibrium may be large [see
45], which also may contradict the assumption of molec-
ular chaos, Eq. (C8). Thus the Vlasov equation does not
seem to be valid during this process. In fact, as pointed
out by [46], the relation between the full N-body prob-
lem and the associated transport equation (presumably
the Vlasov equation) is far more complicated than usu-
ally assumed. Although we do not propose any concrete
alternative to Vlasov equation, we expect that during vi-
olent relaxation the one-particle distribution f must be
described by a full transport equation,

∂f

∂t
+ v · ∂f

∂r
−∇φ · ∂f

∂v
= L[f ], (33)

where L[f ] is a stochastic term (see [47]) related to
chaotic changes of the potential.
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This can be so even if we can neglect 2-body interac-
tions. The idea of the “collisional” term in the Boltzmann
equation is associated, not exactly with collisions, but to
any stochastic process that suddenly changes the prob-
ability flux of the test particle [see 44]. In ideal gases,
these processes are realized by the collisions, but for sys-
tems with long-range interactions, it can be a chaotically
time changing mean field. As the distribution function
f carries information about the system as a whole, the
long-range interactions transmit the small perturbations
of all particles to the test particle.

The above discussion is relevant for what we have pro-
posed in this paper for two reasons: first, it reinforces
our expectation that self-gravitating systems can achieve
a stationary state as a consequence of going through ir-
reversible processes, without the need to advocate the
coarse-grained sense usually attributed to this evolution
[42]. In other words, a real “arrow of time” is introduced
if the Vlasov equation is not valid during the violent
relaxation process and the stationary state can be pre-
dicted by the old strategy of maximizing the complexions,
i.e. the number of possible micro-configurations given
the constraints of the problem. Secondly, it is question-
able whether or not the Vlasov equation should imply
an exclusion principle constraint (as discussed in §II). In
case this equation is not valid during violent relaxation,
there would be even less reason to impose such constraint.
That is why we did not impose in our analysis the exclu-
sion principle proposed by Lynden-Bell [5].

VII. CONCLUSION

We propose a new criterion to choose between distin-
guishability and indistinguishability, namely the level of
mixing in phase-space. According to this, in systems that
do not have enough time to completely mix phase ele-
ments, particles in well mixed regions must be treated as
indistinguishable and particles in poorly mixed regions
must be treated as distinguishable. This criterion is con-
sistent with the standard classification of ideal gases as
being made of indistinguishable particles and of crystals
as being made of distinguishable particles. However it
opens new perspectives on the classification of systems of
macroscopic constituents like colloids and self-gravitating
systems. It also provides a solution to the Gibbs paradox
without the need of arguments related to the quantum
nature of particles (see Appendix B).

Violent relaxation is known to be incomplete, in the
sense that the particles (or stars) cannot explore all re-
gions of phase-space before the achievement of a station-
ary state. Thus the model proposed here can represent
a solution to this problem, explicitly translating this in-
completeness in the combinatorial analysis. According
to [38], during violent relaxation the particles “forget”
the positions and velocities but keep the initial order in
their energies. We express this fact treating particles as
indistinguishable for exchanges inside a macro-cell (that

defines an energy value) but as distinguishable for ex-
changes between macro-cells.

The result is a new distribution function that tends
to the Maxwell-Boltzmann distribution for high energies,
but deviates to another Maxwell-Boltzmann distribution
with twice the original “temperature” for low energies.

The density profiles generated by this distribution
function resemble those predicted by the Maxwell-
Boltzmann distribution, the Isothermal Sphere. As so,
they vary as ∝ x−2 in the external regions, yielding an
infinite mass system. However, in the external regions
the occupation numbers are small, invalidating the use of
Stirling’s approximation. Using the correction proposed
by [20], we obtain a distribution function that goes to
zero for an energy fixed by a parameter ε0. The density
profile generated by this corrected distribution function
is steeper in the external region, effectively solving the
infinite mass problem.

It is interesting to note that the corrected distribution
function resembles the “S” shape of the distribution as-
sociated with the Einasto profile, or at least provides a
correction in the right direction. The high energy part
of this function determines the behavior of the density
profile in the inner region [40] and our model seems to
go in the right direction to generate high densities that
could mimic a cuspy profile.

The new distribution function obtained in this work
can be tested and used in several astrophysical applica-
tions. For example, the resulting density profile can be
fit to gravitational lensing data from galaxy clusters, as
done for other models in [11]. Another direct test can be
made with data from rotation curves of spiral galaxies.
On smaller scales, analyses of the density profile can also
be made from optical data of globular clusters. A caveat
that we should point out is that the dissipative nature
of the baryon collapse also affects the density profile of
astrophysical objects [48], which complicates the compar-
ison with observational data.

The velocity distribution associated to the model can
be tested by fitting to the simulated data of structure for-
mation, as done by [49, 50] to test different models. In
the analysis of direct detection experiments such as the
XENON [51] and CDMS [52] projects, the velocity distri-
bution is an important ingredient for the predicted event
rate associated to different dark matter particles and the
model proposed here can be of some utility in this con-
text. Another possible application is in mass modeling
methods such as MAMPOSSt [53], in which the distribu-
tion of tracers in projected phase space is used to deter-
mine the total density and anisotropy profiles, starting
from the assumption of some 3D velocity distribution.

We also considered the possibility of preventing co-
habitation in micro-cells keeping the same criterion for
distinguishability as before, obtaining another distribu-
tion function, differing from the first by a ± sign. Both
distribution functions obtained here can be of some im-
portance for other phenomena far from equilibrium.

Finally, we showed how the association between the
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mixing level and indistinguishability gives a physical
meaning for the assumption of symmetry of the N-
particle distribution function f (N). This assumption is
equivalent to treat particles as indistinguishable, which
is a stronger assumption than treating them as identical

and, according to the criterion proposed here, it is equiv-
alent to the assumption that all particles have access to
the same regions of phase-space, i.e. that the system
is completely mixed. Since it is well known that such
mixing is not complete in self-gravitating systems during
violent relaxation, this suggests that the symmetry hy-
pothesis is not adequate and thus the Vlasov equation is
not necessarily valid during this process.

Appendix A: Einasto distribution function

The Einasto density profile was proposed in the 60’s
to describe the surface brightness of elliptical galaxies
and recently has been used to fit data of simulated [7, 8]
and observed structures in the galactic and galaxy cluster
scales [11], giving results better than NFW in many cases.
In fact, it can mimic the cuspy density profile described
by NFW, despite being finite at the origin. The profile
is given by

ρ̃(x) = exp
{

−2n(x1/n − 1)
}

. (A1)

The associated potential is given by [54]:

ϕ(x) = − φ(x)

|φ(0)| =
Γ(3n)

Γ(2n)

1

(2n)nx
×

[

1− Γ(3n, 2nx1/n)

Γ(3n)
+ (2n)nx

Γ(2n, 2nx1/n)

Γ(3n)

]

, (A2)

where Γ(a, x) is the (upper) incomplete gamma func-
tion. The distribution function F (ε) can be obtained
from Eq. (20) through an Abel transform [see 2]:

F (ε) =
1√
8π2

[

∫ ε

0

d2ρ̃

dϕ2

dϕ√
ε− ϕ

+
1√
ε

(

dρ̃

dϕ

)

ϕ=0

]

,

(A3)
where the second term in the square bracket is zero for
the Einasto profile. Following [40], we use Eqs. (A1)
and (A2) and solve the integral above numerically. The
results are shown in Fig. (4) for two values of n.

Appendix B: The Gibbs paradox

Since the beginning of the development of statistical
mechanics up to the present days, the Gibbs paradox
has brought many discussions and attempts of solution,
definite for ones and unsatisfactory for others. It can
be described in various forms, in particular as follows
[55]: an enclosure volume V is divided by a wall into two

volumes V1 and V2 filled respectively with N1 and N2

molecules with mass m of the same gas subject to the
same conditions of pressure and temperature. Assuming
that the particles are distinguishable, the initial number
of micro-states compatible with the macro-state 1, the
same being for 2, is:

W 1
I =

∫

d3 ~r1...

∫

d3 ~rN1

∫

d3 ~p1...

∫

d3 ~pN1
⇒ (B1)

W 1
I = V N1

1 · (2πm)
3N1

2

Γ
(

3N1

2

) E
3N1

2

1 (B2)

We calculate the entropy as S1
I = lnW 1

I (the same
for 2) and the total entropy is SI = S1

I + S2
I . Setting

f = N1/N = V1/V = E1/E, and applying the thermo-
dynamic limit (N → ∞), the entropy per particle is

SI

N
= sI = f ln f + (1− f) ln (1− f)+

+ lnV +
3

2
lnu+

3

2
ln

(

4π

3
m

)

+
3

2
, (B3)

where u = E/N is the energy per particle and it was used
the Stirling’s approximation, lnN ! ≈ N lnN −N .

After removing the wall and considering the system as
whole, recalculation of the total number of micro-states
gives

WF = V N · (2πm)
3N

2

Γ
(

3N
2

) E
3N

2 , (B4)

and it follows that

sF = lnV +
3

2
lnu+

3

2
ln

(

4π

3
m

)

+
3

2
. (B5)

Thus, the entropy before and after removing the division
differ by

∆s = − [f ln f + (1− f) ln (1− f)] . (B6)

In the particular case of equal volumes we have

∆s = ln 2. (B7)

Therefore, if we consider that the gas particles are distin-
guishable, as classically assumed, we conclude that there
was an increase in entropy, which does not agree with the
fact that there is no macroscopic change in the system.
Hence the paradox.

If on the other hand we assume that the particles are
indistinguishable, we have to divide the number of com-
plexions obtained previously by the number of permuta-
tions of the N1, N2 or N particles. Thus,

W 1
I =

1

N1!

∫

d3 ~r1...

∫

d3 ~rN1

∫

d3 ~p1...

∫

d3 ~pN1
, (B8)
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the same for 2. Following the same steps as in the previ-
ous case, we arrive at

sI = ln v +
3

2
lnu+

3

2
ln

(

4π

3
m

)

+
5

2
, (B9)

where v = V/N . Again, removing the wall, the phase
space and the entropy become

WF =
1

N !

∫

d3 ~r1...

∫

d3 ~rN

∫

d3 ~p1...

∫

d3 ~pN (B10)

and

sF = ln v +
3

2
lnu+

3

2
ln

(

4π

3
m

)

+
5

2
⇒ (B11)

∆s = 0. (B12)

Thus, removal of the wall does not produce increase in
entropy (which is within our expectations), once we con-
sider that the particles are indistinguishable, the justifi-
cation being traditionally associated with the quantum
behavior of the gas molecules.

On the other hand, according to this standard inter-
pretation, a system with particles almost identical (with
arbitrarily similar mass, for example) would still present
the same increase in entropy. This discontinuity, passing
from identical to arbitrarily similar particles, still cannot
be explained if the indistinguishability depends on the
particles being strictly identical.

Furthermore, appealing to quantum mechanics to solve
Gibbs paradox is deemed unsatisfactory to some authors
[34], because it should not be necessary to use quantum
arguments in a strictly classical conceptual problem. In
other terms, it is not an experimental evidence of need for
quantum physics, but a conceptual inconsistency internal
to classical physics, which should be solved in classical
terms.

Appendix C: BBGKY Hierarchy

Let a system with N -particles be described by the
Hamiltonian

H =

N
∑

a=1

[

p2
a

2m
+

N
∑

b=a+1

U (|ra − rb|)
]

, (C1)

where U (|ra − rb|) is the potential energy. The evolution
of the N−particle distribution function f (N) is governed
by Liouville equation [Eq. (32)]. With the help of Hamil-
ton equations, it reads

∂f (N)

∂t
+

N
∑

a=1

(

∂f (N)

∂ra

pa

m
− ∂f (N)

∂pa

N
∑

b=a+1

∂Uab

∂ra

)

= 0,

(C2)

where Uab = U (|ra − rb|).
We want to derive the equation for the one-particle

distribution f . This function is not to be interpreted
as describing the evolution of some specific particle, but
that of a test particle randomly chosen. In this sense, it
keeps statistical information about the system as a whole,
even-though referring to coordinates of one particle. Also
we normalize the one-particle distribution f taking into
account all the permutations between the (N−1) remain-
ing particles [43]:

f =
N !

(N − 1)!

∫

f (N)(Γ1, . . . ,ΓN )dΓ2 . . . dΓN , (C3)

where dΓi = dridpi. Following standard steps we inte-
grate Eq. (C2) in dΓ2 . . . dΓN , obtaining

(N − 1)!

N !

(

∂f

∂t
+
∂f

∂r1

p1

m

)

=

=
∂

∂p1

N
∑

b=2

∫

f (N) ∂U1b

∂r1
dΓ2 . . . dΓN . (C4)

The integral in the right hand side represents the force
exerted on the test particle by each one of the other par-
ticles, averaged over the phase space region occupied by
each of them. Now comes the first strong assumption:
if we suppose that the N -particles distribution f (N) is
symmetric in the particles coordinates Γ1 . . .ΓN , the av-
eraged contribution to the total force exerted on the test
particle is equal for each one, and we have

N
∑

b=2

∫

f (N)∂U1b

∂r1
dΓ2 . . . dΓN =

= (N − 1)

∫

f (N)∂U12

∂r1
dΓ2 . . . dΓN . (C5)

Accordingly, we define the two-particles distribution
function as

f (2) =
N !

(N − 2)!

∫

f (N)(Γ1, . . . ,ΓN )dΓ3 . . . dΓN , (C6)

thus obtaining

∂f

∂t
+
∂f

∂r1

p1

m
=

∫

∂U12

∂r1

∂f (2)(t,Γ1,Γ2)

∂p1
dΓ2. (C7)

Now comes the second strong assumption, that of molec-
ular chaos, according to which

f (2)(t,Γ1,Γ2) = f(t,Γ1)f(t,Γ2), (C8)

and we finally obtain the Vlasov equation:

∂f

∂t
+
∂f

∂r
v − ∂φ

∂r

∂f

∂v
= 0, (C9)

where we used p = mv and the mean potential φ(r) is
given by

φ(r, t) =
1

m

∫

U(|r− r
′|)f(r′,p′, t)dr′dp′. (C10)
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