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Abstract – An experimental study is presented, about transitions between Non-Equilibrium
Steady States (NESS) in a dissipative medium. The core device is a small rotating blade that
imposes cycles of increasing and decreasing forcings to a granular gas, shaken independently.
The velocity of this blade is measured, subject to the transitions imposed by the periodic torque
variation. The Hatano-Sasa (HS) equality, that generalises the second principle of thermodynamics
to NESS, is verified with a high accuracy (a few 10−3), at different variation rates. Besides, it is
observed that the fluctuating velocity at fixed forcing follows a generalised Gumbel distribution. A
rough evaluation of the mean free path in the granular gas suggests that it might be a correlated
system, at least partially.

Copyright c© EPLA, 2012

Introduction. – Recent decades have seen significant
progress in non-equilibrium statistical mechanics, with the
advent of the Fluctuation Theorems, the Jarzynski and
Crooks relations [1–3]. These relations were at the time
theoretical advances, with the support of the numerics.
Experimental contributions came later, mostly because of
technical limits. Indeed, the scales at which thermal energy
dominates are small. Measurements of fluctuations at such
scales has been prohibitively difficult until recently.
Usually, an inequality involving the average entropy

production is the expression of the second principle of
thermodynamics. The improvement brought by the fluc-
tuation theorems is that an instantaneous rate of entropy
production is expressed by an equality. It is somehow a
local formulation.
The Jarzynski equality relates the Helmholtz free energy

difference ∆F between two states A and B, to the
average of the exponentiated work needed to perform the
transition:

e−β∆F =
〈
e−βW

〉
. (1)

The brackets denote the average over a large number of
transition paths, and β = 1/kBT , with kB the Boltzmann
constant and T the temperature of the heat reservoir.
It can be equivalently written:

〈
e−βWdiss

〉
= 1, (2)

where Wdiss =W −∆F is the work dissipated into heat
during the transition.
The Jarzynski relation is valid for any transformation,

whatever the rate. For a reversible transition, Wdiss is
obviously zero. The fluctuation theorems, as well as
the Jarzynski and Crooks relations, refer to systems in
equilibrium states, or submitted to transitions between
equilibrium states, reversible or not.
Another relation was derived latterly by Hatano and

Sasa, in 2001. Generalising the Jarzynski equality, their
prediction is drastically distinct as it addresses transitions
between NESS of overdamped Langevin type instead of
equilibrium states. In that case, the forcing consists in
non-conservative and potential forcings, together with a
Gaussian white noise forcing, uncoupled to each other [4].
It writes similarly as the Jarzynski’s equality (eq. (2)):〈

e−Y
〉
= 1, (3)

with:

Y =

∫
τ

dt α̇
∂ ln [ρss(x;α)]

∂α
. (4)

The integral is evaluated over the transition time τ
between two distinct NESS. The dot refers to time
derivative, and ρss(x;α) is the steady-state probability
density function (PDF) of the observable x at a specified
value α of the control parameter.
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It is implicitly assumed that for any fixed value of α,
the system relaxes to a single steady state characterised by
ρss(x;α). Equation (3) is expected whatever the transition
rate.
In a sense, the Jarzynski relation is a local extension of

the 2nd principle for equilibrium states, whereas Hatano-
Sasa (HS) equation is its extension for NESS. Beyond the
formal analogy between eqs. (2) and (3), the HS relation
comes from a distinct and more general phenomenological
framework, called Steady-State Thermodynamics [5,6].
Regarding the prediction of eq. (3), only two experi-

mental confirmations have been produced so far. First is
that of Trepagnier et al. [7], that dragged periodically a
colloidal particle in water, with an optical tweezer. This
system verifies all the requirements of the theorem, as the
solvent is at equilibrium. It is a perfect case of Brownian
motion, biased by an external conservative force. More
innovative is the recent work of Gomez-Solano et al. [8].
These authors performed a similar experiment, dragging
a colloidal particle with an optical tweezer in water. But
instead of equilibrium states, it is prepared in NESS before
cycling of the order parameter, according to a specified
protocol.
A step beyond, the present study is an experimental

evidence that the HS equality also holds in a granular gas,
i.e. for transitions between NESS in a dissipative medium.
The HS relation (eq. (3)) refers to NESS Markovian

processes, where fluctuations are not specifically of ther-
mal origin. Therefore, the smallness of kBT must not be
a limit... In other words, there is no need to study micro-
scopic systems. The experiment presented here actually
addresses a macroscopic system: it is extremely simple on
its principle, and rather easy technically.
In a dilute, continuously shaken granular gas, a blade

is rotated around a vertical axis by a small DC motor
at controlled torque. The angular velocity, resulting of
this external torque and the numerous collisions with the
beads, is the stationary fluctuating quantity under study.
It is measured by the very same DC motor that forces
the rotation. The torque, which is the control parame-
ter, is ramped up and down periodically, causing tran-
sition between steady states of different mean velocities.
Histograms of the velocity are recorded for different values
of the torque.
These histograms appeared unexpectedly well fitted

by a generalised Gumbel (GG) distribution. This is an
intermediate outcome of the present study, extremely
useful for the calculations of eq. (4). Indeed, as the
derivative of a GG distribution can be expressed exactly,
the integral can be formulated. Therefore, it is easy to
verify eq. (3), for different ramps of the control parameter.
However, a tentative interpretation of this interesting

observation is given in the last section.

Experiment. – The set-up is sketched in fig. 1. It is
an improved version of the one used recently to study
Fluctuation Theorem [9]. It makes use of a DC motor,

Fig. 1: The mechanical system is composed of a vibrating vessel
containing the beads, excited by a shaker. The probing DC
motor is fixed on the cover, here pulled out for clarity.

converting current into torque, reversely used as a gener-
ator to convert momentum into voltage. The same device
is thus employed as actuator and sensor. A light plastic
blade, embedded into a vibrated granular gas, is driven
by a small and light DC motor. Forcing the rotation of
the blade through the current (torque), one can measure
simultaneously the rotation velocity through the voltage.
The granular gas is composed of about 300 stainless

steel beads of 3mm diameter, vibrated in an aluminum
vessel by a shaker. The vessel is 5 cm diameter and 6 cm
deep, and its bottom is slightly cone-shaped to enhance
horizontal momentum transfer. Thanks to a generator and
a power amplifier, the shaker is supplied by a sine current
at 40Hz, providing a vertical acceleration of 41ms−2. In
that conditions, the granular gas is rather dilute. The
blade is 2 cm ×2 cm, placed a few mm from the bottom.
The nominal power of the DC motor is 0.75W. The rotor
is ironless, to minimise inertia, and precious metal brushes
improve the electrical contact with the commutator.
A current I injected into this motor results in a torque:

Γ∝ I, performing work against the granular gas. The same
device can be used as a generator. In that case, the induced
voltage e is proportional to the angular velocity: e∝ θ̇. The
proportionality factor accounts for the electro-mechanical
characteristics of the motor. As it is the same in the motor
or generator function, calibration is not needed.
Note that the excitation of the vibrator that keeps the

granular gas in a NESS by compensating the dissipation,
is totally distinct of the torque applied by the motor to
probe the gas. The former is a few Watts, as the later is a
few mW to minimise perturbation as much as possible.
The electric circuit is shown in fig. 2. The DC voltage

supply is u0 = 10V (stabilised). The current I is driven
by the voltage u supplied by a function generator. A
time constant related to the inductance is irrelevant. The
motor is depicted in fig. 2 as the assembly of a voltage
source e (∝ θ̇), and the internal resistance r� 21.2Ω. The
current is measured, thanks to a shunt resistor R= 56Ω.
A 24 bits simultaneous data acquisition system records the
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Fig. 2: The electrical sketch of the motor’s command.
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Fig. 3: Sketch of the control parameter cycles, driving the
system at “High” torque and “Low” torque NESS, or in
constant rate transitions in-between. The transition time is τ .

signals u0, u1 and u2 at a sampling frequency of 1024Hz.
The instantaneous current I(t) and induced voltage e(t)
are easily calculated from these voltage measurements:
I(t) = (u0(t)−u1(t))/R and e(t) = u1(t)−u2(t)− r I(t).
The voltage generator is programmed to perform a cycle

between low- and high-current regimes, i.e. torque cycles
(fig. 3). Various periods and transition rate have been
performed, as discussed below. Each of the regime L or
H, corresponds to a NESS. One precaution to be taken
concerns the values of u0 and u. They must allow currents
I such that the motor never completely stops rotating.
Thus, no static friction is to be accounted for. Avoiding
this difficulty is the reason why low values of torque are
not explored in this work.
A thermometer has been added on the vessel’s cover

to follow the temperature drift during the measurement.
The temperature increases of about 5◦ during a typical
transient time of 5 hours. This elevation of temperature
perturbs the measurements, probably because of the vari-
ation of air viscosity. Only the measurements performed
after this transient of a few hours are considered.

Principle. – When the torque is fixed, the blade
rotates with a fluctuating angular velocity. The fluctua-
tions are caused by the collisions with the granular gas.
The equation of motion of the blade+ rotor mobile writes:

Mθ̈+ γ(θ̇) = Γ(t)+ η(t), (5)

where θ is the angle, and dots stand for time derivatives.
M and γ are, respectively, the moment of inertia and the
viscous friction term. This γ(θ̇) stands for an effective
viscous damping due to the collisions, like in Brownian
motion. It also includes a negligible (turbulent) drag on
air. A small solid friction term is present, mostly in the
commutator of the motor. It is constant, as the driving is
such that the mobile never stops rotating. It can therefore
be included as an offset in the torque Γ, and play no role.
The deterministic torque Γ(t) is imposed from outside.
The last term η(t) is the random force accounting for the
shocks of the beads. It represents the coupling with the
NESS granular gas heat bath, i.e. the momentum transfer
rate at each shock with the beads. All this description is
written with Brownian motion theory in mind. Hints are
given below that this description might not be correct.
Equation (5), that mimics the probing device, governs

the velocity resulting from the balance between a deter-
ministic forcing, the coupling with a steady-state reser-
voir, and friction. At first glance, it takes the form of a
Langevin equation, if the noise η can be considered short-
time correlated. However, a first difficulty comes from the
dependences of the forcings with one another. Indeed,
the random force η(t) is affected when Γ(t) is changed,
as shown below. The whole balance between determinis-
tic and random forcings is varied. The angular velocity
θ̇ follows in a non-trivial manner. All things considered,
the description of this system with eq. (5) as a Langevin
equation is not as simple as it first appears.
The purpose of this work is to study transitions between

two NESS, characterised by the fluctuating angular veloc-
ity θ̇(t), while Γ(t) is ramped at fixed rate between two
specified values corresponding to ‘states’ L and H. The
HS equality is verified with a very good accuracy.
For convenience, another set of variables than {θ̇,Γ}

is used. The observable e (in volts) is centered and
normalised, such as x(t) = (e(t)− ē)/σ, with the mean e,
and the variance σ2 = (e− e)2. (The bar denotes time-
average within a single steady state.) The control para-
meter is from now on the current I(t) (in amperes).
As already mentioned, the calibration factor is left aside,

not necessary to test eq. (3). This equation is rewritten
with the new working electric variables:

〈
exp

(
−
∫
τ

dt İ
∂ ln [ρss(x ; I )]

∂I

)〉
= 1. (6)

As discussed above, the quantities {x, I} are directly
measured. The whole analysis procedure is performed on
this new set of variables. The derivative of ln [ρss(x; I)]
is to be taken from the histograms calculated over large
samples of x, at fixed values of I.
The integration over the transition time is easy, as

well as the average over a large number of transitions.
The derivative of histograms with respect to the control
parameter I is actually more difficult. However, a specific
character of these histograms is to be well fitted by a GG
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Fig. 4: (Colour on-line) A histogram of the centered and
normalised induced voltage x(t) = (e(t)− e)/σ at fixed current
I is plotted in semi-log axis (dots). The fitting is performed
with a GG distribution (line). The best fit is obtained for
a= 2.5.

distribution (see next section). This observation is of great
help for the analysis procedure.

The generalised Gumbel distribution. – The
histograms of x at fixed I have an asymmetric but univer-
sal shape, whatever the value of the control parameter I.
They are very well fitted by a GG distribution (fig. 4).
Assuming the variable x is distributed according to a

GG law, it is characterised by a single shape parameter a,
that accounts for the asymmetry: a∼ 1/〈x3〉2. (The PDF
tends to a Gaussian distribution if a→∞.) It writes
ρss(x) =Kaexp [a [−ba (x + sa)− exp (−ba (x + sa))]] .

(7)
The mean and the variance, as well as the normalisation
factor, can all be expressed as functions of a:

ba =

√
d2lnΓ(a)

da2
, (8a)

sa =
1

ba

(
ln(a)− dlnΓ(a)

da

)
, (8b)

Ka =
aaba

Γ(a)
, (8c)

thanks to the gamma-function: Γ(a) =
∫∞
0
ta−1e−tdt.

As the PDF’s shape as well as the mean and standard
deviation only depends on a, it can be rewritten as
ρss(x; a) after a change of variable. The integral term Y
of eq. (6) is therefore rewritten:

Y =

∫
τ

dt İ

(
da

dI

)
∂ ln [ρss(x ; a)]

∂a
. (9)

The dependence on I of the parameter a, obtained from
the fitting of the histograms, allows to calculate

(
da
dI

)
.

Assuming ρss is a GG distribution, the differentiation
needed in eq. (9) can be performed exactly.

0.01 0.011 0.012 0.013 0.014 0.015

0.22

0.24

0.26

e
(V

)

0.01 0.011 0.012 0.013 0.014 0.015
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0.08

I (A)

σ
(V

)

Fig. 5: (Colour on-line) The mean value e (top) and the
standard deviation σ (bottom) at fixed current I is plotted
against I. A linear fitting is performed over the range available.

Results. – To center and normalise the variable e, the
mean e and standard deviation σ are directly measured
from the voltage time series corresponding to stationary
states for over ten fixed values of I. They are plotted
against the current I in fig. 5. A linear fitting is performed,
valid at least in the range of interest.
The standard deviation σ is a growing function of I, not

expected to cancel for I = 0. Indeed, at zero torque, fluc-
tuations of velocity remain, because of the random forc-
ing η. By effecting certain calibration, it could be linked
in a non-local manner to a granular temperature [10].
It is to be noticed that an extrapolation of e following

the linear fitting does not go to 0 for I = 0. This is obvi-
ously abnormal, as the blade should not rotate without
torque (for symmetry reason, as 〈η〉= 0). There might be
a nonlinearity γ(θ̇) in the “viscous drag” of eq. (5). This
point is discussed below.
Now, the fitting of the histograms for different values

of I is performed, and the parameter a is extracted. It is
plotted against I in fig. 6. This parameter a increases for
lower I, meaning that the distribution symmetrises when
the external excitation decreases. Joubaud et al. recently
observed in a granular gas, that velocity fluctuations with-
out external forcing look Gaussian [11]. Their experiment
is designed for small static friction. It is not quite accurate
to do such measurements here in this low-torque regime,
because of the friction in the commutator of the DC motor.
The linear fittings give the simplest dependence of those

three quantities with I:

e= 9.3I +0.12, (10a)

σ= 2.6I +3.2 10−2, (10b)

a=−4.7 102I +10
(
⇒ da
dI
=−4.7 · 102

)
. (10c)
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Fig. 6: (Colour on-line) The asymmetry coefficient a is obtained
for each I by fitting the histogram with a GG distribution. a is
plotted against the current I, together with the inverse squared
skewness.

It is not surprising to notice that the statistical noise is
larger for increasing order moments: e, σ, and a.
A tedious derivation leads to the following exact expres-

sion for the log-derivative of the GG distribution:

∂ln [ρss(x; I)]

∂a
=

1

2Ψ′
[
Ψ′′− 2xΨ′3/2+(a− eΨ−x

√
Ψ′)(2Ψ′2−x

√
Ψ′Ψ′′)

]
,

(11)

where Ψ(a) = dlnΓ(a)da is the so-called digamma function,
Ψ′ and Ψ′′ its successive derivatives with respect to a.
In the limit a→∞, this expressions reduces to a

quadratic form: ∂ln[ρss(x;I)]
∂a

= 1
2a (x

2− 1), consistent with a
Gaussian ρss(x; I), as

da
dI < 0. This limit refers to vanishing

I, as discussed above; the linear relation between I and a
is only a working approximation.
The log-derivative is computed for all the measured time

series x(t), then multiplied by İ and dadI . Realisations of Y
are obtained by integration for each transient. Thence,
the average of the exponential over dozens of transitions
is carried out, separately for leading and trailing edges
(increasing and decreasing torques), for slow and fast
transition rate. Results are shown in table 1.
Y is equivalent for one path between two NESS to the

dissipated work between two equilibrium states calculated
through Jarzynski equation. It would certainly be interest-
ing to compute its histogram. However, the sample would
have to be much larger than that presently available.

Discussion. – This article presents an experimental
study of a granular gas, regarded as an ersatz of a heat
reservoir. The granular gas is considered as a thermostat,
however dissipative. A simple device coupled to this
reservoir exchanges energy with it.
This experiment takes advantage of the fact that small-

ness of the systems is not required. The granular gas is

Table 1: The HS eq. (3) is confirmed with a very good accuracy.

Leading edge Trailing edge

τ = 10 s 0.9890 1.0069

τ = 30 s 1.0012 0.9985

probed with a blade rotating about its vertical axis, whose
velocity is measured at controlled torque. The torque is
cycled in such a way that angular velocity undergoes tran-
sitions between stationary states.
The Clausius inequality gives a lower bound to the work

dissipated in transitions between equilibrium states. The
HS equality generalises it to transitions between NESS.
This article describes the first experimental observation of
the HS prediction in a dissipative system. The agreement
is impressive even if the dependence of the distribution is
not known over the full range. It appears to hold indiffer-
ently whether the forcing is undergoing an increasing or
decreasing transient, whether steep or gentle.
Strictly speaking, the HS relation is expected to be

valid for stationary states. However, one could expect no
departure as long as the transition time τ is larger than
a microscopic time of the reservoir’s fluctuations, where
rearrangements can occur during the evolution of the order
parameter. As it is the mean time between two shocks,
such rapid transition is probably limited in the present ex-
periment by the inertia of the blade. Therefore, the range
of applicability of the HS relation is larger than expected,
from this point of view. A generalisation of the HS theorem
to non-stationary processes is discussed in [12].
It is assumed from the beginning that the gas is dilute.

To make this statement quantitative, the mean free path is
evaluated, thanks to crude dimensional arguments. First,
the density. Because of vertical stratification, density is
larger in the lower part of the cell. If all the beads
are assumed uniformly distributed in the lower h= 1 cm
of the cell, the density is n=N/(πR2h), with R the
radius of the vessel and N = 300 the number of beads.
It gives n∼ 16 cm−3, which means that the mean distance
between beads is about 4mm. Now, following the kinetic
theory of gases, the mean free path is λ= 1/(nπr2), where
r= 1.5mm is the radius of a bead. It gives λ∼ 9mm.
This evaluation is a rough order of magnitude, it should
be improved. However, it is close to any length in this
experiment! Besides, the correlation time of x(t) is of

the order of 24ms. This corresponds roughly to λ/(L θ̇).
Correlation in space and time are consistent.
This result, associated with the asymmetry of the PDF

and the nonlinearity of the “drag” γ(θ̇), shows that a
description of this system in terms of a simple Brownian
motion is too simplistic. The Knudsen number must be
considered, defined as: Kn= λ/L, L being a characteristic
length of the system, like the radius of the blade.
The central requirement for a process to verify the HS

equality is to follow an overdamped Langevin equation.
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The gas being rarefied means that collisions come one by
one on the blade. Therefore, the noise η(t) is not likely
to be a Gaussian white noise, and assuming a (nonlinear)
friction γ(x) is not representative of the physical reality.
There is no reason to neglect the inertial term in eq. (5).
For all these reasons the equation of motion does probably
not verify required conditions, i.e. with such a high Kn,
the system does not behave like simple Brownian motion.
In such case, the experimental verification of the HS

equality enlarges its range of validity. A better determina-
tion of λ, or a direct test of the Markovian character of the
process is badly needed. (Numerically?) An opening would
be trying this relation with experimental processes clearly
non-Markovian, or rapidly varying, change parameters like
stratification, density, sizes, excitation, to identify which
conditions causes failure of HS prediction.
Besides, it is shown that the fluctuations of velocity

at fixed forcing, and therefore the power injected by the
blade into the granular gas, are asymmetric and resem-
ble a GG distribution. Such kind of distribution has been
found describing fluctuations of power injected in dissipa-
tive or correlated systems (see experiments on turbulent
flows in [13,14], numerical simulations on granular gases
in [15]), or other global quantities such as the fluctuations
of magnetisation in critical ferromagnetic systems with
finite-size effects (see XY or Ising model computations
in [16,17]). The usual theoretical explanation for such sta-
tistics is that global quantities’s fluctuations are affected
by correlations (see [18,19] and references therein). The
very basic idea is that the shape parameter a is linked to
the number of degrees of freedom of the system: asym-
metry comes from the finiteness of this number. In the
present situation, the tentative explanation relies on the
relationship between the relatively large value of Kn and
correlation.
Another cause of asymmetry in statistics can be cluster-

ing, due to dissipation. However, it would simply enhance
vertical density stratification, without causing clusters
that the blade would hit during its rotation.
A blade of half width (1 cm ×2 cm) has been tried in

the same configuration. As a result, the fluctuations are
much more asymmetric (a is much smaller, for instance
5.52→ 2.45). This observation corroborates qualitatively
the previous argument, as Kn is doubled.
At this point, it is important to clarify the Markovian

character of the process involved, and the correlations
in the system. Answers to these questions could mean a
widening of the conditions of this theorem, and explain
the asymmetric statistics altogether. It could also be
interesting to relate the parameter a to Kn.
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