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Convergence rate of strong approximations of
compound random maps

Emmanuel Gobet∗ Mohamed Mrad †

April 11, 2015

Abstract

We consider a random map x 7→ F (ω, x) and a random variable Θ(ω), and we
denote by FN (ω, x) and ΘN (ω) their approximations: We establish a strong con-
vergence result, in Lp-norms, of the compound approximation FN (ω,ΘN (ω)) to the
compound variable F (ω,Θ(ω)), in terms of the approximations of F and Θ. Two
applications of this result are then developed: Firstly, composition of two Stochastic
Differential Equations through their initial conditions; secondly, approximation of
stochastic processes (possibly non semi-martingales) at random times (possibly non
stopping times).

Keywords: strong approximation, Garsia-Rodemich-Rumsey lemma, Euler schemes,
Iterated Brownian motion, local time, Fractional Brownian motion

MSC: 60Hxx, 60Gxx

1 Introduction
Since the seventies, the numerical analysis of stochastic systems is a research field
on its own and it has tremendous applications in engineering sciences. This work
enriches this vast area by addressing the following natural questions. Consider a con-
tinuous random map x 7→ F (ω, x) and a random variable Θ(ω), and their numerical
approximations FN (ω, x) and ΘN (ω) for some convergence parameter N → +∞:

- Under which assumptions does the compound approximation ω 7→ FN (ω,ΘN (ω))

converge in Lp to the compound map ω 7→ F (ω,Θ(ω))?

- What is the convergence rate and how does it depend on those related to the
approximations FN to F and ΘN to Θ?

∗Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, Route de Saclay, 91128
Palaiseau Cedex, France. Email: emmanuel.gobet@polytechnique.edu. Corresponding author.
†Laboratoire Analyse, Géométrie et Applications (UMR CNRS 7539), Institut Galilée, Université

Paris 13, France. Email: mrad@cmap.polytechnique.fr.

1



It is easy to guess that the analysis would be straightforward if (F, FN ) were in-
dependent of (Θ,ΘN ), by using a conditioning argument. On the contrary, here
our aim is to allow arbitrary dependencies and study the strong convergence in this
general setting (convergence in Lp-norms).

Among the applied probability community, there is an increasing interest for
strong convergence rates because they constitute the corner stone for designing effi-
cient Multi-Level Monte Carlo methods [Hei01, Gil08] (which significantly speeds-up
Crude Monte Carlo methods). In this work, we provide generic results which pave
the way for establishing strong convergence rates in complicated situations where
results were not available so far. Hopefully, it will open the door for many other
interesting issues.

The paper is organized as follows. In Section 2 we state a general convergence
result (Theorem 1) estimating the Lp-error

∥∥FN (ΘN )− F (Θ)
∥∥
Lp
, and then we prove

it. For this we assume locally uniform approximations on FN −F , and local-Hölder
continuity on F . These assumptions being possibly difficult to check in practice,
we then give much easier conditions that imply the first ones, using the Garsia-
Rodemich-Rumsey lemma with precise quantitative controls.
In Section 3, we study the error induced by compound Euler schemes related to
Stochastic Differential Equations (SDEs for short), through their initial conditions.
This question originates in the resolution of Stochastic PDEs using stochastic flows.
In Section 4, we analyse the error arising when stochastic processes are evaluated
at random times, both being approximated. Then, examples are developed, such as
Brownian local times at random points, Fractional Brownian motions or diffusion
processes at Brownian time.

2 Lp-approximation of compound random maps
The section is devoted to stating and proving a general result (Theorem 1). Appli-
cations are postponed to subsequent sections.

2.1 Assumptions
Let (E , |.|) be a separable Banach space and (Ω,F ,P) be a probability space. We
are given

• a random field, i.e. a F ⊗ B(Rd)-measurable mapping (ω, x) ∈ (Ω,Rd) 7→
F (ω, x) ∈ E , continuous in x for a.e. ω;

• a F-random variable Θ : Ω 7→ Rd.

Let FN and ΘN be respectively approximations of F and Θ, where N → +∞ is a
asymptotic parameter; we aim at controlling in Lp the random variable

ω ∈ Ω 7→ FN (ω,ΘN (ω))− F (ω,Θ(ω)) ∈ E

which will be denoted by FN (ΘN )− F (Θ) for the sake of simplicity. For p > 0 and
for a random variable Z : Ω 7→ E or Rd, we set ‖Z‖Lp = (E |Z|p)1/p: We say that

2



Z ∈ Lp if ‖Z‖Lp < +∞. Despite ‖.‖Lp is not a norm for p < 1, we refer to it as
Lp-norm to simplify the discussion.

(H1) For any p > 0, there exist constants α(H1)
p ∈ [0,+∞) and C(H1)

p ∈ [0,+∞)

such that ∥∥∥∥∥ sup
|x|≤λ

|F (·, x)|

∥∥∥∥∥
Lp

≤ C(H1)
p λα

(H1)
p , ∀λ ≥ 1. (H1)

(H2) There is a κ ∈ (0, 1] such that for any p > 0, there exist constants α(H2)
p ∈

[0,+∞) and C(H2)
p ∈ [0,+∞) such that∥∥∥∥∥ sup

x6=y,|x|≤λ,|y|≤λ

|F (·, y)− F (·, x)|
|y − x|κ

∥∥∥∥∥
Lp

≤ C(H2)
p λα

(H2)
p , ∀λ ≥ 1. (H2)

(H3) For any p > 0, there exist a constant α(H3)
p ∈ [0,+∞) and a sequence

(C
N,(H3)
p )N≥1 with CN,(H3)

p ∈ [0,+∞) such that∥∥∥∥∥ sup
|x|≤λ

|FN (·, x)− F (·, x)|

∥∥∥∥∥
Lp

≤ CN,(H3)
p λα

(H3)
p , ∀λ ≥ 1, ∀N ≥ 1. (H3)

(H4) For any p > 0, there exist a constant C(H4-a)
p ∈ [0,+∞) and a sequence

(C
N,(H4-b)
p )N≥1 with CN,(H4-b)

p ∈ [0,+∞) such that

‖Θ‖Lp ∨
∥∥ΘN

∥∥
Lp
≤ C(H4-a)

p , ∀N ≥ 1, (H4-a)∥∥ΘN −Θ
∥∥
Lp
≤ CN,(H4-b)

p , ∀N ≥ 1. (H4-b)

These conditions state that all random variables belong to any Lp, with some locally
uniform estimates w.r.t. the space dependance; the extension to belonging to some
Lp only would be easy and is left to the reader.

2.2 Main results
Had the random variable Θ be bounded by a finite constant Λ, we would have directly
obtained

∥∥FN (Θ)− F (Θ)
∥∥
Lp
≤ CN,(H3)

p Λα
(H3)
p . The extension to non bounded r.v.

Θ is non trivial and is being achieved in Theorem 1 and its proof. The following result
(inspired by [KS97, Lemma 2.1]) is instrumental in our analysis. In particular, it
enables to justify that the quantities of study are well defined as Lp random variables.

Proposition 1. Let E be an Euclidean space. Let G be a F ⊗ B(E)-measurable
mapping taking values in E such that, for any p > 0 there exist constants α(G)

p ∈
[0,+∞) and C(G)

p ∈ [0,+∞) for which∥∥∥∥∥ sup
|x|≤λ

|G(·, x)|

∥∥∥∥∥
Lp

≤ C(G)
p λα

(G)
p , ∀λ ≥ 1. (1)

Let ξ be a random variable taking values in E, with finite Lp norms for any p > 0.
Then for any p > 0, ω 7→ G(ω, ξ(ω)) ∈ Lp and for any finite conjugate exponents r
and s (r−1 + s−1 = 1), we have the estimate

‖G(ξ)‖Lp ≤ C
(G)
pr (ζ(r))1/(pr) 2α

(G)
pr +1/p

(
1 + ‖ξ‖α

(G)
pr +1/p

L
s(α

(G)
pr p+1)

)
3



where ζ(r) :=
∑

n≥1 n
−r is the Riemann zeta function.

The above result will be extended later in Proposition 8 (Subsection 4.4), when
the polynomial growth (1) is replaced by an exponential one and when the random
variable ξ has exponential moments.

Proof. Using twice Hölder inequalities, we obtain

E (|G(·, ξ)|p) ≤
∑
n≥1

E

(
sup
|x|≤n

|G(·, x)|p1n−1≤|ξ|<n

)

≤
∑
n≥1

(
E

(
sup
|x|≤n

|G(·, x)|pr
))1/r

P (n− 1 ≤ |ξ| < n)1/s

≤ [C(G)
pr ]p

∑
n≥1

1

n
nα

(G)
pr p+1P (n− 1 ≤ |ξ| < n)1/s

≤ [C(G)
pr ]p

∑
n≥1

1

nr

1/r∑
n≥1

ns(α
(G)
pr p+1)P (n ≤ |ξ|+ 1 < n+ 1)

1/s

≤ [C(G)
pr ]p (ζ(r))1/r

(
E
(

(|ξ|+ 1)s(α
(G)
pr p+1)

))1/s

.

Therefore, ‖G(ξ)‖Lp ≤ C
(G)
pr (ζ(r))1/(pr)

(
1 + ‖ξ‖L

s(α
(G)
pr p+1)

)α(G)
pr +1/p

where we have

used the Minkowsky inequality. We complete our statement by using

(a+ b)γ ≤ 2(γ−1)+ (aγ + bγ) ≤ 2γ (aγ + bγ) (2)

for any non-negative a, b, γ.

As a direct consequence of the above result, we deduce that F (Θ) is any Lp (owing
to (H1) and (H4-a)). Moreover we can also apply it to G = FN and ξ = ΘN in
view of (H4-a) and since (1) is satisfied (owing to (H1) and (H3)): Thus, FN (ΘN )

also belongs to any Lp.
Our main result below states an error estimate on the approximation of F (Θ) by

FN (ΘN ), as a function ofN , through the sequences (CN,(H3)
. )N≥1 and (CN,(H4-b)

. )N≥1.

Theorem 1. Assume (H1)-(H2)-(H3)-(H4-a)-(H4-b). Then for any p > 0 and
any p2 > p, there is a constant c(3) independent on N such that∥∥FN (ΘN )− F (Θ)

∥∥
Lp
≤ c(3)

(
C
N,(H3)
2p + [CN,(H4-b)

κp2
]κ
)
, ∀N ≥ 1. (3)

Quite intuitively, the global approximation error inherits from that on F and
that on Θ modified by the local Hölder regularity of x 7→ F (ω, x).

Proof. Write FN (ΘN )− F (Θ) =
[
FN (ΘN )− F (ΘN )

]
+
[
F (ΘN )− F (Θ)

]
. First, a

direct application of Proposition 1 (for r = s = 2) with (H3) and (H4-a) yields

∥∥FN (ΘN )− F (ΘN )
∥∥
Lp
≤ CN,(H3)

2p (ζ(2))1/(2p) 2α
(H3)
2p +1/p

(
1 +

∥∥ΘN
∥∥α(H3)

2p +1/p

L
2(α

(H3)
2p p+1)

)
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≤ CN,(H3)
2p (ζ(2))1/(2p) 2α

(H3)
2p +1/p

(
1 + [C

(H4-a)
2(α

(H3)
2p p+1)

]α
(H3)
2p +1/p

)
.

Consider now the second term F (ΘN )− F (Θ): Set

Hκ(ω, λ) := sup
x 6=y,|x|≤λ,|y|≤λ

|F (ω, y)− F (ω, x)|
|y − x|κ

and write |F (ΘN )−F (Θ)| ≤ Hκ(|ΘN | ∨ |Θ|)|ΘN −Θ|κ. Then the Hölder inequality
with p-conjugate numbers (p1, p2) (i.e. p−1

1 + p−1
2 = p−1) gives∥∥F (ΘN )− F (Θ)

∥∥
Lp
≤
∥∥Hκ(|ΘN | ∨ |Θ|)

∥∥
Lp1

∥∥ΘN −Θ
∥∥κ
Lκp2

.

The first factor is upper bound using Proposition 1 (for r = s = 2) with (H2) and
(H4-b), it readily leads to∥∥F (ΘN )− F (Θ)

∥∥
Lp

≤
∥∥Hκ(|ΘN | ∨ |Θ|)

∥∥
Lp1

∥∥ΘN −Θ
∥∥κ
Lκp2

≤ C(H2)
2p1

(ζ(2))1/(2p1) 2
α

(H2)
2p1

+1/p1

(
1 +

∥∥|ΘN | ∨ |Θ|
∥∥α(H2)

2p1
+1/p1

L
2(α

(H2)
2p1

p1+1)

)
[CN,(H4-b)
κp2

]κ

≤ C(H2)
2p1

(ζ(2))1/(2p1) 2
α

(H2)
2p1

+1/p1

(
1 + [2C

(H4-a)
2(α

(H2)
2p1

p1+1)
]
α

(H2)
2p1

+1/p1

)
[CN,(H4-b)
κp2

]κ.

We are done.

2.3 Simplified assumptions
In some situations, checking the assumptions (H1-H2-H3) may be difficult since we
evaluate the Lp-norms of a maximum. When x is a time variable, we may rely on
Doob inequalities and other martingale estimates to achieve this. In other situations,
it becomes much more complicated. One can apply the general Kolmogorov conti-
nuity criterion for random fields [Kun97, Theorem 1.4.1 p.31], but it does not yield
the quantitative estimates we are looking for, in particular regarding the polynomial
growth factor in (H1-H2-H3). Alternatively, here we use the Garsia-Rodemich-
Rumsey lemma [GRR70] (see for instance [Nua06, p.353–354]) which gives refine-
ment compared to the Kolmogorov criterion. This approach has been extensively
developed in [BY82] for studying regularity of local times of continuous martingales
w.r.t. the space variable.

Lemma 1 (Garsia-Rodemich-Rumsey lemma, control of modulus of continuity).
Let ρ, Ψ : R+ −→ R+ be continuous and strictly increasing functions vanishing at
zero and such that limt→+∞Ψ(t) = +∞. Suppose that φ : Rd −→ E is a continuous
function with values on the separable Banach space (E , |.|). Denote by Br the open
ball in Rd centered at 0 with radius r. Then, provided

Γ =

∫
Br

∫
Br

Ψ
( |φ(x)− φ(y)|

ρ(|x− y|)

)
dx dy < +∞ (4)

it holds, for all x, y ∈ Br,

|φ(x)− φ(y)| ≤ 8

∫ 2|x−y|

0
Ψ−1

(4d+1Γ

λdu2d

)
ρ(du) (5)
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where λd is a universal constant depending only on d.

We now aim at proving the following result, which allows to go from pointwise
estimates to locally uniform estimates, by assuming Hölder regularity in Lp. It will
help to check (H2) using much easier conditions.

Theorem 2. Let p > d. Assume that G is F ⊗B(Rd)-measurable mapping (ω, x) ∈
(Ω,Rd) 7→ G(ω, x) ∈ E, continuous in x for a.e. ω. Assume that G(x) is in Lp
for any x and that there exist constants C(G) ∈ [0,+∞), β(G) ∈ (d/p, 1] and τ (G) ∈
[0,+∞) such that

‖G(x)−G(y)‖Lp ≤ C
(G)|x− y|β(G)

(1 + |x|+ |y|)τ (G)
, ∀(x, y) ∈ Rd × Rd. (6)

Then, for any β ∈ (0, β(G) − d/p), we have∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|G(y)−G(x)|
|y − x|β

∥∥∥∥∥
Lp

≤ c(7)C
(G)λτ

(G)+β(G)−β, ∀λ ≥ 1, (7)

where c(7) is a constant depending only on d, p, β, β(G), τ (G).

A similar result is proved in [RY99, Theorem 2.1, p.26] using the Kolmogorov
criterion, with x and y in a compact set, i.e. with τ (G) = 0; the quoted result is not
sufficient for our study.

Proof. Since x 7→ G(x) is a.s. continuous, we can apply Lemma 1 by taking Ψ(t) :=

tp and ρ(u) := uγ2 with γ2 := β + 2d/p: Defining Γ as in (4) with G instead of φ,
we obtain

E(Γ) =

∫
Br

∫
Br

E
(
|G(x)−G(y)|p

|x− y|pγ2

)
dx dy

≤ [C(G)]p(1 + 2|r|)pτ (G)

∫
Br

∫
Br

|x− y|pβ(G)−pγ2 dx dy

= [C(G)]p(1 + 2|r|)pτ (G)
rpβ

(G)−pγ2+2dV1

= [C(G)]p(1 + 2|r|)pτ (G)
rp(β

(G)−β)V1 (8)

where V1 :=
∫

B1

∫
B1
|x − y|pβ(G)−pγ2 dx dy is a finite integral since pβ(G) − pγ2 =

p(β(G) − β) − 2d > −d ⇔ β < β(G) − d/p. This proves that E(Γ) < +∞ thus Γ is
finite a.s.

Moreover, a direct computation shows that∫ r

0
Ψ−1

(4d+1Γ

λdu2d

)
ρ(du) =

∫ r

0

(4d+1Γ

λdu2d

)1/p
γ2u

γ2−1du =
(4d+1Γ

λd

)1/pβ + 2d/p

β
rβ, r ≥ 0.

Therefore, from the above and (5) we derive

|G(x)−G(y)| ≤ 8
(4d+1

λd

)1/p 2β(β + 2d/p)

β
Γ1/p|y − x|β (9)

for any x, y with |x| ≤ r and |y| ≤ r. Owing to (8) this implies

E

(∣∣∣∣∣ sup
x6=y,|x|≤r,|y|≤r

|G(y)−G(x)|
|y − x|β

∣∣∣∣∣
p)
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≤
[
8
(4d+1

λd

)1/p 2β(β + 2d/p)

β

]p
E (Γ)

≤
[
8
(4d+1

λd

)1/p 2β(β + 2d/p)

β
C(G)(1 + 2|r|)τ (G)

r(β(G)−β)

]p
V1.

The proof is complete. Observe that in the proof (see inequality (9)) we more
precisely show the a.s. Hölder estimate on supx 6=y,|x|≤r,|y|≤r

|G(y)−G(x)|
|y−x|β : This is in-

teresting on its own.

As a consequence, we obtain the following result that may serve to easily check
(H1).

Corollary 1. Let consider the assumptions and notations of Theorem 2. Then we
have ∥∥∥∥∥ sup

|x|≤λ
|G(x)|

∥∥∥∥∥
Lp

≤ c(10)λ
τ (G)+β(G)

, ∀λ ≥ 1, (10)

where c(10) := ‖G(0)‖Lp + c(7)C
(G) where c(7) is defined in Theorem 2 with β =

(β(G) − d/p)/2. In particular, the constant c(7) depends only on d, p, β(G), τ (G).

Proof. Using easy inequalities and applying (7) with y = 0 and β as announced, it
readily follows∥∥∥∥∥ sup

|x|≤λ
|G(x)|

∥∥∥∥∥
Lp

≤ ‖G(0)‖Lp +

∥∥∥∥∥ sup
0<|x|≤λ

|G(x)−G(0)|
|x|β

∥∥∥∥∥
Lp

λβ

≤ ‖G(0)‖Lp + c(7)C
(G)λτ

(G)+β(G)
.

Since λ ≥ 1 and τ (G) + β(G) ≥ 0, the proof is complete.

3 Application to compound Euler schemes
In this section, let T be a positive and finite time horizon and let us consider a
standard filtered probability space (Ω,F,P) supporting two q-dimensional standard
Brownian motions W = (W 1, . . . ,W q) and B = (B1, . . . , Bq) on [0, T ]. We consider
two Rd-valued stochastic processes X and Y , solutions of the following stochastic
differential equations (SDE for short)

SDE(µ, σ,W ): dXt(x) = µ(t,Xt(x))dt+

q∑
i=1

σi(t,Xt(x))dW i
t , X0(x) = x, (11)

SDE(b, γ,B): dYt(y) = b(t, Yt(y))dt+

q∑
i=1

γi(t, Yt(y))dBi
t, Y0(y) = y, (12)

where µ, b, σi, γi are functions from [0, T ] × Rd into Rd, globally Lipschitz in space
to ensure the existence of a unique strong solution. Depending on the potential
applications, we may require that B and W are the same, or different. Denote
by XN

T (x) (resp. Y N
T (y)) the Euler scheme with time step T/N of XT (x) (resp.

YT (y)): Using previous results, we aim at establishing a new convergence result of

7



the compound scheme XN
t (Y N

t (y)) to the compound SDE Xt(Yt(y)) as N goes to
infinity, under the form∥∥XN

t (Y N
t (y))−Xt(Yt(y))

∥∥
Lp

= O(N−1/2)

for any p > 0. For a rigorous statement under precise assumptions, see Theorem
3. This approximation issue, interesting on its own, is actually motivated by other
potential applications we briefly expose and that will be subject of future and deeper
investigations.

Relation with approximation of stochastic partial differential equa-
tions (SPDEs). This work constitutes a first step in a subject that until now
has not been addressed to our knowledge, that is to approach solutions of SPDEs
by approximating compound SDEs. Relating compound SDEs to SPDEs is, in a
sense, obvious since it is sufficient to apply the Itô-Ventzel formula [Kun97, Sec-
tion 3.3] (under good regularity assumptions on (µ, σ)) to the compound process
U(t, y) := Xt(Yt(y)) to show that (t, y) 7→ Xt(Yt(y)) solves the second order SPDE,
with stochastic coefficients, given by (to simplify we take d = q = 1 and W = B)

dU(t, y) =

(
∂yU(t, y)

b(t, Yt(y))

∂yY (t, y)
+

1

2

(
∂2
yU(t, y)− ∂yU(t, y)

∂2
yYt(y)

∂yYt(y)

)γ2(t, Yt(y)

(∂yYt(y))2

+ µ(t, U(t, y)) + ∂xσ(t, U(t, y))γ(t, Yt(y))

)
dt

+

(
∂yU(t, y)

γ(t, Yt(y))

∂yY (t, y)
+ σ(t, U(t, y))

)
dWt.

In the reverse direction, i.e. starting from a SPDE, it is more delicate to establish
a link with SDEs. But in the recent work [EM13] based on the theory of stochastic
flows, El Karoui and Mrad have established a direct connection between a certain
utility SPDE and two SDEs. Indeed, being concerned with progressive stochastic
utilities (U(t, x) : t ≥ 0, x ∈ Rd) (a.k.a. Forward Utilities or performance processes,
see [MZ10]), the authors show that U (under some regularity assumptions) are in-
evitably solution of a second order fully nonlinear SPDE. Moreover the marginal
utility ∂xU is characterized by two SDEs X and Y under the form Ux = X(Y −1).
Here Y −1 is the inverse flow of Y and can be interpreted as another SDE, see the
above reference for details. The current work paves the way to the derivation of
convergent approximation of SPDEs of this form.

3.1 Hypotheses
We first study approximations on X and for this, we state related assumptions on
the Rd-valued drift coefficient µ = {µ(t, x); t ∈ [0, T ], x ∈ Rd} and the Rd×Rq-valued
diffusion coefficient σ = {σi(t, x); 1 ≤ i ≤ q, t ∈ [0, T ], x ∈ Rd} which we suppose
to be regular enough in time and space. When we will discuss on approximation
of X(Y ), similar assumptions will be made on the coefficients b and γi of Equation
(12) for Y .

8



(HP1) The coefficients µ and σ are Lipschitz continuous in space uniformly in time.
More precisely, there exists a finite constant CX such that for any t ∈ [0, T ]

and x, y ∈ Rd{
|µ(t, x)− µ(t, y)| ≤ CX |x− y|, |µ(t, 0)| ≤ CX ,
|σ(t, x)− σ(t, y)| ≤ CX |x− y|, |σ(t, 0]| ≤ CX .

(HP1)

(HP2) µ and σ are continuously space-differentiable functions such that their deriva-
tives ∇xµ := {∇xµ(t, x); t ∈ [0, T ], x ∈ Rd} and ∇xσ = {∇xσi(t, x);

1 ≤ i ≤ q, t ∈ [0, T ], x ∈ Rd} are δ-Hölder for a certain exponent δ ∈ (0, 1].
Namely, there exists a finite constant CX,∇ such that for any t ∈ [0, T ] and
x, y ∈ Rd{
|∇xµ(t, x)−∇xµ(t, y)| ≤ CX,∇|x− y|δ, |∇xµ(t, x)| ≤ CX,∇,
|∇xσ(t, x)−∇xσ(t, y)| ≤ CX,∇|x− y|δ, |∇xσ(t, x)| ≤ CX,∇.

(HP2)

(HP3) µ and σ are Hölder continuous in time, locally in space, i.e. there exists an
exponent α ∈ (0, 1] and a finite constant CX , such that for any x ∈ Rd and
s, t ∈ [0, T ]

|µ(t, x)− µ(s, x)|+ |σ(t, x)− σ(s, x)| ≤ CX(1 + |x|)|t− s|α. (HP3)

(HP4) µ and σ are continuously space-differentiable functions such that their deriva-
tives are Hölder continuous in time, locally in space, i.e. there exists an ex-
ponent α ∈ (0, 1] and a finite constant CX,∇, such that for any x ∈ Rd and
s, t ∈ [0, T ]

|∇xµ(t, x)−∇xµ(s, x)|+|∇xσ(t, x)−∇xσ(s, x)| ≤ CX,∇(1+|x|)|t−s|α. (HP4)

Denoting in the same way the constants of (HP1) and (HP3) (resp. (HP2) and
(HP4)) by CX (resp. CX,∇) is made for the sake of simplicity.
Assumption (HP1) ensures the existence of a strong continuous solution to the
SDE(µ, σ,W ), which is adapted to the natural filtration of W completed by the
P-null sets: (HP1) plays a crucial role to establish a Lp-estimates. It is also well-
known [Kun97, Theorem 4.5.1] that the map (t, x) 7→ Xt(ω, x) has a modification
which is continuous a.s., we shall systematically work with this modification from
now on. Assumption (HP2) is a sufficient condition (see [Kun97, Theorem 3.3.3])
under which the above map is C1 in x. Assumptions (HP3) and (HP4) enable us,
essentially, to establish convergence results of the Euler discretization scheme within
the paper setting.

3.2 Compound Euler schemes: Main result
Under (HP1), let us consider the strong solution to (11): its Euler scheme with
N ≥ 1 discretization times and step-size T

N is defined as usually as follows.

• Set XN
0 (x) = x.

9



• For k = 0, . . . , N − 1 and t ∈ (k TN , (k + 1) TN ], set

XN
t (x) = XN

k T
N

(x)+µ(k
T

N
,XN

k T
N

(x))(t−kT
n

)+

q∑
i=1

σi(k
T

N
,XN

k T
N

(x))(W i
t−W i

k T
N

).

It can be equivalently written as a continuous Itô process: Denoting by τt :=

[NtT ] TN the last discretization-time before t, we have

XN
t (x) = x+

∫ t

0
µ(τs, X

N
τs (x))ds+

q∑
i=1

∫ t

0
σi(τs, X

N
τs (x))dW i

s . (13)

Similarly, assume that b and γ fulfills (HP1), so that the strong solution Y to (12)
is well defined, together with its Euler scheme Y N .

The section is devoted to establish the following main result.

Theorem 3. Assume that µ and σ satisfy Assumptions (HP1), (HP2), (HP3) and
(HP4) (which α-parameter is denoted by αX) and that b and γ satisfy Assumptions
(HP1) and (HP3) (which α-parameter is denoted by αY ).

Then the compound Euler scheme XN
. (Y N

. ) converges to X.(Y.) in any Lp-norm,
at the order β := min(αX , αY , 1

2) w.r.t. N : For any p > 0, there is a finite constant
Cp such that for any s, t ∈ [0, T ]∥∥XN

t (Y N
s )−Xt(Ys)

∥∥
Lp
≤ CpN−β, ∀N ≥ 1.

The rest of this section is devoted to its long proof, which requires intermediate
estimates on the SDE and its Euler scheme, some of them being completely new
(Theorems 4 and 7).

3.3 Proof of Theorem 3
In this subsection, we will make use of different constants that may depend on the
integer p of Lp-norm, on the dimensions d and q, on the time horizon T and on
the constants from the assumptions: These constants will be called generic constant
and will be denoted by the same notation Cp even if their values change from line
to line. They will not depend on N .

We denote by CBDG
p the constant of the upper Burkholder-Davis-Gundy inequal-

ity with Lp-norm (see the right-hand side of [RY99, Theorem 4.1, p.160]).

3.3.1 SDE: differentiability, local and uniform estimates

To analyze the approximation of the compound SDE X(Y ), precise estimates on
the maps x 7→ Xt(ω, x) are needed: Such random fields are also called stochastic
flows and are the main subject of Kunita’s book [Kun97]. As aforementioned, under
(HP1), the map (t, x) 7→ Xt(ω, x) has a continuous modification we are working
with. The additional space regularity is connected to the regularity of the coefficients
(µ, σ), owing to (HP2), which can be described as follows.
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Proposition 2 ([Kun97, Theorem 4.6.5]). Under Assumptions (HP1) and (HP2),
the strong solution Xt(x) to (11) is continuously differentiable in space and its deriva-
tive denoted by ∇Xt(x) is locally ε-Hölder1 for any ε < δ. Furthermore, it is a
semimartingale solution of a linear equation, with bounded stochastic parameters
(∇xµ(t,Xt(x)),∇xσ(t,Xt(x))) given by

∇X0(x) = Id,

d∇Xt(x) = ∇xµ(t,Xt(x))∇Xt(x)dt+

q∑
i=1

∇xσi(t,Xt(x))∇Xt(x)dW i
t . (14)

We now proceed to Lp-estimates of Xt(x) and its sensitivity w.r.t. x. We collect
several useful results in the following Proposition.

Proposition 3. Assume (HP1). For any p > 0, there exist generic constants Cp,(15)

and Cp,(16) such that

‖Xt(x)‖Lp ≤ Cp,(15)(1 + |x|), (15)

‖Xt(x)−Xt(y)‖Lp ≤ Cp,(16)|x− y| (16)

for any (t, x, y) ∈ [0, T ] × Rd × Rd. In addition under (HP2), for any p > 0 there
exist generic constants Cp,(17) and Cp,(18) such that

‖∇Xt(x)‖Lp ≤ Cp,(17), (17)

‖∇Xt(x)−∇Xt(y)‖Lp ≤ Cp,(18)|x− y|δ (18)

for any (t, x, y) ∈ [0, T ]× Rd × Rd.

Proof. The proofs of inequalities (15) and (16) are standard, see [Kun97, Lemmas
4.5.3 and 4.5.5]. The uniform estimate (17) is also easy to obtain, in view of (14)
and owing to the boundedness of ∇xµ and ∇xσi, we leave the details to the reader.

It remains to show (18) under (HP2). To alleviate the notation, we provide the
proof when d = q = 1, the general case being similar. Also, we can focus on the
case p ≥ 2 since we can deduce the result for p < 2 using the stability of Lp-norm
combined with the result for p = 2. First, from (14) write

∇Xt(x)−∇Xt(y) =

∫ t

0
∇xµ(s,Xs(x))

(
∇Xs(x)−∇Xs(y)

)
ds

+

∫ t

0

(
∇xµ(s,Xs(s))−∇xµ(s,Xs(y))

)
∇Xs(y)ds

+

∫ t

0
∇xσ(s,Xs(x))

(
∇Xs(x)−∇Xs(y)

)
dWs

+

∫ t

0

(
∇xσ(s,Xs(s))−∇xσ(s,Xs(y))

)
∇Xs(y)dWs.

1That is for any compact K of Rd there exists a finite positive random variable C(K) such that for
any x, y ∈ K we have |∇Xt(x, ω)−∇Xt(y, ω)| ≤ C(K,ω)|x− y|ε a.s., see [Kun97, Chapters 3 and 4] for
details .
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Take the power p and the expectation, then apply the Burkholder-Davis-Gundy
inequality, the Jensen equality (p ≥ 2) and the Cauchy-Schwarz inequality; it leads
to

E (|∇Xt(x)−∇Xt(y)|p)

≤ 4p−1tp−1

∫ t

0
E (|∇xµ(s,Xs(x))(∇Xs(x)−∇Xs(y))|p) ds

+ 4p−1tp−1

∫ t

0

√
E (|∇xµ(s,Xs(s))−∇xµ(s,Xs(y))|2p)

√
E (|∇Xs(y)|2p)ds

+ 4p−1[CBDG
p ]ptp/2−1

∫ t

0
E (|∇xσ(s,Xs(x))(∇Xs(x)−∇Xs(y))|p) ds

+ 4p−1[CBDG
p ]ptp/2−1

∫ t

0

√
E (|∇xσ(s,Xs(s))−∇xσ(s,Xs(y))|2p)

√
E (|∇Xs(y)|2p)ds.

Now, take advantage of the Assumptions (HP1) and (HP2), together with the
estimates (16) and (17): it readily follows that ι(t) := E (|∇Xt(x)−∇Xt(y)|p) solves

ι(t) ≤ 4p−1[CX,∇]p
(
T p−1 + [CBDG]pT p/2−1

)∫ t

0
ι(s)ds

+ 4p−1[CX,∇]pCp2p,(17)C
pδ
2pδ,(16)

(
T p + [CBDG]pT p/2

)
|x− y|pδ.

The estimate (18) is then a direct consequence of Gronwall’s lemma.

Thanks to the results of Section 2, we are now in a position to generalize Propo-
sition 3 by putting the sup over the space variable inside the expectation. This is
the following assertion, which is a new result to our knowledge.

Theorem 4. Assume Assumption (HP1). For any p > 0 and any β ∈ (0, 1), there
exist generic constants Cp,(19) and Cp,(20) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(19)λ, ∀λ ≥ 1, (19)∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(20)λ
1−β, ∀λ ≥ 1. (20)

Assume furthermore Assumption (HP2). For any p > 0 and any β ∈ (0, δ), there
exist generic constants Cp,(21), Cp,(22) and Cp,(23) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|∇Xt(x)|

∥∥∥∥∥
Lp

≤ Cp,(21)λ
δ, ∀λ ≥ 1, (21)∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|∇Xt(x)−∇Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤ Cp,(22)λ
δ−β, ∀λ ≥ 1, (22)∥∥∥∥∥ sup

x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|

∥∥∥∥∥
Lp

≤ Cp,(23)λ
δ, ∀λ ≥ 1. (23)
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Proof. Let β ∈ (0, 1): We first show (19) and (20) for any p > d/(1−β) > d. Owing
to (16), we can apply Theorem 2 to G(x) := Xt(x) with β(G) = 1 ∈ (d/p, 1] and
τ (G) = 0, to conclude that (20) holds with the given index β since β < 1−d/p⇔ p >

d/(1 − β). Moreover the application of Corollary 1 provides (19). Now it remains
to relax the constraint on p: for p ≤ d/(1 − β), set p̄ = 2d/(1 − β) for which (20)
holds and take advantage of the stability property of Lp-norm to write∥∥∥∥∥ sup
x6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp

≤

∥∥∥∥∥ sup
x 6=y,|x|≤λ,|y|≤λ

|Xt(x)−Xt(y)|
|y − x|β

∥∥∥∥∥
Lp̄

≤ Cp̄,(20)λ
1−β.

The same arguments apply to prove that (19) holds for any p > 0.
The justification of (21) and (22) follows the same arguments as above, using (18)

instead of (16): then Theorem 2 and Corollary 1 can be applied to G(x) := ∇Xt(x)

with β(G) = δ and τ (G) = 0. We leave the details to the reader.
Last, observe that for any x, y such that |x| ≤ λ and |y| ≤ λ, we have |Xt(x) −

Xt(y)| ≤ sup|z|≤λ |∇Xt(z)| |y − x|: thus, (23) readily follows from (21).

Observe that the additional smoothness in (HP2) enables us to improve (20)
(for β < 1) to (23) (i.e. β = 1): this improvement will play an important role in the
derivation of Theorem 3.

3.3.2 Euler scheme: local and uniform estimates

Still as intermediate steps to prove Theorem 3, we partly generalize the previous
results about the SDE to its Euler approximation. Some derivations are more subtle
and require details at some places. Recall the definition of Euler scheme in (13).

First, as for the solution of the SDE(µ, σ), some estimates for its approximation
scheme are needed. This is the analogue of Proposition 3.

Proposition 4. Under (HP1), for any p > 0 there exist generic constants Cp,(24)

and Cp,(25) such that ∥∥XN
t (x)

∥∥
Lp
≤ Cp,(24)(1 + |x|), (24)∥∥XN

t (x)−XN
t (y)

∥∥
Lp
≤ Cp,(25)|x− y| (25)

for any (t, x, y) ∈ [0, T ]× Rd × Rd.

We omit the proof which is quite standard. Following the same arguments than
for the SDE case (Theorem 4), we can put the sup over the space variable inside the
Lp-norm, it gives the following.

Proposition 5. Under (HP1), the estimates (19) and (20) where we replace X by
XN hold true, up to changing the generic constants.

Let us now show the following estimates on local increments, it will be needed
for the sequel.
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Lemma 2. Assume Assumption (HP1) and let p > 0. Then there exist generic
constants Cp,(26) and Cp,(27) such that, for any x, y ∈ Rd and any t ∈ [0, T ],∥∥∥∥ sup

τt≤u≤t
|XN

u (x)−XN
τu(x)|

∥∥∥∥
Lp

≤ Cp,(26)
(1 + |x|)
N1/2

, (26)∥∥∥∥ sup
τt≤u≤t

|XN
u (x)−XN

u (y)−XN
τu(x) +XN

τu(y)|
∥∥∥∥
Lp

≤ Cp,(27)
|x− y|
N1/2

. (27)

Proof. Here again, it is enough to prove the estimates for p ≥ 2, which we assume
from now on. Also we take d = q = 1 to simplify the exposure. Similarly to the
proof of Proposition 3, Burkholder-Davis-Gundy’s inequality combined with Jensen’s
inequality readily leads to

E
(

sup
τt≤u≤t

|XN
u (x)−XN

τu(x)|p
)
≤ 2p−1

(
(t− τt)p−1

∫ t

τt

E
(
|µ(τs, X

N
τs (x))|p

)
ds

+ (t− τt)p/2−1[CBDG
p ]p

∫ t

τt

E
(
|σ(τs, X

N
τs (x))|p

)
ds
)
.

Finally, from Assumption (HP1), we have |µ(t, x)|+ |σ(t, x)| ≤ CX(1 + |x|) for any
t ∈ [0, T ]; combined with (24), we deduce

E
(

sup
τt≤u≤t

|XN
u (x)−XN

τu(x)|p
)
≤ 2p−1(CX)p

(
(t− τt)p2p−1(1 + Cpp,(24)(1 + |x|)p)

+ [CBDG
p ]p(t− τt)p/22p−1(1 + Cpp,(24)(1 + |x|)p)

)
which readily leads to the announced estimate (26).

Let us now turn to the second inequality: The same arguments combined with
Assumption (HP1) and (25) lead to

E
(

sup
τt≤u≤t

|XN
u (x)−XN

u (y)−XN
τu(x) +XN

τu(y)|p
)

≤ 2p−1(t− τt)p−1

∫ t

τt

E
(
|µ(τs, X

N
τs (x))− µ(τs, X

N
τs (y))|p

)
ds

+ 2p−1[CBDG
p ]p(t− τt)p/2−1

∫ t

τt

E
(
|σ(τs, X

N
τs (x))− σ(τs, X

N
τs (y))|p

)
ds

≤ 2p−1(CX)pCpp,(25)

(
(t− τt)p + [CBDG

p ]p(t− τt)p/2
)
|x− y|p,

which completes the proof.

Strong convergence (classical result). Since in the Euler scheme dynamics
the coefficients µ and σ are computed at the left of each time interval, we need to
account for their time regularity in order to derive a sharp convergence result: This
is stated through Assumption (HP3). The proof of the following result can be found
in [BL93, Theorem B.1.4 p. 276].

Theorem 5. Assume Assumptions (HP1) and (HP3) and set β = min(α, 1
2).

Then, for any p > 0 there exists a generic constant Cp,(28) such that for any x ∈ Rd∥∥∥∥∥sup
t≤T
|Xt(x)−XN

t (x)|

∥∥∥∥∥
Lp

≤ Cp,(28)
(1 + |x|)
Nβ

. (28)
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Furthermore, for any γ < β, the random variables (Nγ supt≤T |Xt −XN
t |)N≥1 con-

verge almost surely to 0 as N tends to +∞.

Unfortunately, the classical estimate of Theorem 5 is not sufficient to analyze
the error of compound Euler schemes: in view of Theorem 1 and its assumptions (in
particular (H3)), one should have a sup over |x| ≤ λ inside the Lp-norm. This is
the purpose of the next derivations.

Strong convergence (new results). To obtain locally uniform in space con-
vergence results, the supplementary assumptions of regularity in space and time for
∇xµ and ∇xσi (see (HP2) and (HP4)) are seemingly important. Thus Theorem 5
can be generalized to the following crucial one.

Theorem 6. Assume (HP1), (HP2), (HP3), (HP4) and let β = min(α, 1
2). For

any p > 0, there exists a generic constant Cp,(29) such that∥∥∥∥sup
u≤t
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|

∥∥∥∥
Lp

≤ Cp,(29)(1+|x|+|y|) |x− y|+ |x− y|
δ

Nβ

(29)
for all x, y ∈ Rd and t ∈ [0, T ].

Similarly to Theorem 4, we can now derive estimates locally uniformly in space.

Theorem 7. Under Assumptions of Theorem 6, for any p > 0 there exists a finite
generic constant Cp,(30) such that, for any t ∈ [0, T ],∥∥∥∥∥ sup

|x|≤λ
|Xt(x)−XN

t (x)|

∥∥∥∥∥
Lp

≤
Cp,(30)

Nβ
λ2, ∀λ ≥ 1. (30)

Proof. We aim at applying Corollary 1 by checking the assumptions of Theorem 2
applied to G(x) := Xt(x)−XN

t (x). From (29) we have

‖G(x)−G(y)‖Lp ≤ Cp,(29)(1 + |x|+ |y|) |x− y|+ |x− y|
δ

Nβ

≤ 2Cp,(29)(1 + |x|+ |y|)2−δ |x− y|δ

N δ

using |x−y|+ |x−y|δ = |x−y|δ(1+ |x−y|1−δ) ≤ 2|x−y|δ(1+ |x|+ |y|)1−δ. Thus, we
can take C(G) = 2Cp,(29)/N

δ, τ (G) = 2− δ and β(G) = δ provided that δ ∈ (d/p, 1],
which is true for p large enough. Therefore for such p, the estimate (10) holds true,
which is the announced inequality of Theorem 7. The estimate for smaller values
of p are automatically satisfied invoking once again the stability of Lp norms as p
decreases.

Proof of Theorem 6. As in the previous proofs, we argue that it is enough to assume
p ≥ 2. To alleviate the presentation, we additionally assume d = q = 1, the
derivation in the general case being similar. From the dynamics of X and XN , we
write

Xt(x)−XN
t (x)−Xt(y) +XN

t (y)
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=

∫ t

0

(
µ(s,Xs(x))− µ(τs, X

N
τs (x))− µ(s,Xs(y)) + µ(τs, X

N
τs (y))

)
ds

+

∫ t

0

(
σ(s,Xs(x))− σ(τs, X

N
τs (x))− σ(s,Xs(y)) + σ(τs, X

N
τs (y))

)
dWs.

Then, as in the proof of Proposition 3, we obtain

E
(

sup
u≤t
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|p

)
(31)

≤ 2p−1tp−1

∫ t

0
E
(∣∣∣µ(s,Xs(x))− µ(τs, X

N
τs (x))− µ(s,Xs(y)) + µ(τs, X

N
τs (y))

∣∣∣p) ds

+ 2p−1[CBDG
p ]ptp/2−1

∫ t

0
E
(∣∣∣σ(s,Xs(x))− σ(τs, X

N
τs (x))− σ(s,Xs(y)) + σ(τs, X

N
τs (y))

∣∣∣p)ds.

Actually, both terms of the right side of above inequality can be treated in the same
way, thus we only detail the computations for the second integral. First write that

σ(s,Xs(x))− σ(τs, X
N
τs (x))− σ(s,Xs(y)) + σ(τs, X

N
τs (y))

= σ(s,Xs(x))− σ(s,XN
s (x))− σ(s,Xs(y)) + σ(s,XN

s (y))

+ σ(s,XN
s (x))− σ(τs, X

N
τs (x))− σ(s,XN

s (y)) + σ(τs, X
N
τs (y)). (32)

Now, we treat the two lines above separately.
Step 1. Denoting by XN,λ,x

s := Xs(x) + λ(XN
s (x)−Xs(x)

)
for λ ∈ [0, 1], we have

σ(s,Xs(x))− σ(s,XN
s (x))− σ(s,Xs(y)) + σ(s,XN

s (y))

=
(
Xs(x)−XN

s (x)−Xs(y) +XN
s (y)

) ∫ 1

0
∇xσ

(
s,XN,λ,x

s

)
dλ

+
(
Xs(y)−XN

s (y)
) ∫ 1

0

(
∇xσ(s,XN,λ,x

s )−∇xσ(s,XN,λ,y
s )

)
dλ.

Now we use the definition of the process XN,λ,x, the fact that |∇xσ(t, x)| ≤ CX,∇

and |∇xσ(t, x)−∇xσ(t, y)| ≤ CX,∇|x− y|δ; we then deduce (for a generic constant
Cp which values may change from line to line)

|σ(s,Xs(x))− σ(s,XN
s (x))− σ(s,Xs(y)) + σ(s,XN

s (y))|p

≤ Cp
(
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

+ |Xs(y)−XN
s (y)|p

∫ 1

0

∣∣(1− λ)
(
Xs(x)−Xs(y)

)
+ λ
(
XN
s (x)−XN

s (y)
)∣∣δpdλ)

≤ Cp
[
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

+ |Xs(y)−XN
s (y)|p

(
|Xs(x)−Xs(y)|δp + |XN

s (x)−XN
s (y)|δp

)]
where we have invoked the Minkowsky inequality to handle the dλ-integral and
also used (2). From this, integrating over (s, ω) and applying the Cauchy-Schwarz
inequality, we obtain (with a larger constant Cp)

E
∫ t

0
|σ(s,Xs(x))− σ(s,XN

s (x))− σ(s,Xs(y)) + σ(s,XN
s (y))|pds
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≤ Cp
[ ∫ t

0
E
(
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

)
ds

+

∫ t

0

√
E (|Xs(y)−XN

s (y)|2p)
√

E (|Xs(x)−Xs(y)|2δp + |XN
s (x)−XN

s (y)|2δp)ds
]

which rewrites, owing to (16)-(25) and (28),

E
∫ t

0
|σ(s,Xs(x))− σ(s,XN

s (x))− σ(s,Xs(y)) + σ(s,XN
s (y))|pds

≤ Cp
(∫ t

0
E
(
|Xs(x))−XN

s (x)−Xs(y) +XN
s (y)|p

)
ds+

(1 + |y|)p

Nβp
|x− y|δp

)
(33)

for a new generic constant Cp.
Step 2. Now we are concerned by the second line of Identity (32). Similarly to
before, we can write

σ(s,XN
s (x))− σ(τs, X

N
τs (x))− σ(s,XN

s (y)) + σ(τs, X
N
τs (y))

= σ(s,XN
s (x))− σ(s,XN

τs (x))−
(
σ(s,XN

s (y))− σ(s,XN
τs (y))

)
+ σ(s,XN

τs (x))− σ(s,XN
τs (y))−

(
σ(τs, X

N
τs (x))− σ(τs, X

N
τs (y))

)
=

∫ 1

0
∇xσ

(
s,XN

s (x) + λ(XN
τs (x)−XN

s (x))
)
dλ (XN

s (x)−XN
τs (x))

−
∫ 1

0
∇xσ

(
s,XN

s (y) + λ(XN
τs (y)−XN

s (y))
)
dλ (XN

s (y)−XN
τs (y))

+

∫ 1

0
∇xσ

(
s,XN

τs (x) + λ(XN
τs (y)−XN

τs (x))
)
dλ (XN

τs (x)−XN
τs (y))

−
∫ 1

0
∇xσ

(
τs, X

N
τs (x) + λ(XN

τs (y)−XN
τs (x))

)
dλ (XN

τs (x)−XN
τs (y))

=

∫ 1

0

(
∇xσ

(
s,XN

s (x) + λ(XN
τs (x)−XN

s (x))
)
−∇xσ

(
s,XN

s (y) + λ(XN
τs (y)−XN

s (y))
))

dλ

× (XN
s (x)−XN

τs (x))

+

∫ 1

0
∇xσ

(
s,XN

s (y) + λ(XN
τs (y)−XN

s (y))
)
dλ (XN

s (x)−XN
τs (x)−XN

s (y) +XN
τs (y))

+

∫ 1

0

(
∇xσ

(
s,XN

τs (x) + λ(XN
τs (y)−XN

τs (x))
)
−∇xσ

(
τs, X

N
τs (x) + λ(XN

τs (y)−XN
τs (x))

))
dλ

× (XN
τs (x)−XN

τs (y)).

Now, by taking advantage of the boundedness and regularity assumptions on ∇xσ,
it readily follows

|σ(s,XN
s (x))− σ(τs, X

N
τs (x))− σ(s,XN

s (y)) + σ(τs, X
N
τs (y))|

≤ CX,∇
[ ∫ 1

0

∣∣∣(1− λ)(XN
s (x)−XN

s (y)) + λ(XN
τs (x)−XN

τs (y))
∣∣∣δdλ |XN

s (x)−XN
τs (x)|

+
∣∣XN

s (x)−XN
τs (x)−XN

s (y) +XN
τs (y)

∣∣
+ |s− τs|α

∫ 1

0

(
1 +

∣∣XN
τs (x) + λ(XN

τs (y)−XN
τs (x))

∣∣)dλ
∣∣XN

τs (x)−XN
τs (y)

∣∣].
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By taking the power p and integrating w.r.t. (s, ω), we get, after standard compu-
tations,∫ t

0
E
(
|σ(s,XN

s (x))− σ(τs, X
N
τs (x))− σ(s,XN

s (y)) + σ(τs, X
N
τs (y))|p

)
ds

≤ Cp

[∫ t

0

(√
E (|XN

s (x)−XN
s (y)|2pδ) +

√
E
(
|XN

τs (x)−XN
τs (y))|2pδ

))
×
√
E
(
|XN

s (x)−XN
τs (x)|2p

)
ds

+

∫ t

0
E
(
|XN

s (x)−XN
τs (x)−XN

s (y) +XN
τs (y)

∣∣p) ds

+
1

Nαp

∫ t

0

(
1 +

√
E
(
|XN

τs (x)|2p
)

+
√

E
(
|XN

τs (y)|2p
))√

E
(
|XN

τs (x)−XN
τs (y)

∣∣2p)ds

]
.

for some new generic constant Cp. Finally, by plugging into the above the results of
Proposition 4 and Lemma 2, we obtain (for a new constant Cp)

E
∫ t

0
|σ(s,XN

s (x))− σ(τs, X
N
τs (x))− σ(s,XN

s (y)) + σ(τs, X
N
τs (y))|pds

≤ Cp
( |x− y|pδ

Np/2
(1 + |x|)p +

|x− y|p

Np/2
+
|x− y|p

Nαp
(1 + |x|p + |y|p)

)
≤ Cp(1 + |x|+ |y|)p |x− y|

p + |x− y|δp

Nβp
. (34)

We then obtain, by combining (32), (33) and (34),

E
∫ t

0
|σ(s,Xs(x))− σ(τs, X

N
τs (x))− σ(s,Xs(y)) + σ(τs, X

N
τs (y))|pds

≤ Cp
[ ∫ t

0
E
(
|Xs(x)−XN

s (x)−Xs(y) +XN
s (y)|p

)
ds

+ (1 + |x|+ |y|)p |x− y|
p + |x− y|δp

Nβp

]
,

for some new constant Cp. The same estimates hold for µ instead of σ. Hence,
plugging the above into (31), we obtain the existence of generic constants Cp such
that

E
(

sup
u≤t
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|p

)
≤ Cp

[ ∫ t

0
E
(

sup
u≤s
|Xu(x)−XN

u (x)−Xu(y) +XN
u (y)|p

)
ds

+ (1 + |x|+ |y|)p |x− y|
p + |x− y|δp

Nβp

]
≤ Cp(1 + |x|+ |y|)p |x− y|

p + |x− y|δp

Nβp

where the last inequality follows from Gronwall’s Lemma; the proof is complete.
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3.3.3 Completion of the proof of Theorem 3

We now aim at applying Theorem 1 with F (ω, x) := Xt(ω, x), FN (ω, x) := XN
t (ω, x),

Θ := Ys(ω, y) and ΘN := Y N
s (ω, y).

Assumption (H1) is satisfied with C
(H1)
p := Cp,(19) and α

(H1)
p := 1 in view of

Theorem 4.
Thanks to the inequality (23) of Theorem 4, Assumption (H1) holds true with

κ := 1, C(H2)
p := Cp,(23) and α

(H2)
p := δ.

Moreover (H3) is valid owing to Theorem 7 where we take CN,(H3)
p :=

Cp,(30)

NβX

(with βX := min(αX , 1
2)) and α(H3)

p := 2.
Last, (H4) is clearly true using

• Propositions 3 and 4 applied to Y instead of X, which yields C(H4-a)
p :=

max(Cp,(15), Cp,(24))(1 + |y|),

• Theorem 5, applied to Y and Y N , which gives CN,(H4-b)
p :=

Cp,(28)

NβY
(1+ |y|) with

βY := min(αY , 1
2).

We are done.

4 Application to stochastic processes at random
times
Considering stochastic processes at random times is interesting on its own, and be-
sides it has also many applications: among others, we mention the Dambis-Dubins-
Schwarz representation of martingale as time-changed Brownian motion [RY99,
Chapter V], the Skorokhod Embedding Problem to represent any distribution using
Brownian motion stopped at a suitable stopping time [Obł04], and the Brownian
motion at Brownian time to derive Feynman-Kac formulas for bi-Laplacian PDEs
[Fun79].

We illustrate our general result (Theorem 1) in non trivial applications. To be
pedagogical, we start with martingale models at stopping times: here, the usual
stochastic calculus tools enable to derive error bounds when only the stopping time
Θ is approximated (Proposition 7). Passing to arbitrary random times is not possible
with the same tools and this is where the results of this work come into play (Theorem
8, Corollaries 2 and 3). Second we deal with non-semimartingale models (Theorems
10 and 11): Fractional Brownian motion and Iterated Brownian motion.

4.1 Martingale at random times
On a filtered probability space which filtration satisfies the usual condition, let
(Mt)t≥0 be a Rd-valued continuous martingale, which component-wise bracket is
of the form 〈M (i)〉t =

∫ t
0 m

(i)
s ds for a progressively measurable process m(i) bounded

by a finite constant C(M).

Proposition 6. The measurable mapping (ω, t) 7→ Mt(ω) satisfies (H1) and (H2)
for any κ ∈ (0, 1

2).

19



Proof. Assumption (H1) is easily checked with α(H1)
p = 1/2 owing to Burkholder-

Davis-Gundy inequalities [RY99, Theorem 4.1, p.160]. Let us now turn to the verifi-
cation of (H2) for any κ ∈ (0, 1

2); let κ be such a parameter. First, observe that it is
enough to prove the Lp-estimates in (H2) for p large enough since they are automat-
ically satisfied for smaller p with the same constants, using the immediate inequality
‖Z‖Lq ≤ ‖Z‖Lp for q ≤ p. Therefore, we now consider p large enough such that
κ < 1/2−1/p (in particular p > 2). A direct application of Burkholder-Davis-Gundy
inequalities gives

‖Mt −Ms‖Lp ≤ C
(M)
p |t− s|1/2, ∀s, t ∈ R+,

for some finite constant C(M)
p depending on d, CBDG

p and C(M). Thus, (6) is fulfilled
with β(G) = 1/2 and τ (G) = 0: from Theorem 2 we deduce (7) with β = κ ∈
(0, β(G) − 1/p): thus, (H2) holds for F = M with α

(H2)
p = 1/2 − κ. We are

done.

Theorem 8. Let θN and θ be random times with finite moments at any order,
uniformly bounded w.r.t. N . For any p > 0, any κ ∈ (0, 1/2) and q > κp, there is a
constant cp,κ,q such that

‖MθN −Mθ‖Lp ≤ cp,κ,q
∥∥θN − θ∥∥κ

Lq
. (35)

Proof. Let κ ∈ (0, 1
2). In view of Proposition 6, we can apply Theorem 1 which

reads in the current setting (F = FN = M and CN,(H3)
p = 0, Θ = θ and ΘN = θN )∥∥M(θN )−M(θ)

∥∥
Lp
≤ c(3)

∥∥θN − θ∥∥κ
Lκp2

,

for any parameter p2 > p. This allows the choice p2 = q/κ which leads to the
advertised estimate.

As a comparison, we state a similar result available when θN and θ are stopping
times. The proof is based on the Burkholder-Davis-Gundy inequalities applied to
the martingale Nt = MθN∨θ∧t −MθN∧θ∧t, we leave details to the reader.

Proposition 7. Let θN and θ be stopping times with finite moments at any order,
uniformly bounded w.r.t. N . For any p > 0, there is a constant cp such that

‖MθN −Mθ‖Lp ≤ cp
∥∥θN − θ∥∥1/2

Lp/2
.

Observe that the exponent of the Lp-norms of θN − θ is slightly better in Propo-
sition 7 than in Theorem 8 but the scope of applicability is narrower because of the
restriction to stopping times in Proposition 7.

With a result like Theorem 8 at hand, we can study quite efficiently some non
trivial approximation problems. Consider the approximation of the maximum of a
scalar continuous martingale M (d = 1) on the time interval [0, T ] (with 0 < T <

+∞) upon discrete time monitoring. Set τ∗ := inf{t ∈ [0, T ] : Mt = maxs≤T Ms}
for the first time at which M reaches its maximum on [0, T ]; clearly this is not a
stopping time for the underlying filtration. It may happen that the maximum is
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achieved several times (although it is a.s. unique for the Brownian motion), which
justifies why we choose the first time.

Generally speaking, computing exactly τ∗ is challenging: in practice, it can be
approximated on a grid (ti := iT/N)0≤i≤N (with N ≥ 1) by the discrete time
τ∗,N := inf{ti ∈ [0, T ] : Mti = maxtj≤T Mtj}. In the Brownian case for M , we know
that the error Mτ∗ −Mτ∗,N converges to 0 at rate

√
N , see [AGP95, Theorem 1,

Lemma 6] for details. Owing to Theorem 8, we can prove that in the current more
general case the strong error is of order N−κ for any κ < 1/2.

Corollary 2. For any κ ∈ (0, 1/2) and any p > 0, we have

‖Mτ∗ −Mτ∗,N ‖Lp = O(N−κ).

Proof. Set θ := τ∗ and define θN as the closest point to θ on the discrete grid.
Observe that it may be different from τ∗,N , but anyhow we have

0 ≤Mτ∗ −Mτ∗,N ≤Mθ −MθN ,∣∣θ − θN ∣∣ ≤ T/N.
The proof is finished in view of (35).

4.2 Local times at random time and random level
In this paragraph, Theorem 1 is applied to the case where the random map F (.)

is the local time {L(t, x); x ∈ R, t ≥ 0} of a scalar Brownian motion W , and
where Θ = (τ, ξ) is a random pair (time, level). Recall that L is defined by the
occupation-time formula ∫

R
f(x)L(t, x)dx =

∫ t

0
f(Ws)ds,

for any t ≥ 0 and any measurable function f : R 7→ R+. By [RY99, Theorem 1.7
p.225], L has a bi-continuous modification that we consider from now.

Approximating Brownian local times at deterministic or random point Θ = (τ, ξ)

is interesting on its own and it has nice applications: for instance, we refer to the
Ray-Knight theorems [RY99, Chapter XI], where local times at some random time τ
are related to Bessel processes. A second example is the toy model of [FP11] where
W and W + αL(., a) respectively model the value of a stock in absence or presence
of a proportion α of investors buying as soon as the price falls below a.

There exists several approximation schemes for the Brownian local time, see
[Kho94] and references therein; in [Kho94], using the number of up-crossings to
approximate the local time, sharp almost sure convergence rates in sup-norm are
established. We prefer to take advantage of the recent work [OS14], deriving Lp-
estimates which fit well our setting. Let us recall their result by following closely
their presentation. For a fixed positive integer N , we define TN0 := 0 a.s. and

TNi := inf{t > TNi−1 : |Wt −WTNi−1
| = 2−N}, i ≥ 1.
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Let WN denote the symmetric random walk (with non-equidistant jump times)
defined by

WN (t) :=
∞∑
i=1

2−NηNi 1{TNi ≤t}
, t ≥ 0,

where ηNi := Sign(WTNi
−WTNi−1

), for i ≥ 1. Now, for a given x ∈ R, let jN (x) be
the unique integer such that

(
jN (x)− 1

)
2−N < x ≤ jN (x)2−N and define

u(jN (x)2−N , N, t) := the number of up-crossings of WN from(
jN (x)− 1

)
2−N to jN (x)2−N before time t.

Finally, for (t, x) ∈ [0,+∞)× R set

LN (t, x) := 2 2−Nu(jN (x)2−N , N, t).

This gives the candidate for strongly approximating L, this is the next statement.

Theorem 9 ([OS14, Theorem 2.2]). For any fixed T > 0 and any p > 0, we have

sup
N≥0

∥∥∥∥∥∥ sup
0≤t≤T

sup
x∈R

|LN (t, x)− L(t, x)|(
2−N log(2N )

) 1
2

∥∥∥∥∥∥
Lp

< +∞.

In the following, we restrict to bounded time (say by T ), or equivalently we
consider FN (t, x) = LN (t ∧ T, x) and F (t, x) = L(t ∧ T, x) for any t ≥ 0. Theorem
9 ensures that (H3) (with α(H3)

p = 0) holds true for such FN and F .
We now investigate the validity of (H2). We start with a standard result.

Lemma 3. For any p > 0, there is a finite constant Cp,T such that

‖L(t ∧ T, x)− L(s ∧ T, y)‖Lp ≤ Cp,T
(
|t− s|

1
2 + |x− y|

1
2

)
for any x, y ∈ R and any t, s ∈ R+.

The above estimation w.r.t. time follows easily from the Tanaka formula, the one
w.r.t. space is stated in [RY99, Exercise 1.33 p.238]. We mention that similar con-
trols in the more general case of continuous local martingales are proved in [BY82].
Then, as a consequence of Theorem 2, (t, x) 7→ L(t ∧ T, x) is locally κ-Hölder, for
any κ ∈]0, 1

2 [, and (H2) holds for such κ and α(H2)
p = 1

2 − κ. Similarly Corollary 1
implies (H1). Therefore, we can apply Theorem 1 and it gives the following result.

Corollary 3. Let T > 0 be fixed. Let (τN , τ) be finite random times and let (ξN , ξ)

be two scalar random variables with finite Lp-norms (for any p > 0 and uniformly
in N). Then for any p > 0, p2 > p and κ ∈ (0, 1/2), there is a finite constant c such
that∥∥LN (τN ∧ T, ξN )− L(τ ∧ T, ξ)

∥∥
Lp

≤ c
[
2−

N
2
(

log(2N )
) 1

2 +
∥∥τN ∧ T − τ ∧ T∥∥κ

Lκp2
+
∥∥ξN − ξ∥∥κ

Lκp2

]
.
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4.3 Fractional Brownian motion at random times
Models based on fractional fields are now popular in physics, natural sciences, econ-
omy and finance among other fields, see [CI13]. As an application of our approxima-
tion results, we consider the model of fractional Brownian motion (fBM in short),
introduced in [MV68], which we denote by (B

(H)
t )t∈R. It is parametrized by its

Hurst exponent H ∈ (0, 1), it is a R-valued Gaussian process, centered with covari-
ance function

E(B
(H)
t B(H)

s ) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

Remarkably, this is not a semimartingale, which contrasts with previous diffusion or
martingale models we have considered so far. It is also used in financial modeling,
see [CR98]. Our aim is to study the strong approximation of B(H)

Θ∧T where Θ ≥ 0 is
a random time and T is fixed.

There are multiple possible approximations of B(H) (see [Sza01], [HMBL14] and
references therein), we do not enter into details. For the sake of conciseness, assume
directly that B(H) is approximated on [0, T ] by a scheme B(H),N depending on an
algorithm parameter N → +∞. Assume the existence of a non-negative sequence
(εN )N≥1 converging to 0 such that for any p ≥ 1,∥∥∥∥∥ sup

0≤t≤T
|B(H),N

t −B(H)
t |

∥∥∥∥∥
Lp

= O(εN ).

For instance, in [HMBL14] we have εN =
√

logN
NH∧(1−H) , which readily follows from

their Theorem 6.1 (with a restriction to rational numbers t in the above sup). The
scheme described in [Sza01] converges2 at rate εN = logN

NH∧ 1
2
: this can be easily derived

from [Sza01, Theorem 3].
Now, remind that for any p > 0,

∥∥∥B(H)
t −B(H)

s

∥∥∥
Lp

= cp|t− s|H (for any s, t ≥ 0)

for some constant cp: therefore, Theorem 2 yields that (H1)-(H2) are fulfilled for
t 7→ B

(H)
t for any κ < H. If Θ is additionally approximated by ΘN , we obtain the

global error estimates as a consequence of Theorem 1.

Theorem 10. With the above notation, for any κ ∈ (0, H) and any p > 0 we have∥∥∥B(H),N

ΘN∧T −B
(H)
Θ∧T

∥∥∥
Lp
≤ O

(
εN +

∥∥ΘN ∧ T −Θ ∧ T
∥∥κ
LpH

)
.

4.4 Diffusion process in Brownian time
During the two last decades, there has been an increasing interest for studying
Diffusion processes in Brownian time. It dates back to the work by Funaki [Fun79],
and it is furthermore studied in [Bur93] under the name Iterated Brownian Motion
(IBM in short) as

Zt = B̃Bt (36)

where (B̃t)t∈R is a two-sided Rd-valued Brownian motion and (Bt)t≥0 is a scalar
Brownian motion independent of B̃. It serves, for instance, for modeling the Brow-
nian motion in a Brownian crack [BK98] (limit of a Brownian motion reflected in a

2to be precise, their scheme converges towards some fBM and not necessarily B(H).
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Wiener sausage of width shrinking to 0). This process has nice properties like self-
similarity, stationary increments and α-Hölder continuous paths (with α < 1/4), it is
not a semimartingale. As variants of this model, let us mention the n-times iteration
of Brownian motion, studied in [CK14] (with n → +∞), and the case where B̃ is
replaced by a fractional Brownian motion with Hurst index H ∈ (0, 1) [NZ14]. More-
over, the IBM (36) allows to represent Feynman-Kac solutions of fourth-order PDEs
(see [Fun79], [All02] and references therein): indeed, under appropriate conditions
on f , u(t, x) = E (f(x+ Zt)) solves the Bi-Laplacian equation∂tu(t, x) = ∆f(x)√

8πt
+ 1

8∆2u(t, x), t > 0, x ∈ Rd,

u(0, x) = f(x), x ∈ Rd.

Replacing B in (36) by a diffusion process leads to more general fourth-order PDEs
[AZ01]. To account even for greater generality, we now consider diffusion process in
diffusion time and study its strong approximation. This writes:

Zt = X|Yt|

where

Xt = x+

∫ t

0
µ(Xs)ds+

∫ t

0

q∑
i=1

σi(Xs)dW
i
s ,

Yt = y +

∫ t

0
b(Ys)ds+

∫ t

0

q∑
i=1

γi(Ys)dW
i
s .

Here, W = (W 1, . . . ,W q) is q-dimensional Brownian motion, X takes values in Rd

and Y in Rd′ . Up to the Rd′-norm term |.| which permits to avoid the use of two-
sided process, observe that it includes the model (36) by choosing appropriately the
coefficients µ, b, σ, γ and by setting W = (B̃, B). Here the coefficients µ, b, σ, γ do
not depend in time, this is only for the sake of simplification of the statement.

Now consider the continuous-time Euler scheme Xδ and Y δ, with time step
δ ∈ (0, 1], associated to X and Y : they are both defined similarly to (13) by setting
τt := iδ for iδ ≤ t < (i + 1)δ. We define Zδt := Xδ

|Y δt |
. Our main result states that

the strong convergence order is almost 1
4 .

Theorem 11. Assume that b, µ, σ, γ are bounded Lipschitz functions. Let κ ∈ (0, 1
4):

then, for any p > 0 and any T > 0, we have

sup
t∈[0,T ]

∥∥∥Xδ
|Y δt |
−X|Yt|

∥∥∥
Lp

= O(δκ).

Before proving the above result, observe that the effective simulation of Zδt can
be easily performed. First, sample the Brownian increments (Wjδ −W(j−1)δ)j≥1 up
to the index i := τt/δ, as well as Wt −Wiδ: this is sufficient to obtain the Euler
scheme time t′ := |Y δ

t |. Then to simulate Xδ
t′ , two cases have to be considered. Set

i′ := τt′/δ and denote by G the sigma-field generated by the (i+ 1) previous random
variables.
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1. If t′ ≥ t, sample additionally W(i+1)δ − Wt,W(i+2)δ − W(i+1)δ, . . . ,Wi′δ −
W(i′−1)δ,Wt′−Wi′δ, which are (conditionally to G) independent centered Gaus-
sian random variables, with independent components having variance equal to
the time-increments. Their simulation is thus straightforward and yields Xδ

t′ .

2. If t′ < t, it is enough to simulateWt′−Wi′δ conditionally on G, i.e. the marginal
distribution of a Brownian bridge. Namely, if t′ < iδ, then it is Gaussian
distributed, with mean (W(i′+1)δ −Wi′δ)

(t′−i′δ)
δ and variance (t′−i′δ)((i′+1)δ−t′)

δ

(component by component). Otherwise, if iδ ≤ t′ < t, the mean and variance
are adjusted to (Wt−Wiδ)

(t′−iδ)
(t−iδ) and (t′−iδ)(t−t′)

t−iδ . The simulation of Xδ
t′ readily

follows.

Proof. It is enough to prove the result for p ≥ 2. One knows [BGG14, Lemma A.2]
that there exists a constant c(X)

p > 0 (depending on d, q, on the bounds of µ, σ and
their Lipschitz constants) such that for any T > 0∥∥∥∥∥ sup

t∈[0,T ]
|Xδ

t −Xt|

∥∥∥∥∥
Lp

≤ c(X)
p ec

(X)
p T δ

1
2 . (37)

As the reader may guess, the exponential term w.r.t. time comes from an application
of Gronwall’s lemma in the derivation of error estimates. Note that this exponential
factor does not enable us to deduce that (Xδ

s − Xs)|s=|Yt| belongs to any Lp, with
good Lp-estimates, by applying Proposition 1 since the latter requires a polynomial
growth in the stochastic argument (here T ). But actually, we can modify Proposition
1 by taking advantage of the finite exponential moments of |Yt| (because b and γ are
bounded). This is the next statement which we will prove at the end.

Proposition 8. Let E be an Euclidean space and G be a F ⊗ B(E)-measurable
mapping taking values in E such that, for any p > 0, there exist constants α(G)

p ∈
[0,+∞) and C(G)

p ∈ [0,+∞) for which∥∥∥∥∥ sup
|x|≤λ

|G(·, x)|

∥∥∥∥∥
Lp

≤ C(G)
p exp(α(G)

p λ), ∀λ ≥ 0.

Then, for any E-valued random variable ξ with exponential moments, ω 7→ G(ω, ξ(ω)) ∈
Lp for any p, and for any ρ > 0 and any finite conjugate exponents r and s, we have

‖G(ξ)‖Lp ≤ C
(G)
pr (eρr − 1)−1/(pr)

(
E
(
e(pα

(G)
pr +ρ)s|ξ|

))1/(ps)

.

Combine (37) with the above (for ρ = 1, r = s = 2): this proves that∥∥∥Xδ
|Yt| −X|Yt|

∥∥∥
Lp
≤ c(X)

2p δ
1
2
(
e2 − 1

)−1/(2p)
(
E
(
e2(pc

(X)
2p +1)|Yt|

))1/(2p)

.

Since exponential moments of Yt are bounded locally uniformly in time, we get

sup
t∈[0,T ]

∥∥∥Xδ
|Yt| −X|Yt|

∥∥∥
Lp

= O(δ
1
2 ). (38)

We now handle the difference Xδ
|Y δt |
−Xδ

|Yt|. As in the proof of Proposition 6 (since

µ and σ are bounded), we can easily prove that
∥∥Xδ

u −Xδ
v

∥∥
L2p
≤ C(X)

2p |u− v|
1
2 (1 +
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|u| + |v|)
1
2 for any u, v ≥ 0 for a constant C(X)

2p depending only on p, µ and σ.
Let β ∈ (0, 1/2 − 1/(2p)): then an application of Theorem 2 gives the existence of
another constant C̃(X)

2p such that

Hβ(λ) := sup
u6=v,0≤u,v≤λ

|Xδ
u −Xδ

v |
|u− v|β

satisfies
‖Hβ(λ)‖L2p

≤ C̃(X)
2p λ1−β, ∀λ ≥ 1.

Now, note that supδ∈(0,1],t∈[0,T ]

∥∥|Y δ
t | ∨ |Yt|

∥∥
Lq

< +∞ for any q > 0 (see (15) and
(24) for Y ), so that Proposition 1 yields

sup
δ∈(0,1],t∈[0,T ]

∥∥∥Hβ(|Y δ
t | ∨ |Yt|)

∥∥∥
L3p/2

< +∞.

As a consequence, and using (37) (available for Y and any p), we deduce∥∥∥Xδ
|Y δt |
−Xδ

|Yt|

∥∥∥
Lp
≤
∥∥∥| |Y δ

t | − |Yt| |β
∥∥∥
L3p

∥∥∥Hβ(|Y δ
t | ∨ |Yt|)

∥∥∥
L3p/2

≤ cδβ/2

where the constant c is uniform in t ∈ [0, T ] and δ ∈ (0, 1]. Gathering the above
with (38), we obtain

sup
t∈[0,T ]

∥∥∥Xδ
|Y δt |
−X|Yt|

∥∥∥
Lp

= O(δβ/2).

So far, β is in (0, 1/2− 1/(2p)): hence, it is true for any β < 1/2 provided that p is
large enough. It remains valid for smaller p by stability of Lp-norms. Theorem 11
is proved.

Proof of Proposition 8. We adjust the proof of Proposition 1 to the current expo-
nential controls. Briefly, we have

E (|G(·, ξ)|p) ≤ [C(G)
pr ]p

∑
n≥1

e−ρn epα
(G)
pr neρn P (n− 1 ≤ |ξ| < n)1/s

≤ [C(G)
pr ]p

∑
n≥1

e−ρrn

1/r∑
n≥1

e(pα
(G)
pr +ρ)snP (n− 1 ≤ |ξ| < n)

1/s

≤ [C(G)
pr ]p

(
e−ρr

1− e−ρr

)1/r (
E
(
e(α

(G)
pr +ρ)s|ξ|

))1/s

.
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