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Interaction Graphs: Full Linear Logic∗

Thomas Seiller1

1 Proofs, Programs, Systems – UMR 7126 CNRS – Paris 7 University

Abstract
Interaction graphs were introduced as a general, uniform, construction of dynamic models of
linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This
series of work was inspired from Girard’s hyperfinite GoI, and develops a quantitative approach
that should be understood as a dynamic version of weighted relational models. Until now,
the interaction graphs framework has been shown to deal with exponentials for the constrained
system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older
constructions by Girard, one can clearly define “full” exponentials, but at the cost of these
quantitative features. We show here that allowing interpretations of proofs to use continuous
(yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs
constructions were these sets of states were discrete (and finite), provides a model for full linear
logic with second order quantification.

Keywords and phrases Interaction Graphs; Linear Logic; Geometry of Interaction; Quantitative
Semantics; Measurable Dynamics

1 Introduction

This work deals with so-called dynamical models of proof theory, such as game semantics
and geometry of interaction, as well as with quantitative models of computation. It ex-
tends previous work providing a uniform construction of quantitative dynamical models of
(fragments of) linear logic to full linear logic with second-order quantification.

Geometry of Interaction. A Geometry of Interaction (GoI) construction, i.e. a construc-
tion that fulfills the GoI research program [18], is in a first approximation a representation
of linear logic proofs that accounts for the dynamics of cut-elimination. Contrarily to de-
notational semantics, a proof π and its normalized form π′ are not represented by the same
object, but they remain related through a semantic interpretation of the cut-elimination
called the execution Ex: Ex(π) = π′. A GoI construction hence represents both the proofs
and their normalization; it is in some ways an untyped variant of game semantics [22, 1].

The further aim of geometry of interaction is to reconstruct logical operations from such a
dynamical representation of proofs. The objects of study in a GoI construction are actually a
generalization of the notion of proof – sometimes called paraproofs. This point of view allows
a reconstruction of logic as a description of how paraproofs interact, in the same spirit as
classical realizability [23, 24]: a program is of type nat→ nat because it produces a natural
number when given a natural number as an argument. As in game semantics and classical
reliazability, one can however describe a necessary condition for being the interpretation of
a proof, and defines winning paraproofs as those objects satisfying it.

In spite of their seemingly deep abstraction, the GoI constructions offer a mathematical
model which is very close to actual computing. As an illustration of this fact, let us men-
tion the Geometry of Synthesis program initiated by Ghica [11, 12, 13, 14]. This research
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2 Interaction Graphs: Full Linear Logic

program, inspired by geometry of interaction, aims at obtaining logical synthesis methods
for VLSI (Very Large Systems Integration) designs.

Quantitative Semantics. Quantitative semantics find its origins in Girard’s work on
functors’s models for lambda-calculus [16]. This work, which predates its seminal work
on linear logic [15] and actually inspired it, exhibits for the first time a decomposition
of the semantic interpretation of lambda-terms as Taylor series. These series capture a
number of informations about the time, space, resource consumption of the programs it
represents. Quantitative semantics are therefore more involved than so-called qualitative
semantics, since they mirror more informations about the programs that are interpreted.
Recently, quantitative semantics has been used to give denotational semantics for various
algebraic extensions of lambda calculus such as probabilistic [7] or differential lambda calculi
[9]. Work by Laird, Manzonetto, McCusker and Pagani [25] provides a uniform account of
several denotational models accouting for quantitative notions, using a refinement of the
relational model.

Interaction Graphs. Interaction graphs were first introduced by the author [29] as a
combinatorial approach to Girard’s hyperfinite Geometry of Interaction [21], restricted to
the multiplicative fragment of linear logic. An extension capable to deal with additives
connectives was then defined [30] and shown to abstract not only the (additive fragment of
the) hyperfinite GoI model but all previously introduced GoI constructions as well. Both
papers proposed a model construction in the spirit of Girard’s GoI construction where proofs
were interpreted by graphs instead of infinite operators. Dealing with exponentials however
needs one to consider infinite objects. This is why a third paper [32] showed how the
construction on graphs can be applied when working with a generalisation of graphs named
graphings. Graphings are in some sense geometric realisations of graphs on a measured space
X. This allows not only to consider infinite graphs (which can be used to define exponentials
in the same way as the original GoI constructions), but also graphs acting on continuous,
thus infinite, finite-measure spaces. This general construction on graphings was shown [32]
to improve on Girard’s hyperfinite GoI [21] since it allows a satisfactory treatment of second-
order quantification. Lastly, a fourth paper [31] showed how the consideration of graphings
can be used to define “quantitative” exponential connectives for Elementary Linear Logic
[20], a fragment of linear logic that captures elementary time computation [8].

Unbounded Exponentials and Quantitative Aspects. The author’s work on Interac-
tion Graphs should be understood as a dynamic counterpart of weighed relational models,
i.e. its relation to standard dynamical models (geometry of interaction, game semantics) is
comparable to weighted relational models’ relations with standar relational models. Indeed,
it provides a uniform construction of models which not only captures all of Girard’s GoI
models, but also extends them: while Girard’s constructions can be understood as interpret-
ing proofs as graphs1, we here interpret proofs as weighted graphs, i.e. graphs with weighted
edges2. Furthermore, interaction graphs models can reflect these quantitative informations
at the level of types since the latter are built from an orthogonality relation which can take
into account those weights. Indeed, the orthogonality relation is defined through a mea-
surement of cycles [32] by means of an integral over a finite-measured space – the support

1 Girard interprets proofs as partial isometries acting on a Hilbert space H which, by considering the
right basis for H correspond to graphs.

2 Actually, the most general models are build around the lesser known notion of weighted graphing.
However, thinking about graphings as graphs should provide the reader with good intuitions.
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of the cycle. In the simplest cases one measures a cycle π of suppport supp(π) and weight
ω(π) ∈ Ω, along a measurable map m : Ω→ R̄+, by the following integral:

∫
supp(π)

m(ω(π)) (1)

Since Interaction Graphs provide a generalization of Girard’s constructions, one could
easily adapt the interpretation of exponential connectives from Girard’s first constructions
[17, 19] to obtain a model of full linear logic. This adaptation would extend to Danos’
interpretation of pure lambda-calculus in GoI [6]. However, this interpretation of exponential
connectives corresponds to defining !a as a (countable) infinite family of copies of a. Thus,
even if a is represented by a graphing acting on a space of finite measure, its exponentiated
version !a acts on a space of infinite measure. This fact hinders the quantitative aspects of
our model since it creates cycles π whose support supp(π) are spaces of infinite measure.
As a consequence, the integral defining the orthogonality relation (Equation 1) diverges as
soon as the weight is not mapped to 0, i.e. as soon as m(ω(π)) 6= 0. The resulting model is
therefore no longer capable of depicting quantitative informations.

Contributions and Related Work. We define, in the framework of interaction graphs,
exponential connectives for full linear logic in a way that preserves the quantitative aspects
of the construction. We define exponential connectives along the same lines as in our work
on (bounded) exponentials [31], avoiding the involvement of infinite-measure sets. With
this definition of exponential connectives, one would however expect only a restriction of
linear logic, such as ELL. To bypass this restriction, we relax the notion of states. Indeed,
the interpretation of proofs in interaction graphs makes use of so-called thick graphs – or
thick graphings in the general framework –, which can be understood as graphs with states.
While previous work considered only finite sets of states, we loosen this definition to allow
for infinite yet finite-measure (actually continuous) sets of states. This modification impacts
slightly on the basic notions notions and constructions considered in previous work [32],
for which we consider adequate generalisations. These changes, however, do not raise any
technical difficulties. The resulting model is then shown to model digging and dereliction in
addition to the principles of Elementary Linear Logic, thus interpreting full linear logic.

This paper is the second GoI-style construction for full linear logic (including additives)
and second order quantification. Indeed, Girard’s so-called GoI3 construction [19] already
provided such a model. However, as explained above, Girard’s treatment of exponential
connectives prevents from any generalization accounting for quantitative informations. The
main contribution of this paper therefore lies in its quantitative aspects. Moreover, we are
able to pinpoint the computational principles (represented as measurable maps) that are
essential to interpret digging and dereliction, i.e. we exhibit a single map – the exchange
xch – which turns a model of ELL into a model of LL. Lastly, we provide a full soundness
result and discuss the issue of the representation of cut-elimination in the model.

Apart from geometry of interaction constructions, related work include quantitative re-
alizability [4, 3] – which provides characterizations of computational complexity classes –
and quantitative game semantics for linear logic [5], although the latter does not deal with
additives and quantifiers and seems more limited in its possible quantitative features. In
particular, we believe our construction to be a generalization of quantitative realizability,
allowing for characterisations of a larger family computational complexity classes [34].

CSL ’15



4 Interaction Graphs: Full Linear Logic

2 Interaction Graphs

We start by a discussion meant to give intuitions about the basic principles at work in the
interaction graphs models. We illustrate those principles by explaining the notion of thick
and sliced graphs [31]. This discussion is quite informal in that we do not provide explicit and
complete definitions of the objects and operations considered, to avoid overloading the reader
with non-essential definitions. Indeed, the actual model uses thick and sliced graphings, a
generalisation needed to accomodate both exponentials and quantifiers. Before providing
the formal definition of those at the end of the section, we discuss the generalisation to
continuous sets of states.

2.1 Thick and Sliced Graphs
The term “graph” will stand for “directed weighted graphs”, i.e. directed graphs with a
weight function from the set of edges to a monoid3 of weights Ω. Given a graph (or later, a
graphing) G, we will always denote EG its set of edges, SG and DG its support and dialect,
tG and sG its target and source maps, and ωG its weight map.

The notion of thick graphs corresponds to considering graphs with a set of states – called
a dialect. A graph G with dialect DG is nothing more than a graph whose set of vertices is
of the form V G = SG ×DG – the set SG is called its support. The set DG then acts as a
set of states when considering two graphs in interaction through the notion of execution. In
interaction graphs the execution of programs – or equivalently the cut-elimination procedure
in logic – is represented as the computation of a graph of (alternating) paths. If G and H
are two graphs with dialects DG and DH respectively, an alternating path between G and
H is a finite sequence of edges e0e1 . . . ek and a sequence of triples (si, gi, hi)k+1

i=0 such that:
(Alternation) ei ∈ EG if and only if ei+1 ∈ EH ;

(States) if ei ∈ EG then sG(ei) = (si, gi), tG(ei) = (si+1, gi+1) and hi = hi+1;
For two thick graphs G,H, the shared vertices represent a cut; the result of the elimination
of this cut is called the execution of G and H. It is defined as the thick graph G ::H, of
dialect DG ×DH , whose edges are exactly the alternating paths between G and H whose
source and target lie outside of the cut. This is reminiscent of game semantics’ composition
and hiding: composition corresponds here to the computation of all alternating paths, while
hiding corresponds to the restriction to those paths starting and ending outside the cut.

Now, thick and sliced graphs are simply finite formal weighted sums of graphs
∑
i∈IG αGi Gi

where the coefficients αGi are real numbers and the graphs Gi all share the same sets of ver-
tices. This notion is crucial for treating additive connectives [30]. The notion of execution
is then extended “by linearity” (although the sums are not linear combinations), letting:(∑

i∈IG

αGi Gi

)
::
(∑
i∈IH

αHi Hi

)
=

∑
(i,j)∈IG×IH

αGi α
H
j Gi ::Hj

2.2 Continuous Dialects
Graphings are in some sense geometric realisations of graphs on a measured space X. Specif-
ically, a graphing G is defined as a graph such that for each edge e ∈ EG, sG(e) and tG(e) are
measurable subsets of X, and there is a measurable map φGe : sG(e)→ tG(e) which realises

3 As we consider paths in the following, the structure of monoid is essential as it allows to define the
weight of a path as the product of the weights of the edges that it is composed of.
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e. As for graphs, one can define thick and sliced graphings by first defining graphings with a
dialect – thick graphings, then consider formal weighted sums of those. It is natural, while
working with graphings, to consider (finite) discrete probability spaces as dialects; a thick
graphing of dialect D is then simply a graphing over the measured space X×D.

The purpose of the work is to extend this definition to allow for continuous dialects, i.e.
continuous dialects, instead of discrete ones. We will show how to define in this setting the
interpretation of second order linear logic without hindering the “quantitative” features of
the interaction graphs construction. This however comes with a small drawback in the form
of a small complexification of the framework, which we now explain.

We did not dwell on this point earlier, but thick graphs (graphs with dialects) are con-
sidered up to renaming of their dialect; a thick graph G which is a dialect-renaming of a
thick graph F is called a variant of F . To define correctly this notion of variant one needs
to consider bijections between the dialects. However, when considering graphings and re-
placing the dialects with possibly continuous probability spaces, we face a problem when
considering the two probability spaces k = {1, . . . , k} with discrete measure and [0,1] with
Lebesgue measure. Indeed, any thick graphing G with dialect k has a variant H with di-
alect [0,1]: each element i ∈ k is represented by the interval Ii = [i/(k+ 1), (i+ 1)/(k+ 1)],
and an edge of source (v, i) and target (v′, j) realised by a map φ : (v, i) → (v′, j) in G is
realised in H by φ1 × Ti,j where Ti,j is the translation x 7→ x + (j − i)/(k + 1) and φ1 is
the map v → v′ underlying4 φ. This cannot be formalised through a notion of bijection
(here it would amount to consider Borel automorphisms) between k and [0,1]. To avoid
these troubles, we will therefore consider all our dialects to be isomorphic to [0,1] with its
Lebesgue measure; as explained above, we do not lose any graphings in the process since a
graphing with discrete dialect always has a variant with [0,1] as dialect.

The second change from earlier work [32] is that we need to consider an extension of
the notion of microcosm. A microcosm m is a monoid of measurable maps X → X used
to consider “restrictions” of the model to m-graphings: graphings whose realizers can be
extended to an element of m. The original notion of microcosm did not need to incorporate
the dialect since the latter was discrete, and therefore the measurable maps realizing an
edge in a thick graphing were nothing more than measurable maps from X to X. Now
that we allow for continuous dialects, one can consider realisers of edges that do not simply
arise from5 a map X → X. The following definition therefore adapts (in fact extends) the
previously considered notion of microcosm to incorporate this change.

I Definition 1 (Microcosm). Let X be a measured space. A microcosm is a monoid (for the
composition of functions) of measurable maps6 X× [0,1]→ X× [0,1].

2.3 Graphings and Exponential-Free Linear Logic
This section is meant to recall the main results of previous work [32], to which we refer the
reader for a complete picture. We first define weighted (thick) graphings, a generalization
of the homonymous notion considered by Adams [2] and later by Gaboriau [10].

I Definition 2 (Graphing). Let m be a microcosm, Ω a monoid of weights, V G a measurable

4 Since k is discrete, any measurable map φ : (v, i)→ (v, j) is defined from a measurable map φ1 : v → v′

by φ(x, i) = (φ1(x), j).
5 As an example, one can consider the exchange map defined below (Theorem 10) and which is needed
to interpret both digging and dereliction.

6 For technical reasons discussed in earlier work [32], these should be Borel-preserving and non-singular.

CSL ’15



6 Interaction Graphs: Full Linear Logic

subset of X and DG a probability space isomorphic to [0,1]. A thick Ω-weighted m-graphing
G of carrier V G and dialect DG is given by:

a set of edges EG;
for each edge e ∈ EG, source sG(e) and target tG(e) measurable subsets of V G ×DG;
for each edge e ∈ EG, a realiser φGe ∈ m such that φGe (sG(e)) = tG(e);
for each edge e ∈ EG, a weight ωG(e).

A graphing G is dialect-free if it does not make use of its dialect, i.e. if for all edge e,
φGe = φ̃Ge × IdDG , with φ̃Ge : X→ X.

I Notations. Let B be a Borel automorphism of X× [0,1]. We denote B(A) the graphing
whose edges are B−1 ◦ φ ◦ B; up to the automorphism between DA and [0,1]. When B is
a Borel automorphism of X, we abusively denote by B(A) the graphing B × Id[0,1](A). We
also denote by A × Id[0,1] the graphing of dialect DA × [0,1] whose edges are realised as
φe × Id[0,1].

I Definition 3 (Variants). Let F and G be graphings. If there exists a Borel automorphism
φ : [0,1]→ [0,1] such that F = IdX × φ(G), we say that F and G are variants.

Morally, graphings are sort of graphs which offer richer combinatorics since two vertices
might have a non-trivial intersection without being equal. In particular, when considering
paths, one should be careful about the domains: a path in a graphing G is a sequence of
edges π = e1, e2, . . . , ek in EG such that sG(ei+1) ∩ tG(ei) is of strictly positive measure7.
This path is then naturally realised as the composite φGπ = φGek

◦ · · · ◦ φGe1
, and is considered

with its maximal domain sG(π), i.e. the set of all x such that φGei
◦ · · · ◦ φGe1

(x) ∈ sG(ei+1),
and its codomain tG(π) = φGπ (sG(π)). The weight of π is obviously defined as ωG(π) =
ωG(ek)ωG(ek−1) . . . ωG(e1) using the composition law of Ω.

We can then define alternating path between thick graphings graphings as in the case
of graphs. From this, one defines the execution between thick graphings, the semantic
counterpart to the cut-elimination procedure. We here define execution only in the specific
case when the support of one graphing is included in the support of the other: this represents
an application, i.e. a modus ponens; the general case of the cut can be consulted in our earlier
paper [32] or deduced from this specific case8.

I Definition 4 (Execution). Let F and G be graphings with V G = V F ]V . Their execution
F ::G is the graphing of all alternating paths between F and G whose domain and codomain
are restricted to V .

I Example 5. We consider two one-edge graphings (without dialects or weights to be con-
cise) G and H illustrated on the left-hand side of Figure 1. The edge of G has source the
segment [0, 2], target the segment [4, 6] and is realised by the map x 7→ 6−x. The edge of H
has source the segment [5, 6], target the segment [8, 9] and is realised by the map x 7→ x+ 3.
The cut is represented by the segment [5, 6]. The execution of G and H, illustrated on the
right-hand side of Figure 1, is composed of two paths: the restriction of the edge of G to
the segment [1, 2], and the composition of the two edges.

7 This is a crude approximation, since a path of length 3 might satisfy these conditions but such that
sG(e3) ∩ φe2 ◦ φe1 (sG(e1)) is of null measure. The right conditions are defined in our earlier work
introducing the general framework of interaction graphs and graphings [32].

8 Noticing that (A( B)⊗ (B ( C)( (B ( B)( (A( C) (using the semi-distributivity law twice),
one can rewrite a cut between f ∈ A( B and g ∈ B ( C as an application of f ⊗ g ∈ (B ( B)(
(A( C) with the axiom a ∈ B ( B.
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[0, 2] [4, 6]

x 7→ 6− x

[5, 6]

[8, 9]

x 7→ x + 3

[0, 1][1, 2] [4, 5]

x 7→ 6− x

x 7→ 9− x

[8, 9]

Figure 1 Example of an execution between two graphings.

Based on the notion of alternating cycle – defined easily from the notion of alternating
paths, one defines a measurement J·, ·Km of couples of graphings and taking values in R̄+.
This measurement is parametrized9 by the choice of a measurable map m : Ω → R̄+. It is
a quite involved work to define and study, so we refer the interested reader to our previous
paper [32]. In the specific case of graphs – which are graphings over a discrete space – this
measurement is simply equals the sum, over the set of alternating cycles π, ofm(ω(π)) where
m is any map Ω→ R̄+. This notion of measurement is extended to couples (a,A) where a
is a real number (potentially infinite) and A a graphing; the consideration of this additional
real number – the wager – finds its reasons in technical details that are explained in previous
papers [29, 30]. The resulting couples, called projects, are used to interpret proofs.

I Definition 6 (Project). A project is a couple a = (a,A) where a ∈ R̄+ and A is a formal
weighted sum of graphings A =

∑
i∈IA αAi Ai.

From the measurement, one defines a notion of orthogonality that accounts for linear
negation. This orthogonality relation is used to define conducts, specific sets of projects
which will interpret formulas.

I Definition 7 (Orthogonality – Conduct). Two projects a = (a,A) and b = (b, B) of equal
supports are orthogonal, denoted a ‹ b, when �a, b�m 6= 0,∞. A conduct of support V is
the orthogonal of a set T of projects of support v, i.e. V = T‹ = {a | ∀b ∈ T, a ‹ b}.

Finally, one can define a category whose objects are conducts and morphisms are projects
and which is shown to interpret multiplicative-additive linear logic. We do not detail this
construction since it is quite involved. However, let us point out that the resulting model is
completely non-degenerate (none of the connectives or constants are identified) and do not
satisfy the mix and weakening rules [30].

I Theorem 8 (Seiller [32]). Let X be a measured space, m a microcosm, Ω a monoid of
weights. For all measurable map m : Ω→ R̄+, conducts and projects built from Ω-weighted
m-graphings, with the orthogonality defined from the measurement defined from m, form a
model of Multiplicative-Additive Linear Logic.

9 We won’t dwell on this choice of parameter in this paper, in order to avoid unnecessary complications.
Although we here mention it for the sake of exactness, it will not play any specific role here. A fine
analysis of the models would imply a consideration of specific values of m, but none of the results
obtained in this paper depend on the choice of m.

CSL ’15



8 Interaction Graphs: Full Linear Logic

3 The model

To describe the model, we will pick a measured space X together with a microcosm llρ which
are defined below. The construction we describe will not depend on the choice of Ω and
m : Ω→ R>0, and therefore describes a family of quantitative models of second order linear
logic.

Although the underlying space used here differs from our earlier work on exponentials
[31], both are equivalent up to a Borel automorphism. The presentation was chose to work
with here has the advantage of showing more explicitely the dynamics at work, while gaining
intuitions from standard work on exponentials. Indeed, we chose to work explicitely with
the Hilbert cube [0,1]N, underlying an intuitive correspondence between boxes used to treat
exponentials in proof nets and the copies of [0,1].

I Definition 9 (The space). We define the measured space X = R× [0,1]N, product of the
real line with the Hilbert cube, endowed with its usual Borel algebra and Lebesgue measure.

I Notations. We will write elements of X as couples (a, s), where a ∈ R and s is a sequence
of elements in [0,1]. We will sometimes write sequences as s • s′, i.e. as the concatenation
of a finite sequence s = (x1, . . . , xk) and a sequence s′; when s contains only one element x
we will identify x and (x). When considering elements of the space X × [0,1], we will use
a natural extension of this notation, and write them (a, s, e), with (a, s) ∈ X and e ∈ [0,1].

We now define the microcosm, denoted llρ, that will be used to interpret proofs. We
could very well have worked with the biggest microcosm possible (the so-called macrocosm)
or any microcosm containing llρ. It is however more interesting to point out exactly the
principles that are necessary to interpret second-order linear logic.

I Definition 10 (The microcosm). Let ρ be a measure-preserving bijection [0,1]2 → [0,1].
We define the microcosm llρ as the monoid of measurable10 maps X→ X generated by:

affine transformations over the real line: Aαλ : (x, s) 7→ (αx+ λ, s);
(finitely supported) permutations over the Hilbert cube: Pσ : (x, s) 7→ (x, σ(s));
the maps Dρ : (a, (x, y) • s) 7→ (a, ρ(x, y) • s) and its inverse D−1

ρ .
the exchange xch : X× [0,1]→ X× [0,1] defined as (a, x • s, e) 7→ (a, e • s, x)

Notice that the exchange xch is an example of map that could not arise from a microcosm
of maps from X to itself. This added principle is crucial for the definition of both dereliction
and digging. Intuititvely, the microcosm of Definition 10 without the exchange map allows
for Elementary Linear Logic11, in the same spirit as our previous work on exponentials [31];
the added principle – the exchange – adds both dereliction and digging simultaneously.

I Remark. One actually consider thick and sliced graphings up to a larger equivalence
than that of variants. Indeed, we consider that the sliced and thick graphing

∑k
i=1

1
kAi

10We notice that those are all Borel automorphisms, thus in particular Borel-preserving and non-singular.
11To be more exact, the microcosm allowing for a model of ELL is the microcosm llρ without the
exchange but with the maps Dσ which permute the family of intervals {[(i−1)/k, i/k]}ki=1 in the dialect
along a permutation σ of {1, . . . , k}. Without these maps, one cannot define contraction as one cannot
represent slice-changing edges [31]; it is not necessary to have all of them, though, as for instance all
such Dσ for permutations σ over sets {1, . . . , 2p} are enough. Notice that these maps – in the case
k = 2p – are elements of llρ, defined asDσ = xch◦ρ(p)◦Pσ◦ρ−1

(p)◦xch, where ρ(p) is recursively defined by:

ρ(0) = ρ ρ(p) = ρ(p−1) ◦ (
∏2p−1

i=1 ρ)
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is equivalent to the universal12 graphing H whose restriction to the part of the dialect
[(i− 1)/k, i/k] is equal to Ai, modulo the affine transformation [(i− 1)/k, i/k]→ [0, 1], x 7→
(x× k)− i+ 1.

By Theorem 8, we know that for any choices of Ω and m, the induced model interprets
MALL. We will thus concentrate on exponential connectives here and refer the interested
reader to earlier papers for the definition of MALL connectives.

4 The Exponentials

We now define the perennisation; it is not defined on all projects, but on the subset of so-
called balanced projects. These are in particular projects whose dialect is equal to [0,1] or,
by extension, whose graphings are “balanced” sums:

∑k
i=1 αiAi such that αi = 1/k for all i.

This is not a problem since projects interpreting proofs will will all satisfy these conditions.
Exponentials are then quite easy to define on balanced projects: from A we construct !A by
“pushing” the dialect at the first position in the sequence [0,1]N. For technical reasons, we
also need to create a fresh new copy of [0,1] for promotion.

I Definition 11. A project a = (a,A) is balanced if a = 0 and the dialect of A is [0,1]. If
E is a set of projects, we write bal(E) the subset of balanced projects in E.

In order to define exponentials, we will need the following map:

B :
{

X× [0,1] → X
(a, s, d) 7→ (a, d • s)

This map B will be used to encode the dialect of A in the support of the banged project !A.
This way, the resulting project !A will contain the exact same information as A, but will be
dialect-free. Though it might seem a transparent and useless operation, the fact that the
dialect is now part of the support makes the projects !A and A behave quite differently when
put into interaction with other projects. Intuitively, while the dialect is something private
– e.g. states – the support is not, and some projects might interact with !A non-uniformly
w.r.t. the former dialect of A.

I Example 12. We consider two graphings, sayG andH, both though of13 as graphings with
dialects {1, 2}. Now, suppose that G and H are of type A and A( B respectively. Their
execution F ::G is then of type B, and its dialect should be thought of as {1, 2} × {1, 2}.
We can also consider !G and !H, which are of respective types !A and !(A( B), and
their execution !G :: !H. Let us explain why the latter cannot be of type !B. Figure 2
illustrates this situation with examples of graphings G, !G, H, !H, as well as lists of the
edges (alternating paths) of G ::H and !G :: !H.

The execution of !G and !H actually produces the graphing defined as follows: compute
the execution of G and H as if they did not have any dialect, and then take the perennisation
of the result. In other words, the only alternating paths computed between G and H are
those where the states of G and H are equal: this creates new paths (pictured in red path
in Figure 2), this deletes paths (the blue paths), and leaves some of them “unchanged”. As
a consequence, we cannot prove that !G :: !H is of type !B since the only graphing we know
for sure to belong to this type is !(G ::H).

12This is the smallest such graphing, i.e. if H ′ also satisfies this property, then H is included in H ′.
13Recall that we are actually working with “variants” Gc and Hc whose dialect are [0,1].
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A1

A2

B1

B2

g1

g2

g3
g4

(a) Graphing G

B1

B2

C1

C2

h1

h2

h3

h4
h5

(b) Graphing H

g1h2g1h4

h1g4h2
g3h1g2

h3g4h4h3g2

(c) Edges of F ::G

A1 A2 B1 B2
!g1

!g2

!g3

!g4

(d) Graphing !G

B1 B2 C1 C2
!h1

!h2

!h3

!h4

!h5

(e) Graphing !H

!h1!g4!h2

!g1!h4

!g1!h5!g4!h2

!g3

!h3!g2

(f) Edges of !F :: !G

Figure 2 Illustration of Example 12 with graphing seens as graphs.

I Definition 13 (Perennisation). Let a = (0, A) be a balanced project. We define its peren-
nisation !a = (0, !A) by considering the dialect-free graphing !A = B2(A× Id[0,1]).

I Definition 14 (Exponentials). Let A be a conduct. We define the perennial conduct !A
as the bi-orthogonal closure of the set

]A = {!a | a ∈ bal(A)}

5 A Model of Full Linear Logic

To ensure that we have a sound interpretation of exponential connectives, we need to show
that the following principles can be implemented:

functorial promotion (!A⊗ !(A( B))( !B;
dereliction !A( A;
digging !A( !!A.

The principle of contraction !A ( !A ⊗ !A does not appear in this list as it holds for
every possible definition of perennisation14. Let us notice moreover that the principle of
functorial promotion was already obtained in our earlier work on exponentials [31]. We
will however use here a less involved method for defining exponentials and implementing
functorial promotion. The principles at work are the same as in our earlier work, but this
new implementation – inspired from recent work on complexity [34] – offers a clearer picture.

The change of perspective illustrated in Example 12 is at the heart of the question of
implementing functorial promotion. We want to “simulate” the disjointness of dialects. This
is done in two steps: first make the encodings (in !G and !H) of the dialects of G and H

disjoint, by linking !G and !H through the permutation exchanging the two first copies of
[0, 1]. This corresponds to encoding the dialect of one of the two graphings on the second

14As explained in Footnote 11, the microcosm already contains all the needed maps to define contraction.
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copy of [0, 1] instead of the first. Then we compute the result of this execution, obtaining a
graphing which is almost !(G ::H) except for the fact that his dialect is encoded on the two
first copies of [0, 1] and not only on the first. We then use a specific graphing that will use
ρ : [0, 1]2 → [0, 1] to encode this dialect on the first copy only.

I Theorem 15. Functorial Promotion holds.

Proof (Sketch). The proof is much simpler in this setting than in our previous work on
exponentials [31]. The principle is however quite the same: we use a first map to ensure
the disjointness of the two “public dialects”, and then we use a second map that will merge
both copies. I.e. we define the maps:

twist : (λ, (x, ρ(y, z)) • s) 7→ (λ, (y, ρ(x, z)) • s)
merge : (λ, (x, ρ(y, z)) • s) 7→ (λ, (ρ(x, y), z) • s)

To prove the result, we exhibit a project prom and show that prom ∈ !A⊗ !(A( B)( !B.
For this, we show that for all !a = (0, !A) ∈ !A and !f = (0, !F ) ∈ !(A( B), we have

prom :: !a :: !f = (0,merge(!A :: twist(!F ))

Finally, one easily checks that merge(!A :: twist(!F )) is equal to !(F ::A). J

Both digging and dereliction will work based on the simple idea that a continuous dialect
[0,1] can be exchanged with a copy of [0,1] appearing in the Hilbert cube. This is exactly
the computational principle encapsulated in the exchange map xch. This implies that the
potential infinite of (finite) dialects – i.e. the fact that a dialect can be any finite set, without
bounds on its cardinality – can be managed within the projects themselves, something that
could not be done in earlier constructions.

I Theorem 16. Digging holds.

Proof (Sketch). As for the proof of Theorem 15, we exhibit an element dig ∈ !A( !!A.
We show that, for all !a = (0, !A) in !A, one can compute dig :: !a = (0, push(!A)), where:

push : (λ, (x, ρ(y, ρ(z, w))) • s, e) 7→ (λ; (e, z, x, y) • s, w)

It is clear that push(!A) is equal to !!A, since the dialect of !A (although !A is dialect-free,
not all elements of !A are, and therefore this is important) is encoded in the first copy of
[0,1], while the second copy remains unused (this is because the second copy of [0,1] in !A
is unused15). J

The dereliction consists in “reconstructing” a dialect from a banged project. This can
be performed using the same kind of tricks, i.e. using a continuous dialect.

I Theorem 17. Dereliction holds.

Proof (Sketch). Again, we exhibit an element der ∈ !A( A. For this, we show that for
all !a ∈ !A, one can compute der :: !a = (0, raise(!A)) where

raise : (λ, (x, y) • s, e) 7→ (λ, s, ρ(x, ρ(y, e)))

Again, one easily checks that raise(!A) is equal to A. J

15As this is not the case for elements of A, this explains why digging is not a co-dereliction.
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12 Interaction Graphs: Full Linear Logic

∆, N � Γ; Θ
derpol

∆, !N � Γ; Θ
∆ � Γ, B; Θ

der
∆, !B‹ � Γ; Θ

∆, !!N � Γ; Θ
dig

∆, !N � Γ; Θ

Figure 3 Additional Rules for Dereliction and Digging

Notice that the maps used to interpret dereliction and digging are not the only ones that
satisfy the right properties, e.g. if one replaces raise by the map raise(2)(λ, (x, y) • s, e) 7→
(λ, s, ρ(ρ(x, y), e)), we still have raise(2). The exact expressions are however important when
to ensure that the execution soundly represents cut-elimination.

6 Interpretation of proofs

We first recall the notion of winning projects [31]. Winning projects are the equivalent of
game semantics’ winning strategies or classical realizability’s proof-like terms. In particular,
all interpretations of proofs will be winning projects.

I Definition 18. A project a = (a,A) is winning if it is balanced and if A is a disjoint union
of transpositions, i.e. each edge e in A has a reverse edge e∗ with φAe∗ = (φAe )−1 and the
sources of edges are pairwise disjoint.

We now recall the basics of the proof system for which we define the interpretation of
proofs. We are working with three different kinds of formulas, positive, negative and neutral.
The technical reasons behind this are explained in our work on ELL [31]. Intuitively, neutral
formulas correspond to the fragment of linear logic which does not allow for structural rules,
negative formulas are those created from a perennisation while positive formulas are duals
of negative formulas. They are defined inductively through the following grammar (neutral
formulas are denoted by B which stands for behavior [31]):

B := X | X‹ | 0 | T | B ⊗B | B `B | B ⊕B | B &B | ∀X B | ∃X B | B ⊗N | B ` P

N := 1 | !B | !N | N ⊗N | N &N | N ⊕N | N ` P | ∀X N | ∃X N

P := ⊥ | ?B | ?P | P ` P | P & P | P ⊕ P | N ⊗ P | ∀X P | ∃X P

I Definition 19. A sequent ∆ � Γ; Θ is such that ∆,Θ contain only negative formulas, Θ
containing at most one formula and Γ containing only neutrals.

I Definition 20 (The System LLpol). A proof in the system LLpol is a derivation tree con-
structed from the derivation rules of ELLpol [31], which are nothing more than polarised
variants of elementary linear logic sequent calculus rules – presented with functorial promo-
tion, extended with the rules in Figure 3.

One can then extend the inductive interpretation of proofs defined for ELLpol in earlier
work [31] by interpreting the additional rules as follows: the interpretation ‖π‖ of a proof π
obtained from a proof π′ by using a dereliction rule (resp. a digging rule) is defined as the
execution of ‖π′‖ with the project der (resp. dig).

I Theorem 21. For every proof π of a sequent ∆ � Γ; Θ in LLpol, the interpretation ‖π‖
is a winning project in ‖∆ � Γ; Θ‖

Proof. The proof is uninteresting and follows exactly the proof of the same result for the
restricted system ELLpol. The additional cases of dereliction and digging rules are completely
transparent since the projects exhibited in the proofs of Theorem 16 and 17 are clearly
winning projects. J
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Notice that it is an open question whether the exponential isomorphism between !(A&B)
and !A ⊗ !B did hold in the ELL model16. In the model we just described, however, this
isomorphism holds; one just has to write down the usual derivation which can be interpreted
soundly in the model:

� A,A‹ ;
der!A � A;
weak!A, !B � A;

� B,B‹ ;
der!B � B;
weak!A, !B � B;
&!A, !B �;A&B

!pol

!!A, !!B �; !(A&B)
dig

!A, !!B �; !(A&B)
dig

!A, !B �; !(A&B)
�; (!A⊗ !B)( !(A&B)

This implies not only that that two conducts !A⊗ !B and !(A&B) are isomorphic, but
that they are equal. Indeed, the inclusion !(A&B) ⊆ !A⊗ !B can be proved as in our earlier
paper [31]. Moreover, the interpretation ‖π‖ of the above derivation can be shown to satisfy
‖π‖ ::(!a⊗ !b) = !(a & b), where a & b is the usual construction of the & rule between a and
b, yielding the converse inclusion.

I Theorem 22. For any conducts A and B in the model, !(A&B) = !A⊗ !B.

What about cut-elimination? It is known that GoI does not represent cut-elimination
exactly, i.e. it is not always the case that if π′ is the normal form of π, then ‖π′‖ = Ex(‖π‖).
It was shown that cut-elimination for MLL is soundly represented by execution [29], but
there is a mismatch even in the exponential-free fragment because of additive cuts. This
issue is discussed in details in previous work [30], where we solve this problem by considering
a notion of observational equivalence ∼=. Indeed, we showed that, even if ‖π′‖ 6= Ex(‖π‖) in
presence of an additive cut, ‖π′‖ and Ex(‖π‖) are observationally equivalent.

I Theorem 23 (Seiller [30]). If π′ is obtained from π by applying a step of cut-elimination
(&/⊕) then ‖π‖ ∼= ‖π′‖.

We now consider the exponential connectives. We will consider a promotion rule cut
against the following rules: dereliction, digging, and contraction. We consider for this a
proof π of � A‹ , B, or a proof π of A �;B as both promotion rules are treated similarly,
and its interpretation ‖π‖ ∈ A( B. Applying a promotion rule (polarised or not) to
π yields a proof ρ whose interpretation is ‖ρ‖ = !‖π‖ :: prom. Then, given a proof π′ to
which we apply one of the three structural rules above to obtain a proof ρ′, we consider the
interpretations of the proof ν obtained by a cut between π and ρ, and the interpretation of
the proof ν′ obtained by applying a step of the cut-elimination procedure on ν. It turns out
that those are equal, i.e. ‖ν‖ = ‖ν′‖.

I Theorem 24. If π′ is obtained from π by applying a step of cut-elimination among (pro-
motion/dereliction), (promotion/digging) or (promotion/contraction), then ‖π‖ = ‖π′‖.

16This is discussed in our earlier paper [31], but can be understood as follows: in the non-affine sequent
calculus for ELL (presented with the functorial promotion rule) one cannot prove the implication
(!A⊗ !B)( !(A&B).
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So execution computes these elimination steps on the nose. What about the last step,
namely (promotion/weakening)? In that case, we are faced a problem similar to what
happens for additive cuts in MALL. As execution is a completely local procedure, it cannot
erase a whole proof at once. Thus, this elimination step is not soundly represented by the
execution. However, one can show the following weaker result.

I Theorem 25. If π′ is obtained from π by applying a step of cut-elimination among (pro-
motion/weakening), then ‖π‖ ∼= ‖π′‖.

However, these results are not enough to entail that cut-elimination is soundly repre-
sented by execution up to observational equivalence. In particular, one would need to show
that perennisation and observational equivalence interact properly, i.e. one would hope for
a result stating that, given two balanced projects a and b, a ∼= b if and only if !a ∼= !b.
One can prove that a 6∼= b implies !a 6∼= !b, however the converse implication is still an open
question.

7 Conclusion

Girard’s so-called “GoI3” model [19] already provided an interpretation of full linear logic.
However, we managed to do so in a quantitative-flavoured framework. Beyond the results
presented here, the adaptation of the interaction graphs framework to deal with continu-
ous dialects results in a more mature and complete construction. Indeed, the possibly to
manage the maps at the level of the dialect through the microcosm opens new possibilities
in terms of computational complexity. Indeed, while the weight monoid and the measure-
ment of weights seem to be related to different computational paradigms and can be used,
for instance, for representing probabilistic computation [34], the microcosm can be used
to restrict the computational principles allowed in the model and characterise in this way
various complexity classes [34, 33]. All the characterisations obtained considered variants of
exponentials satisfying at least the contraction principle. In the more general construction
explained here, we are now able to consider models of exponentials that do not satisfy this
principle. In this line of work, it would be interesting to understand if one can adapt Mazza
and Terui’s work on parsimonious lambda-calculus [27, 28, 26], and obtain an interaction
graph model for it.
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