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Polyhedral Meshes for Advection-Diffusion Equations

Pierre Cantin **? and Alexandre Ern T

YUniversité Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée Cedex 2, France
2EDF R&D, 6 quai Watier, 78401 Chatou BP 49, France

Abstract

We devise and analyze vertex-based, Péclet-robust, lowest-order schemes for advection-diffusion equa-
tions that support polyhedral meshes. The schemes are formulated using Compatible Discrete Operators
(CDO), namely primal and dual discrete differential operators, a discrete contraction operator for advec-
tion, and a discrete Hodge operator for diffusion. Moreover, discrete boundary operators are devised to
weakly enforce Dirichlet boundary conditions. The analysis sheds new light on the theory of Friedrichs’
operators at the purely algebraic level. Moreover, an extension of the stability analysis hinging on inf-
sup conditions is presented to incorporate divergence-free velocity fields under some assumptions. Error
bounds and convergence rates for smooth solutions are derived, and numerical results are presented on
three-dimensional polyhedral meshes.

AMS Subject Classification. 65N15, 656N12, 76Rxx

1 Introduction

The goal of this work is to approximate the scalar-valued function p : 2 — R solving the following advection-
diffusion problem:

—V-(AVp)+B-Vp=s ae. in{ (1.1a)
p=pp a.e. on 0f, (1.1b)

where ) is a bounded polyhedral connected subset of R? with boundary 02 and outward unit normal n, X a
bounded, symmetric, uniformly positive-definite tensor-valued field in ©, 8 a vector-valued field in Wh°°(Q),
s € L*(Q), and pp € H!(09), t > 1. We use boldface fonts for vector- and tensor-valued quantities. Suitable
assumptions on V- are specified below; we observe that, in addition to the classical assumption on the
sign of V-8, we also include in our analysis an extension to the case of divergence-free advection under
some assumptions. This extension is by no means straightforward and is rarely addressed in the literature.
We also briefly discuss the (simpler) variants where the advective term is written in divergence form and
where there is a zero-order reactive term. Of particular interest is the robustness of the approximation with
respect to the Péclet number measuring the relative magnitude of advective and diffusive effects. Hence, we
also study the pure advection problem with A vanishing uniformly in (1.1a) and boundary condition (1.1b)
modified so as to prescribe the Dirichlet condition only on the inflow part of 0f.

Several schemes are available in the literature to approximate the solution of (1.1) in a Péclet-robust
manner. An important class of methods is that of H!'-conforming finite elements plus stabilization in some
flavor, e.g. streamline diffusion, Galerkin/Least squares, subgrid viscosity, continuous interior penalty, local
projection, and so on (see, e.g., Roos et al. [36], Burman and Hansbo [14], [22], [13] and references therein).
Another important example is that of discontinuous Galerkin (dG) schemes using piecewise polynomials of
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order k with & > 0 for pure advection and k& > 1 for advection-diffusion, see Johnson and Pitkdranta [31]
and [20]. The treatment of advective terms in dG methods generally hinges on upwind fluxes, as originally
devised in the context of Finite Volume methods (see e.g., Eymard et al. [27]). Upwinding actually amounts
to adding stabilization by penalizing interface jumps (see Brezzi et al. [12] and [23]). In the lowest-order case,
an alternative to the above approaches is to combine a finite element treatment of the diffusive term and
an upwind finite volume treatment of the advective term, as devised by Baba and Tabata [3] for triangular
meshes using dual cells around vertices as control volumes and by Ohmori and Ushijima [34] using diamond
cells around edges (see also Angot et al. [1], Bochev et al. [4], Hilhorst and Vohralik [29] and references
therein).

The goal of the present work is to devise and analyze lowest-order, vertex-based schemes for the advection-
diffusion problem (1.1) that are robust with respect to the Péclet number and that support polyhedral
meshes. To this purpose, we rely on the Compatible Discrete Operator (CDO) framework studied in [7]
for diffusion problems and in [8] for the Stokes equations. The advantage with respect to combined Finite
Element/Finite Volume (FE/FV) schemes is the possibility to use polyhedral meshes, while the novelty
with respect to dG methods is to provide a robust treatment of diffusive effects already for £ = 0. The
CDO scheme we devise for pure advection is closely related to the upwind dG scheme with k£ = 0 on a dual
mesh with vertex-based control volumes. The present derivation and analysis is, however, different since it
is performed at the algebraic level, shedding new light on the theory of Friedrichs’ operators [23, 24, 25].
Furthermore, the present material could serve as a starting point for discretizing the advection of vector-
valued functions and the convective term in the Navier—Stokes equations. We also mention that an arbitrary-
order, Péclet-robust, face-based scheme for advection-diffusion has been recently analyzed in Di Pietro et
al. [21] (see also Da Veiga et al. [17] for k = 0 in the diffusion-dominated case).

To achieve our goal, we need to undertake two important tasks. The first one is to devise a CDO scheme
for pure advection. Here, the key idea is to build a discrete contraction (or interior product) operator that
is the discrete counterpart of the map g — B-g. This way, the advective derivative 8-Vp can be discretized
by two distinct operators: a (well-known) topological discrete gradient operator mapping degrees of freedom
(DoFs) attached to vertices to DoFs attached to edges and the above discrete contraction operator. In the
spirit of Friedrichs’ operators, the analysis then hinges on a second discrete contraction operator that is the
discrete counterpart of the map p — Bp. Moreover, a second ingredient, which is crucial to weakly enforce
the inflow boundary condition, is a discrete boundary Hodge operator. We mention that other approaches
have been undertaken recently to discretize pure advection equations in the setting of differential geometry.
For instance, using the notion of extrusion defined by Bossavit in [11], Heumann and Hiptmair [28] and
Mullen et al. [32] proposed a discretization of interior products respectively on triangular and Cartesian
meshes. More recently, Palha et al. [35] proposed another approach using the wedge product as the adjoint
operator of the interior product. Our second task is to devise a CDO scheme for diffusion with weakly
enforced boundary conditions since this is important to achieve Péclet-robustness. To this purpose, we
extend Nitsche’s boundary penalty method [33] to the CDO setting. We also modify the original upwinding
strategy for pure advection by using Péclet-dependent upwinding parameters, as also considered for other
schemes; see, e.g., Roos et al. [36].

Another important novelty of the present work is that we investigate a possible way of relaxing the usual
assumption on the advective velocity which in the present setting states that

(B1) There exists a real number 7 > 0 such that —V-8 > 77! a.e. in Q.

This assumption is classically used to achieve L2-stability by means of a coercivity argument. In the present
work, we also consider the following weaker assumption:

(B2) V-B = 0, and there exist a real number 7 > 0 and a function ¢ € WH*°(Q), such that ¢ > 1 and
—V-(¢B) > 71 ae. in Q.

Assumption (£82) has been considered in Devinatz et al. [19] and more recently by Ayuso and Marini [2]
for dG schemes and by Deuring et al. [18] for FE/FV schemes. Sufficient conditions on the existence of the
function ¢ can be found in [2]; loosely speaking, assumption (32) is reasonable when the velocity field 8 has
no closed curves and no stationary point in 2. We also notice that the lower bound ¢ > 1 is not restrictive



CDO schemes for advection-diffusion problems P.Cantin and A.Ern

since the condition —V-((8) > 77! is invariant by adding a constant to (. Moreover, the function ( is
non-dimensional, and the real number 7 in both (81) and (82) represents a reference time. The analysis
with assumption (82) is more complex than with assumption (81) since stability now hinges on an inf-sup
condition.

The material is organized as follows. In Section 2, we introduce the main notation for the discrete
setting. In Section 3, we show how to enforce boundary conditions & la Nitsche in CDO schemes for pure
diffusion. In Sections 4 and 5, we devise and analyze CDO schemes for pure advection and advection-
diffusion, respectively. Both sections focus on assumption (81) for the velocity field. In Section 6, we
address the case of a divergence-free velocity field under assumption (£42). Finally, in Section 7, we present
numerical results on three-dimensional polyhedral meshes. In all cases, we devise design conditions on the
discrete operators used in the CDO schemes and verify these conditions on examples.

2 Discrete setting

In this section, we introduce the main ingredients underlying the discrete setting: mesh entities, degrees of
freedom, and discrete differential operators. For brevity, we focus on the ideas needed in what follows; a
broader presentation can be found in Bossavit [9, 10], Tonti [37] and Bonelle’s thesis [5].

2.1 Mesh entities

The primal mesh of the three-dimensional domain  is denoted M := {V,E,F, C}, where v collects the
mesh vertices generically denoted v (0-cells), E collects edges denoted e (1-cells), F collects faces denoted
f (2-cells), and C collects cells denoted ¢ (3-cells). The mesh M has the structure of a cellular complex in
the sense that the boundary of a k-cell in M, 1 < k < 3, can be decomposed into (k — 1)-cells in M, see
Christiansen [15]. All the primal mesh entities are (inner-)oriented; in what follows, we only need to assign
a fixed orientation to any edge e € E by means of a unit tangent vector ¢..

CDO schemes are formulated by considering a dual mesh M := {\7, E, I:“, 6} such that there is a one-to-
one pairing between primal vertices and dual cells, primal edges and dual faces, and so on. In particular,
we use the notation f(e) for all e € E and é&(v) for all v € V. Dual mesh entities are (outer-)oriented, and
we define M) as the unit normal vector to f (e) oriented by t.. There are many possibilities to build a
dual mesh. One possibility, provided primal faces are planar and star-shaped w.r.t. their barycenter and
primal cells are star-shaped w.r.t. a point, is to consider a barycentric dual mesh; the dual mesh is called
fully barycentric if the point in each cell is its barycenter.

In what follows, we assume that the meshes M and M satisfy a regularity requirement stating that there
exists a simplicial sub-complex of M and M (i.e., any k-simplex, 1 < k < 3, in this sub-complex belongs to
only one k-cell of M and of M) such that all the k-simplices are shape-regular in the usual sense of Ciarlet and
any k-cell of M or M contains a uniformly bounded number of k-simplices. This mesh regularity assumption
is only needed to analyze the schemes, but not for implementation. For any primal or dual mesh entity x,
h; denotes the diameter of x; moreover, when deriving convergence rates for smooth solutions, we use h
to denote the largest primal cell diameter. To alleviate the notation, we abbreviate A < B the inequality
A < ¢B with positive constant ¢ whose value can change at each occurrence as long as it is uniform with
respect to the mesh-size and the model parameters.

Since boundary conditions are enforced weakly in this work, we consider mesh entities at the boundary.
The trace of the primal mesh M at the boundary 002 defines a cellular complex M? := {V? E? F?} where
V@ collects all the primal vertices lying at the boundary, and so on. Instead, the dual mesh has no entities
lying at the boundary, so that we introduce an additional set of dual faces F? = {f?(v)|v € V?} with
F2(v) := d¢(v) N HQ; observe the one-to-one pairing between V2 and F?.

2.2 Degrees of freedom

Following the seminal ideas of Tonti [37] and Bossavit [9, 10], the degrees of freedom (DoFs) of discrete fields
are attached to mesh entities according to their physical nature. For instance, the degrees of freedom of a
discrete potential field (straight O-cochain) are attached to vertices, either primal or dual ones. In this work,
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we focus on vertex-based CDO schemes where these DoFs are attached to primal vertices. For a discrete
potential q, we use the notation q € ¥V = R#(Y)| where V is the vector space composed of DoFs attached
to primal vertices and #(V) denotes the cardinality of the set V. We write q, for the value of q attached
to the vertex v € V. We also consider discrete circulation fields (straight 1-cochains) in £ (attached to
primal edges), discrete flux fields (twisted 2-cochains) in F (attached to dual faces), and discrete density
fields (twisted 3-cochains) in C (attached to dual cells). Owing to the one-to-one pairing between primal
and dual mesh entities, the vector spaces V and C are isomorphic, as well as the vector spaces £ and F.
This leads us to define the algebraic duality products [q,s] i = >_vev duSe(v) for all (q,s) € V x 5, and
[g, d] .z = Yeer ged () for all (g, ) € Ex F.

To weakly enforce boundary conditions, we also need to consider discrete fields at the boundary, and with
obvious notation, we introduce the isomorphic vector spaces V? and F 9, along with the algebraic duality
product [[qa,cba]](w;)a = > ,evo qu)fa( ) Furthermore, for all g € V, we use the notation q° € V? with

q9 = qy for all v € V?, i.e., g7 collects the DoFs of q attached to boundary vertices.

To measure the approximation error resulting from CDO schemes and to define the discrete source terms
and boundary conditions, we need to define DoFs for continuous fields. One possibility is to consider the
classical de Rham maps (we also consider other choices below) for smooth enough fields. In what follows,
we consider the maps Ry : Sy(Q) — V such that (Ry(p)), = p(v) for all v € V, Rg Se(€2) — & such that
(Re(g))e = [.(teg) de for all e € E, R=: S%(2) — F such that (Rz(e)) ;= ff( @) df for all f ¢ F, and
Rs: LY(Q) — C such that (Rz(s))e = Jzsdé for all ¢ € C. Possible choices for the domains of the de Rham
maps are Sy(Q) = H*(Q) with s > 3, S¢(Q) = H*(Q) with s > 1 or S¢(Q) = {g € L(Q?), Vxg € L'(Q)}
with p > 2 and ¢t > 1, and S=() = H*(2) with s > or Sz(Q) ={p e LP(Q), V@ € L2(2)} with p > 2.
At the boundary, we use the maps Rys : S)a(92) — V? such that (Rya(p)), = p(v) for all v € V? with
Syo (09) = HY(99), t > 1, and Rz, : L'(0Q) — F° such that (Rz,(¢)) jo = [0 ¢ df for all f2 € F°.

2.3 Discrete differential operators

For all v € V and all e € E, we set ¢, = 1 if v is the extremity of e toward which . points, ¢, = —1
if v is the other extremity of e, and ¢, = 0 if v is not an extremity of e. The discrete gradient operator
GRAD : V — & is defined such that (GRAD(q))e = > ,cv tw,edu for all g € V; note that the algebraic
representation of GRAD is a rectangular matrix with entries in {0,41}. We also define a discrete dual
divergence operator DIV : F — C such that (DIV(CI)))C () = Zf ()eF LF(e )i0) P ey for all ¢ € F, with
Li(e)iw) = —tve- Observe that ¢+, =1 (resp., -1) if f(e) is a face of the dual cell &(v) such that T fe)

points outward (resp., inward) &(v), and ¢ 5, = 0 if f(e) is not a face of &(v).
The following discrete adjunction property holds:

[GRAD(q), $],; = —[a, DIV(d)] 5, ¥(a, ) €V x F. (2.1)

Other important properties are the two following commuting properties with the de Rham maps:

GRAD(RV(p)) = Re(Vp), Vp € Sy(Q), (2.22)
[a.R(V-¢)] 2 = [0, DVRz(#))] z + [0°, Rzo ()] 50, V6 € S (), ¥q € V. (2.2b)

2.4 Restriction to primal cells and boundary faces

It is convenient to localize discrete objects to a primal cell or to a boundary face. Let ¢ € C. We define
the local subsets V. := {v € V | v € dc} (collecting the vertices of the cell ¢) and E, := {e € E | e C 0c}
(collecting the edges of the cell ¢). For all e € E., we define f.(e) := f(e) N c as the portion of the dual face
f(e) inside ¢ (see Figure 1, left panel), and we set F.. := {f.(e); e € E.}. The vector space & is composed of
the DoFs of discrete circulation fields g € £ attached to E.; similarly for V. and for .7?6. We use the notation
g € &, for the restriction of g € £ to &.; similarly with q. € V. for g € V. The de Rham maps Re, and R~

are such that (Re.(g))e = [.(te-g) de for all e € E;, and (Rx (¢ ®));=Jins @) df for all f € F.. The local



CDO schemes for advection-diffusion problems P.Cantin and A.Ern

discrete gradient operator GRAD, : V. — &, is defined similarly to GRAD. We also define the following local

norms:
lallzy, :=he >- an,  lell3e, = he Y &2, (2.3)
’UGVC EEEC

for all g € V, and all g € .. The global counterparts of these norms are assembled cell-wise as |||q|||%v =

Yeecllaclly, and g3 e ==Y cecllgcle,, forallg € V and all g € €.
Let now f € F? be a primal boundary face. We define the local subset V4 = {v € V?|v € 0f}. For all

v € V9, we define f]‘?(v) := f2(v)N f as the portion of the dual face f?(v) inside f (see Figure 1, right panel),
and we set ].5? = { f}’(v); v € V3}. The vector space V§ is composed of the DoFs of discrete boundary
potential fields q? attached to V&; similarly for F J? . We use the notation q‘} € VJ‘? for the restriction of the
DoFs of q? € V? to V§. The de Rham map Rf}@ is such that (Rffv?(gé))fa = [7o ¢ df? for all f2 F.

Figure 1: Ilustration of local mesh entities for a cell (left) and a boundary face (right)

3 Pure diffusion

This section deals with the derivation and analysis of a vertex-based CDO scheme with weakly enforced
boundary conditions for the following pure diffusion problem:

—V:(AVp)=s ae.inQ, (3.1a)
p=pp a.e. on Of). (3.1b)

Recall that the diffusion tensor A takes symmetric, uniformly positive definite values. For simplicity, we
assume that A is constant in each primal cell ¢ € C with minimal and maximal eigenvalues A, . and A,
respectively, and local anisotropy ratio p. = Ag./A, . > 1. The analysis can be extended to locally Lipschitz
diffusion tensors.

3.1 CDO scheme

The vertex-based CDO scheme with weakly enforced boundary conditions is formulated in terms of a discrete
Hodge operator H3” : & — F , which is the discrete counterpart of the map g — A-g, and the discrete
boundary operators N3 : £ — Fo (normal flux) and I:|§ Ih Vo _y Fo (boundary penalty), which weakly
enforce boundary conditions & la Nitsche and which are the discrete counterparts of the maps g — n-A-g
and p — (A/h)p at the boundary, respectively. The discrete problem consists in finding p € V such that

A)\(pa q) = [[q,S]] Ve + [[q67 d)Dﬂ (V}_-)[% vq € V? (32)
with bilinear form such that

Ax(p,q) := [GRAD(q),HY"GRAD(p)] .z — [a”, NXGRAD(p)] (55 + mo[a’, ﬁi/h(pa)]](v;)a, (3.3)

where 79 > 0 is a real number to be chosen large enough (see below), s = R(s), and ¢p = noﬁi/h(Rva (pD))-
The Tonti diagram of the vertex-based CDO scheme with weakly enforced boundary conditions for pure
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diffusion is presented in Figure 2. The bilinear form (3.2) extends that of [7] where the Dirichlet boundary
condition was strongly enforced.

p? € V? < peEVI— GRAD —|g€eé&
v = v

DIV beF

Fo RHS |secC

—A—

Figure 2: Tonti diagram of the vertex-based CDO scheme with weakly enforced boundary conditions for
pure diffusion

The discrete Hodge operator Hi% is assembled cell-wise from local operators Hgff)c 0 & — F. for all
c € C, so that

[e1 HS (82)] 2 = S [g1,0, HS gzc]](gf (3.4)
ceC

for all g1,g2 € € (recall from Section 2.4 that gi.,82. € & collect the components of g, gy attached to

edges in E;). Similarly, the discrete normal flux operator N§ is assembled face-wise from local operators

Nif & — .7?]‘? for all f € F?, where ¢ = ¢(f) is the primal cell containing the primal boundary face f, so

that
[[qB,Ni w—‘)a = Z [[qf, (gc)]}(v;)?, (3.5)
ferd

for all ¢” € V? and all g € & (recall from Section 2.4 that q% € V{ collects the components of q° attached
to vertices in V?) Note that this implies that N§(g), for all g € £, only depends on the components of g
attached to an edge of a cell having a boundary face.

The design conditions on H(;F)c are as follows: For all ¢ € C,

(H1) [Stability] H(gf)c is self-adjoint and monotone, and there exists cy > 0, uniform with respect to the
mesh and the model parameters, such that, for all g € &,

CHAp,

< [ M @)] 5, < e Mellele, (3.6)

(H2) [Po-consistency] Rz (A-G) = Hg‘f})c(Rgc(G)) for any constant field G in c.

The design conditions on Nif are as follows: For all f € F?, with ¢ = ¢(f),

(N1) [Boundedness| There exists ¢y, uniform with respect to the mesh and the model parameters, such
that, for all g € &,

? %
S IR (N @) ) < ewhiehz 6" ©)] 5, (3.7)

5}
ve\/f

(N2) [Py-consistency] Rz, (n-A-G) = Nif(RgC(G)) for any constant field G in c.

7o
]:f

The discrete boundary penalty operator Hi I 18 such that, still with ¢ = ¢(f),

A/ (0”) gy = A0 D 17 (@0) Anche (38)
fer?

6
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for all q° € V? and all v € V?, where F) := {f € F?|v € f}. Note that H %/ is algebraically represented by
a diagonal matrix. We define the following norms on £ and V?, respectively:

lglx := [e.H3™(8)]z>  Nla”l3/n = [a”, H i (@”)] z0- (3.9)

[[gc, )‘(gc)]](g})c for all
g € € and as [0°12,, = SpepolfIR 5 with Ba3 05 = Moche ! Speve | FA0)I(a5,2 for all qf € V5

Observe that these norms can be localized as ||g||3 = X cccllecll X With lell3

Remark 3.1 (Symmetry). It is also possible to consider a symmetric bilinear form Ay by subtracting the
term — [p?, N‘;GRAD(q)]](V%)@ from the right-hand side of (3.3). Symmetry is an important property when
invoking duality arguments for pure diffusion problems; it is also a relevant property when inverting the
linear system.

sjr)L

Remark 3.2 (N1). We use the norm ]”g”b‘ .= [g Hx )]](S%). in the right-hand side of (3.7) and not the

norm ()\ﬂycmgngc)lﬂ from (3.6) to avoid a dependency of ¢y on the local anisotropy ratio pe.

3.2 Analysis: coercivity, consistency, and error estimate

We first address the stability of the CDO scheme (3.2). We define the diffusion-related stability norm such
that
lalls,v = IGRAD()I3 + lla’lI3 /. Va € V. (3.10)

Lemma 3.1 (Coercivity and well-posedness). Assume (H1) and (N1). Then, provided no > 1+ 3c§, the
following holds:

ollalliy < Ax(a,q), VaeV, (3.11)

with 0 = % Consequently, (3.2) is well-posed.

Proof. Property (N1) implies that, for all (q%,g) € V? x &,

[0" N3 @] 90 = 2 [aF NY (o) g = D_ D2 a7 (NX (80) jogy)

feF? JeF? veVa

Ixe < enlla’llanllgla, (3.12)

feFd

where we have used the local assembly of N3 on the first line (with ¢ = ¢(f)), the discrete Cauchy-Schwarz
inequalities for the summations Zvevf; and ) rcpo, and the fact that > repo H]gcmic < |lgll3 on the second

line. As a result, we infer that
Ax(g,q) > [[GRAD(a)[IX — enlIGRAD(a)lIxllallx/n + mollallX - (3.13)

To conclude, we use the quadratic inequality z? — 2yxy + dy% > %(aﬂ? +9?) (valid for any real numbers
T,Y,7,0 With d > 0) with v = %CN and § = 7y and observe that the choice ng > 1+ %cﬁ, implies § > 14 2v?

so that W > 1. Finally, the well-posedness of (3.2) follows from (3.11). O

We now address the consistency of the scheme (3.2) using commuting operators in the spirit of Bossavit [10],
Hiptmair [30], and [7]. We consider a reduction map Ry, : H*(€) — V and define the following two com-
muting operators:

[HS”, R1(Vaq) := Rx(A-Vq) — H§” (GRAD(Ry(q))), (3.14a)
INZ, R1(Vq) := Rz, (n-A-Vq) — N} (GRAD(Ry(q))), (3.14b)

for all ¢ € H*() such that A-Vq is in S]»;(Q); this is the case for ¢ = p, the unique solution of (3.1).
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Lemma 3.2 (Consistency). Let p be the unique solution of (3.1) and let p be the unique solution of (3.2).
Assume p € HY(Q)). Then, under the assumptions of Lemma 3.1, the following holds:

ollp —=Ry®)lay <  sup  Ex(p,q), (3.15)
a€Villqlla,v=1

with consistency error
Ex(p,q) = [GRAD(q), [H5", R1(Vp)],; — [0, [N&. RI(VD)] 030
+ [[qa,nOH)\/h(RVa(pD) - ( v(p)) ]](w;)a- (3.16)

Proof. Owing to Lemma 3.1, it suffices to show that Ax(p — ﬁv(p), q) = Ex(p,q). To prove this, we observe
that

owing to (2.2b), and we use (3.2) and (3.3) to conclude. O

Finally, we infer from Lemma 3.2 an error estimate for smooth solutions. We assume that the exact
solution p is in H?(Q) (the regularity assumption can be localized to mesh cells), and we consider the
(classical) de Rham map Ry(p) := Ry(p).

Theorem 3.3 (Convergence rate). Let p be the unique solution of (3.1) and let p be the unique solution of
(3.2). Assume (H1)-(H2) and (N1)-(N2). Assume p € H?(S). Then, the following holds:

Ip — Ry (p)

1
2
N (Zﬂc/\ﬁ,chap@p((;)) : (3.17)

ceC

Proof. Let Ty, Ty, T3 be the three terms in the right-hand side of (3.16) with Ry(p) := Ry(p) (which is
well-defined since p € H?(f2)). Recall that GRAD(Ry(p)) = Re(Vp). The term T} has already been bounded
in [7]; we present here a somewhat simpler proof avoiding the algebraic identity on the inverse of the discrete
Hodge operator. Let G. denote the mean-value of Vp in ¢. Owing to the local assembly (3.4) and to (H2),
we infer that

Ty = 3 [GRAD(), R (A'Vp) — H{* (Re. (V)] .5,
ceC
= > [GRAD.(q), Rz (A-(Vp — G.))] €He >~ [GRAD.(q), H " (Re, (Vp — Go))] €He
= ceC

and we denote by 771,712 the two terms in the right-hand side. The Cauchy-Schwarz inequality, mesh
regularity, and the lower bound in (H1) imply that

1
2
IT1.1] < GRAD(q)|lx (ZchAuc VD - Gc”iufc(e»)

ceC ecE,

1
2
S IGRAD(a)]lx (Z pcku,chg\p!?p(c)) :

ceC

Similarly, the Cauchy—Schwarz inequality for HE\‘S}) (i.e

&:) and the upper bound in (H1) imply that

o [g M7 (@) . < lg1laclesllac for all g1, g2 €

N

1
2 2
12| S IGRAD(a)lIx (Z Y Meche|Vp — GCHQLI@)) S [IGRAD(q)|x (Z /\u,chzlpﬁqz(c)) :

ceCecE, ceC

8
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Turning to 7%, we use the local assembly (3.5) and (N2) to infer that, with ¢ = ¢(f),

=3 [df, Rf?(n')\'Vp) - Nif(Rsc(Vp))]](v})?

feR?
= Z [[qf7 ]_-a (n-A-(Vp — V;)B_ Z [[qf7 R5 (Vp - C))]](v%)j?’
fer? fer?

and we denote by T3 1 and T3 2 the two terms in the right-hand side. The Cauchy-Schwarz inequality implies
that

1
2

Z Z )‘ﬁc 1”vp G HLl(ff’ )

fEF? vev?

S la®lan (Z An,chilpléz@) ;

ferd

N|—=

while using (N1) and proceeding as above, we infer a similar bound on 75 5. Finally, T3 = 0 with the choice
Ry(p) := Ry(p). The proof is complete since p. > 1 by definition. O

3.3 Example

We consider a reconstruction operator Lg, : £, — L*(c) for all ¢ € C. The discrete Hodge operator in each
cell ¢ € C is defined such that

o1 HS 7" (€2)] 5, = [ L (g1)- AL, (g2) de (3.18)

for all g1, go € &, while the discrete normal flux operator in each boundary face f € F? is defined as follows

(with ¢ = ¢(f)):
Bf ~
NX (&) o) = /ff’(v) n-Ale(g)df, (3.19)
f
for all v € V? and all g € £.. We assume that the reconstruction operator satisfies the following properties
(see [7, 6] and Codecasa et al. [16] for examples):

(i) [Stability] Lg,(g) is a piecewise-polynomial function in ¢, and there exists ¢, > 0, uniform with respect
to the mesh-size, such that cL|||g|||§7gC < |Le.(8) ||2Lg(c) < c[lmg;m%’gc for all g € &..
(ii) [Partition of unity] Le, (Re.(G)) = G for any constant field G in c.
(ili) [Dual consistency] [.Le¢.(g)dc= Zeegc(ffc(e) ni (o) df)g. for all g € &,.

Lemma 3.4 (Design conditions). Let the discrete Hodge and normal flux operators be defined by (3.18)
and (3.19), respectively. Assume that the reconstruction operator satisfies the three above properties. Then,
(H1)-(H2) and (N1)-(N2) hold.

Proof. Properties (H1)-(H2) are proved as in [7, 6] and Codecasa et al. [16] using properties (i)-(ii)-(iii) of
Le.. To prove (N1), fix f € F? and observe that

2 2
> |ff ( X (g ))fa(v)) = |f?(”)|_1 (/6 n-A-Le (g) df)
UEVa ! UEV? ff(v)

< Z )‘ﬁ,cHAl/zLSC(g)”iQ(f;?(v))
UEV?
< Y Archi N PLe(8) 22
veVa

= Ctr#(vf))‘ﬁ chﬁcl[[ga Ef ]](g]_-
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where we have used the Cauchy—Schwarz inequality followed by a discrete trace inequality with ¢ = ¢(f)
(since A is constant and Lg_(g) is a piecewise-polynomial) and the definition of the discrete Hodge operator.
This proves (N1) with en = cu#(V$) (observing that the cardinal number #(V$) is uniformly bounded
owing to mesh regularity). Finally, letting G be a constant field in ¢, (N2) follows from

Nif (R&(G))ff@(y) = /~

nALRe (G df = [ nAGdf = (Ryy(mAG))jo( .
) 2 7 I3

for all v € V$ owing to property (ii) of the reconstruction operator. O

4 Pure advection

This section is concerned with the derivation and analysis of vertex-based CDO schemes for the pure
advection problem

B-Vp=s a.e in( (4.1a)
p=pp a.e. on ), (4.1b)

where 3 satisfies assumption (81), and 9QF := {x € 92| £B-n(x) > 0} correspond to the inflow (92~) and
outflow (9Q1) parts of the boundary. In what follows, we consider the positive and negative parts of 8-n
defined as (8-n)* = 1(|B-n|£B-n) > 0. We introduce the graph space Vg(Q2) = {q € L*(Q); B-Vq € L*(Q)};
functions in the graph space have a trace in L?(|8-n|;09Q) provided 0Q~ and 9Q7F are well separated
(see [23]). In this context, a well-posed weak formulation of problem (4.1) (see [23, 20]) is as follows: Find
p € V3(Q2) such that

ag(p,q) = /Qqs Q) + /89 q¢p dof2, (4.2)

with boundary flux ¢p = (8-n) pp, and bilinear form
ag(p,q) = /QQ(B-VP) 2 + /{m q(B-n)"p doS. (4.3)

4.1 CDO scheme

Vertex-based CDO schemes for pure advection are built using two discrete operators: a discrete contraction
operator I%C : & — C, which is the discrete counterpart of the map g — B-g, and a discrete boundary Hodge

operator H2 : V2 — F? (indexed by a surface function o € L>(8€2)) which is the discrete counterpart of
the map p — ap at the boundary. Using these operators, the following discrete problem can be formulated:
Find p € V such that

As(p,a) = [a,s] z + [a”,dp] 70,  Va eV, (4.4)
with bilinear form such that
Ap(p,a) := [a, 15" (GRAD(p))] z + [, H{g.n)- (P”)] 30 (4.5)

and where we have set s := R3(s) and ¢p := Rz, ((8-n) pp). The Tonti diagram of the vertex-based CDO
scheme (4.4) is presented in Figure 3.
In the spirit of Friedrichs operators [23, 25], we assume that there is a second discrete contraction operator

E; , which is the discrete counterpart of the map p — Bp, and such that the following two properties hold:

(I1) [Discrete Leibniz rule] The bilinear map on V x V such that
[p.H% 5(@],z == [p. 15 (GRAD(@)] = — [p DV @]z — [0 Hyn ()] pzpr  (4.6)

is symmetric and satisfies [p, H‘iavﬂ(q)]}va > (ess infq —V-B)|lqll3,,, for all g € V, so that HKEVﬂ is
monotone under assumption (51).

10
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p? € V? |« pEVI— GRAD —|g€é&

o
Hign)- E

V R
Fo RHS 5651

Figure 3: Tonti diagram of the vertex-based CDO scheme for pure advection

(I2) [Discrete integration by parts] The bilinear map on V x V such that

(P, D upw,5 = [P, |fa (GRAD(q))] ; + [a, DIV(l ( N]ye (4.7)
defines a semi-inner product.
Concerning the discrete boundary Hodge operator, we assume the following:

(H?) For all « € L>*(09Q), HY, is self-adjoint, and it depends linearly and monotonically on « (i.e., @ > o/ a.e.
in 9 implies that H2, > H2, in the sense of quadratic forms), so that whenever a > 0, [q?, H2(p?)]

defines a semi-inner product on V? x V2.

vF)?

Remark 4.1 (Discrete contraction operator). Recalling that the discrete dual divergence operator DIV
does not involve faces on the boundary 952, property (I1) is the discrete counterpart of the Leibniz for-
mula — [ p(V-8)qdY = [op(B-Vq)dQ — [opV-(Bq)dS2, where the two rightmost terms in (4.6) form
together the discrete counterpart of [, pV-(B8¢q) dS2. Furthermore, property (I2) is the discrete counterpart
of [op(B-Vq)dQ+ [ qV-(Bp)dQ — [5,¢(B-1)pdOY = 0. At the discrete level, this quantity can be non-zero

owing to the use of stabilization We also notice that the symmetry of the map (p, q)upw’ g results from

P, q q, p P, q, ~ = 0 where we have used the self-adjointness
upw,3 upw,,B HYS Vﬂ HV N% 0 wh h d th If-ad

of H%_n and of H_ , Finally, we Observe that II";;,C does not, in general, depend linearly on its argument 3
owing to the use of stabilization.

Remark 4.2 (Conservative advection). A possible variant of (4.1) is to consider the conservative form of the
advective derivative. The PDE becomes V-(8p) = s in 2, and a Dirichlet boundary condition can still be
enforced at the inflow boundary. Assumption (81) is then modified as follows: There exists a real number
7 > 0 such that V-8 > 77! a.e. in Q. The discrete bilinear form then becomes

As(p,a) = [a, DIV (0)]z + [0, Higmys (P)] 300 (48)

The design of the discrete contraction and boundary Hodge operators still hinges on (I1)-(I2) and (H?).
Remark 4.3 (Reaction). Another possible variant is to include a zero-order reaction term in the PDE which
becomes B-Vp + up = s in  with Lipschitz reaction coefficient p (the conservative form of the advective
derivative can also be considered). Then, the reaction-related bilinear form A,(p,q) = >, cv HoPvTo is added
to the discrete problem, where p, denotes (for instance) the mean-value of p in é(v).

4.2 Analysis: coercivity, consistency, and error bound

We first address the stability of the CDO scheme (4.4). We define the following stability norm for all g € V:

lallZy =77 llallz v + lallZow,s + llallfam: (4.9)

where 7 > 0 results from assumption (,31) ||| ll2,v is defined in Section 2.4, H|q|||upwﬂ (d,q)upw,s from
assumption (I2), and lllql”?ﬁ‘nl [a°, H5.,, (a ll(vr)f’ from assumption (H?).

11
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Lemma 4.1 (Coercivity and well-posedness). Under hypotheses (81), (I1)-(I2), and (H?), the following
holds:

olal?y <Ag(a,q),  VqeV, (4.10)

with o = % Consequently, (4.4) is well-posed.

Proof. Let q € V. Since (I1)-(I2) imply that
T 1 1
[[q7 I§C(GRAD(Q))H — [[q, H—V I )]VE + B (q, q>upw,ﬁ + 5[[q6, H%.n(qa)](,,;)a,
we infer that the quantity Ag(q,q) can be rewritten as
Ag(aa) = 3 [0 H (@] e + 5 (@ B+ 5 [0 M0 50 + [0 Mgy (@] o5
B 9,9) = 92 q,A_ ve q, upw, 3 2 q, Bn q (V;)a q, ( .n)— q (V]_-)B'
Owing to (H?), the last two terms on the right-hand side can be recombined to yield
Ve 1 L w2
As(q,q) [[q, HYS.5(@]\e + 5 (@ Dupws + 5 llalli.n) (4.11)

Since (I1) and (81) imply [q, HKEVﬂ(q)]]vE > 77 1|all3,, (4.10) holds and (4.4) is well-posed. O

We now turn to the consistency of the CDO scheme (4.4). To write the consistency error, we consider
a reduction map Ry : L'(Q) — V together with commuting operators. Here, there are three relevant
commuting operators:

157, R1(q) :== Rx(Bq) — |E;(§v(q~)), (4.12a)
[H"S%.5. R1(q) = R3((—=V-8)a) — H'G 5(Ru(q)). (4.12Db)
[Hlg.0y++ R1(0) = Rz ((B1) ") — Hog.00+ (Ru())?), (4.12¢)

for all ¢ € H*(Q2), s > %, so that ¢ is in the domain of the considered de Rham maps.

Lemma 4.2 (Error bound). Let p € Vg(2) be the unique solution of (4.1) and let p be the unique solution
of (4.4). Assume p € H*(Q2), s > % Then, under the assumptions of Lemma 4.1, the following holds:

olp=Ry@lay < sup  Eg(p,q), (4.13)
a€Villalls,vy=1

with consistency error defined as follows:
) = [[qa L KCVﬂa §1 (p>]]VE - H:GRAD(q)7 U};’}-’ A—| (p):”g;- + [I:qaa LH?B‘n)+a /Fﬂ (p)]] wHo" (414)

Proof. Owing to Lemma, 4.1, it suffices to show that Ag(p— Ry (p),a) = Eg(p,q). In the context of Friedrichs’
systems, the derivation of the error bound hinges on integration by parts. In the CDO framework, we use
the continuous and discrete Leibniz formulas, as well as the properties of the discrete differential operators.
We observe that

= [a,Rz(B-VD)] s + [a’, Rfa(( ) P50
= [a,Ra(V-(Bp))];z + [, 5( p)]]vc+[[q Rz ((Bn) )] 50
= [q.DIV(R%(8p))] .z + [a, R ) ]]VC+[[q Ry ((Bn)"p ]}(v;
= —[GRAD(q), R <Bpﬂgf+[[q, 5( )]z + [0” Rz (B1) )] 50,

12
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where we have used the continuous Leibniz formula (recall that p is in the graph space), the discrete
commuting property (2.2b), the fact that 8-n = (8-n)" —(8-n)~, and the discrete adjunction property (2.1).
Moreover, setting p = Ry(p), we observe that

A,@(b\vq = [[q, |£ GRAD ]]VC + [[q H(9 n) (b\a)]] (V;_-)a
= [a. DIV (®)],z + [a. HY 5 ()] 1 + [0 Hopmye (B)] 50
= —[GRAD(q), 157 (®)] .5 + [[q, HYS 5]z + [a”, Hlg.ny+ (B7)] 790>

where we have used the discrete Leibniz formula, assumption (H?) (linearity) together with 8-n = (8-n)* —
(B-n)~, and the discrete adjunction property (2.1). The conclusion is straightforward. O

4.3 Example: CDO scheme with upwinding

This section is devoted to a particular class of CDO schemes of the form (4.4). We introduce the notation
Be = (RE(B)) i) = /f(e) Bnj,df,  Veek. (4.15)

We also set E, := {e € E[v € e} for all v € V, and V. := {v € V[v € e} for all e € E, and we use the
notation 17 (.) =) = Lf(e) z(v)f(e) for the unit normal to f(e) pointing outward ¢(v). For all e € E and all
v € Vg, we fix a real number A, € [—1,1] (the algebraic upwinding parameter) such that the following

holds: For all e € E,
(A1) > ev. Ave = 0, and setting A, := %Zveve Lf(e),é(v)AU67 BeAe > 0 holds.

(A2) There exists ¢y > 0, uniform with respect to the mesh and the model parameters, such that S.A. >

CA|56|-

The reason to distinguish the properties ScAe > 0 in (Al) and ScAe > cplBe| in (A2) is that the former
is satisfied by the so-called centered scheme corresponding to Aye = 0 for all v € V., and the latter by an
upwind scheme. Classical upwinding corresponds to the choice A, = sign(¢; fle ﬁe) (with sign function
sign(t) = —1if t € R, sign(0) = 0, and sign(¢) = 1 if t € Rg), so that (A2) holds with ¢y = 1. With this
choice, the solution delivered by the CDO scheme coincides with that of the upwind FV (or lowest-order
DG@G) scheme on the dual mesh.

The discrete contraction operator IEE: & — C is defined such that, for all g € £,

8)aw) => ge Ape)Bey, YW EV, (4.16)
EGEU

while the companion operator IE; .V — F is defined such that, for all q € V,

=3 qv (14 Aye)Be,  Ve€E. (4.17)
vEV,

Moreover, the discrete boundary Hodge operator H?, : V7 — F? with o € L>(09) is defined such that, for
all q? € V7,
H2 (%) 700y :=0q2 | adf, Vv € V2. (4.18)
f (’U) fa(v)
Observe that H? is algebraically represented by a diagonal matrix.

Remark 4.4 (Upwinding design). There are several possible variations in the geometric quantities considered
for upwinding. Instead of considering the full dual face f(e) as in (4.15), one possibility is the consider the
average of the normal advective velocity on the dual sub-faces fc(e), and to design the upwinding parameters
based on the sign of these quantities. In general, the smaller the underlying geometric objects, the larger
the dissipation introduced by upwinding. The advantage of considering the dual sub-faces fc(e) is that
upwinding is then compatible with the assembly of the scheme on primal cells.

13
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Lemma 4.3 (Stability, (I1)-(I2)). Let the discrete contraction and surface Hodge operators be given by (4.16)-
(4.17)-(4.18). Assume (A1). Then, (I1)-(12) hold with bilinear maps

[p, H—v -s\4 =y pqu/ —V-B de, (4.19a)
veV

P, upwﬁ Z[[p]] 6 6/867 (419b)
eckE

so that H‘iav_ﬂ s algebraically rfpresented by a diagonal matriz, and where [qle = Y, cv, L (e) (v) v is the
jump of q across the dual face f(e) for all q € V.

Remark 4.5 (First-order diffusion). Since [q]e = —(GRAD(q))e, the right-hand side of (4.19b) can be inter-
preted as a first-order diffusion term.

Proof. Proof of (4.19a). Let v € V and let p,q € V. Using (4.16)—(4.17), we infer that

[[P, Igc GRAD Z Z Z PvQu’ Ly e _Afue)ﬁm

vEV e€E, v EV,

[[p,DlV Z Z Z pqu’Lf Cv)2(1+Ave)/8

veEV e€E, v/ EV,
Using ty,e = =L () z(v): the definition of S, and (A1) leads to

[P, 15°( ¢(GRAD(q) ]]~—[[p,D|v =Y pudu ¥ — / o) df.

veEV ecE,

To conclude, we observe that if v € V\ V? > p ff(e) ﬁ'nf(e),a(u) df = faa(v) By dOC = fa(v) V-8B dé
owing to the divergence theorem, while for the boundary vertices, we use the definition (4.18) of the discrete
boundary Hodge operator to infer that

Z PvQu Z/ ,Bn df— Z pvch)/ V/Bdc_ [p Hﬂn ﬂ](v;—)a-
veve e€ly, vevo

Proof of (4.19b). Using (4.16)-(4.17), the definition of [-]., and the adjunction property between GRAD and
DIV, we infer that

[p, 157 (GRAD(q => > P qﬂe Ave — 1)B,

veEV e€E,

[a,DIV(1} => > [dl epv (1 + Aye)Be-

ecEveVe

Exchanging the summations in the first line leads to

[[p7 Igc GRAD ] + [[q, DIV Z Z [[q ePv ve/Be
ecEveVe

Since Y, ey, PvAve = [PleAe owing to (A1), we infer (4.19b). O

To close this section, we infer from the bound on [|p — Ry(p)|| a,v established in Lemma 4.2 a convergence
rate for smooth solutions. We assume the following approximation property for Ry:

la — (Rv(@))olz2(aw)) + h~(v la — (Rv(@))olz20e00)) S hew)lal e @) (4.20)

for all ¢ € H'(2) and all v € V. A simple example for ﬁy is to take (ﬁy (p))» equal to the mean-value of p
in the dual cell é(v).

14
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Theorem 4.4 (Convergence rate). Assume (B1). Let Lg be the Lipschitz constant of B and assume that
Lg <171 Let the discrete contraction and surface Hodge operators be given by (4.16)-(4.17)-(4.18). Assume
(A1)-(A2). Let p be the unique solution of (4.1) and let p be the unique solution of (4.4). Assume that
p € HY(Q) and that (4.20) holds. Then, the following holds:

~ 1 101 1
ollp = Rv(@)llay < (1815 + h>72[V-Bly)h2 |plar (q), (4.21)
with stability constant o defined in Lemma 4.1, |Bly := [B| (), and |V-Bly := |V B L= (q)

Proof. We need to bound the three terms in the right-hand side of (4.14) for all q € V such that |q|a,y = 1.
A direct calculation shows that

[9. [H"S.5. R qu/ ~V-B) (p — (Ru(p))o) dc,
veEV &(v)

whence we infer owing to (4.20) that

1

3 _1 11
o, [HS.6, R1@)] .l S (7 2 lalloy) (h2 72| V-Bl)h2[pl s o).

Turning to the second term in (4.14), a direct calculation using (A1), the fact that p is single-valued on
f(e), and recalling the definition of 3. shows that

—[GRAD(q). 17, R1(0)] .z = > _lal. Z 5 (1+ A5, / Bnj(p— (Ru(p))) df, (4.22)

ecE VEV,

whence we infer using (4.20) and the fact that |A,| < 1 that

1

~ 1l
Z[[Q]]Z/f( ) 1Bl df) B3 P2 |pl ()

ecE

[GRAD(q), [15, R1(p)] 5| < (

Owing to the triangle inequality, Lemma 4.3, and (A2), we infer that

(Zﬂquz /ﬂe) B df) < ey ? allupwys + (Z[[qﬂz ( /m Bl df - w))

ecE eck

1
2

Let ¢ € Cq; the local dual face f,(e ) consists of twoNtriangles, say f f’c(e),~each touching one of the two faces
[ of ¢ sharing e. Set d¢.(e) fff © 1B ni (e |df — fff,c(e) 5'"ff,c(e) df, so that

0 < 6f(e _2/ (B, )" df.

If (B ng, (e)) takes positive values on fre(e), then 0 < 67 .(e) < 2|Be|; otherwise, B-1f, (e) vanishes at
some pomt in ffyc(e). Then, using the fact that 8-n Fro(e) is Lipschitz in ff,c(e) together with mesh regularity

leads to 0 < &7.(e) < Lghe|fre(e)]. Since ‘ff(e)(')‘ > ff(e)(')’ summing these bounds over ¢ € C, and the
faces f leads to

o< [ Bngolaf | [ g al
(o) f(e) (o) fle)

<Y 050(e) S 1Bl + Lhel f(e)]-
f,c

Using the assumption Lg < 77!

_ABmpldf| <
(e%;E[[q /( | nf()’ )

15
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Finally, a direct calculation shows that

[, Mgy e: 1) 50 = 3 0 /.

veVEY f

)(5-n)+(p — (Ry(p))o) df°,

8(U

~ 1 .
so that [[q”, [H{g.,)+, R] (p)]}(wg)a\ < lallign) 1815 72| m1(y- This completes the proof. O

Remark 4.6 (Localization). The error estimate (4.21) can be localized to dual mesh cells.

5 Advection-diffusion

This section addresses the derivation and analysis of vertex-based CDO schemes for the advection-diffusion
problem (1.1).

5.1 CDO Scheme

Vertex-based CDO schemes for the advection-diffusion problem (1.1) hinge on the discrete bilinear form
Agx := Ag + Ay with Ay defined by (3.3) and Ag by (4.5). The discrete problem consists in finding p € V
such that

A,B,)\(pvq) = [l:qas]]vg + [qaa (bD:“ (v.;_—)aa Vq € Vv (51)

with s = R(s) and ¢p = Rx,((8-n) pp) + noﬁi/h(RVa (pp)). The Tonti diagram of the vertex-based CDO

scheme (5.1) is presented in Figure 4.

p? € V2 |l«——p€EVI— GRAD —|g €&

H(z /h /H ?ﬂ‘n) _ | fac H if

Y

y ‘[ Y
Fo RHS 565[ DIV beF

Figure 4: Tonti diagram of the vertex-based CDO scheme for advection-diffusion with weakly enforced
boundary conditions

Remark 5.1 (Variants). Variants can be considered in conjunction with a diffusive term, such as using the
conservative form of the advective derivative or including a reactive term; see Remarks 4.2 and 4.3.

5.2 Analysis: coercivity, consistency, and error bound

We define the stability norm on V as [lql2 1, := llqllZ,+ |||q|||§v with advection-related stability norm defined
by (4.9) and diffusion-related stability norm defined by (3.10).

Lemma 5.1 (Coercivity and well-posedness). Assume (81), (I1)-(12), and (H?) for the advection-related
terms together with (H1) and (N1) for the diffusion-related terms. Then, provided ny > 1+ 1cf, the
following holds:

olaliey <Asala,q),  VaeV, (5.2)

with o = % Consequently, (5.1) is well-posed.
Proof. Combine Lemma 4.1 with Lemma 3.1. Ul
We now address the consistency of the scheme (5.1) using commuting operators and a reduction map

Ry : HY(Q) = V.
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Lemma 5.2 (Error bound). Let p be the unique solution of (1.1) and let p be the unique solution of (5.1).
Assume p € HY(Q)). Then, under the assumptions of Lemma 5.1, the following holds:

olp —Rv@laay < sup  Egalp,q), (5.3)
a€Villallad,v=1

with consistency error Eg x(p,q) = Eg(p,q) + Ex(p,a), with Eg(p,q) defined by (4.14) and Ex(p,q) defined
by (3.16).

Proof. Combine Lemma 4.2 with Lemma 3.2 (note that H(2) C Vg(Q)). O

5.3 Example: CDO scheme with Péclet-based upwinding

For all e € E, we define the (algebraic) edge Péclet number as Pe, = AJ 1| f(€)| ! Behe with Ae = maxcec, My e,
Ce = {c € Cle C Oc}, and S, defined in Section 4.3. We then use (4.16)-(4.17) to define the discrete
contraction operators If_,g and I/};JNr with Péclet-dependent upwinding parameter A, = O(¢ F(e).5v) Pe.), where
the function © : R — R is such that

(01) O(z) +O(—z) =0 and O(z) > 0 for all z € Rxg.

(©2) There exists o > 0 such that ©(z) > « for all x > 1 (the lower bound on x is arbitrary; changing its
value only changes the constants in the error bounds).

Note that (©1) implies (A1) since SeAe = %Ae\hfe)l 2veVe Lie) o(w) PeeO (L f(¢) a(vyPee) = 0. Since (A1) holds,
Lemma 4.3 implies that (I1)-(I2) hold; hence, stability and well-posedness hold owing to Lemma 5.1. An
example for the function © is the Sharfetter-Gummel map ©(z) = coth (£) — 2, see Roos et al. [36] for
further insight and examples. The function © is related to the function |A| introduced in [21] in the context
of high-order face-based discretizations by the relation |A|(x) = zO(x).

To write the error estimate, we introduce one last geometric object d(e), for all e € E, which is the
so-called diamond around e formed by the two pyramids of apex v € V, and (non-planar) basis f(e), see

Figure 1 (left panel). Note that Ueegpd(e) = Q.

Theorem 5.3 (Convergence rate). Assume (81). Let Lg be the Lipschitz constant of B and assume that
Lg < 771 Let the discrete contraction and surface Hodge operators be given by (4.16)-(4.17)-(4.18). For
the diffusion-related operators, assume (H1)-(H2) and (N1)-(N2). Let p be the unique solution of (1.1)
and let p be the unique solution of (5.1). Assume p € H?(Q). Then, the following holds:

ceC

1
2
ollp = Ry(p) gy S (Z pcka,chi\p!?ﬂ(c))

[NIES

+ (Z(T|v'ﬁ‘%m(a(e))h€ + |Bn|ge)he min(l, Pee)@ﬁ{lﬂa(e))) ) (5.4)
eckE

with |B-nlge = [B1fe) | oo fiey) e [Plr1+0(e)) = [Pl (0(e)) T+ PelPlE2(0(e))-

Proof. The bound on the diffusion-related terms derived in Theorem 3.3 still holds. For the advection-
related terms, there are two adaptations from the proof of Theorem 4.4. The first one is that we consider
Ry (p) in lieu of Ry (p) since we are now bounding the error (p — Ry (p)). The approximation property (4.20),
which is now applied in the diamonds around edges, is then replaced by

1
lq = (Ro(@)el 20000y + 1 la = Ru(@)ol 2y S helal s ooy

for all ¢ € H?(), all e € E, and all v € V.. The second adaptation is related to the change in the ||-[|upw,s
semi-norm owing to the use of Péclet-based upwinding. We bound again the three terms in the right-hand
side of (4.14) for all q € V such that ||qf|ag,y = 1. For the first term, we readily infer that

g, [H %5, R10)] 3l S (7 7[la

2
2,)) (Z T\V'ﬁ’%w(a(e))hz’pﬁ{lﬂa(e))) :

ecE
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Consider now the second term. Let Ev; := {e € E||Pe.| > 1} and E<; := {e € E||Pe.|] < 1}. The
summation in the right-hand side of (4.22) is split as 3.cp_, (") + > cep., (-). Proceeding as in the proof of
Theorem 4.4, we infer that N

e€cE~q ecE>q e€Exq

) <->s(z [a]? /f@ |B'"f(e)df) (Z |ﬂ-n|ﬁ,ehe|p|%p+<a<e»> -

For all e € E~1, property (02) implies that Ac8. > «|Bc|. Then, still proceeding as in the proof of
Theorem 4.4, we infer that

D=

_1
> () 5 (Nallupws + 72 llall2) ( > |ﬂ-nrﬁ,ehe|p|%p+@(e»)

ecEsq eckEsq

Furthermore, we observe that

2

[N

f.e

= ( > [{qﬂiheAe) ( > hA B

GEESI €€E§1 8€E§1

Belhe |p‘%{1+(a(e)))

Owing to mesh regularity, the definition of A., and (H1), we infer that the first factor in the right-hand side
1

is bounded by ||[GRAD(q)||x, while the second factor is bounded by (ZeeE |B-n|ﬁ76h6Pee]p\fqpr(a(e)ﬁ§ since
AZHF (€)Y Belhe = |Pee| < 1 and |f(e)| < h2. Collecting the bounds on Y ek, and > cp_, leads to

2
[[GRAD(a), [15", R1(»)] .z < lallad,v (Z !B-nln,ehemin(l,Pee)\plfqu(a(e))) :
ecE

Finally, the boundary term is bounded as before. O

Remark 5.2 (Limit regimes). In the advection-dominant regime with |Pe.| > 1 for all e € E, the error
bound (5.4) behaves as h'/? (see Theorem 4.4), while, in the diffusion-dominant regime with |Pe.| < h, for
all e € E, it behaves as h (see Theorem 3.3). The case where h, < Pe, < 1 corresponds to transition regimes
and intermediate orders of convergence.

Remark 5.3 (Boundary term). It is also possible to modify the discrete boundary Hodge operator so as to
enforce the boundary condition using a Péclet-based upwinding; details are omitted for brevity.

6 Divergence-free advection

In this section, we extend the analysis to the case of a divergence-free velocity field 8 under assumption (82);
recall that this assumption provides a real number 7 > 0 and a function ¢ € W1°°() such that ¢ > 1 a.e.
in . The advection-related stability norm |||,y is still defined by (4.9) (where now 7 results from (82)).
The only relevant change in the analysis is that stability (and well-posedness) is now achieved by means of
an inf-sup condition instead of a coercivity argument. Since inf-sup stability suffices to establish the error
upper bounds, the convergence rates derived in Theorem 4.4 for pure advection and in Theorem 5.3 for
advection-diffusion still hold. In what follows, we consider the non-dimensional numbers wg = Lg\ BlghT and
wy = L%)\ﬁT, with L¢ the Lipschitz constant of ¢, [B; := [ B[ (q), and Aj := maxcec Ag,e-

6.1 Pure advection

Along with (I1)-(12), we introduce a third property for the discrete contraction operators:
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(I3) [Multiplication by (] There are ci, ca, c3, uniform with respect to the mesh-size and the functions 3
and ¢, such that the following holds for all q € V:

I<allzpw,s + llSallis.ry < ClC}j (lallZpw,s + llallfpnp) + c20sm lall3 . (6.1a)
As(a;Cq) = *\Hq!Ha,v — cswpAs(a, ), (6.1b)

with 4 := || () and (q € V such that ((q), := ((v)q, for all v € V.
Lemma 6.1 (Inf-sup stability). Under hypotheses (82), (I11)-(12)-(13), and (H?), the following holds:

Ag(q,r
dlallay < sup 228D vy ey, (62)
D Trllay

1
with o = (maux((ti + cowg, clgﬂ)z + c;»,wg)

Proof. We take r = (q + cawgq € V. Owing to the triangle inequality, (6.1a), and the obvious bound
I¢all2y < Gllall2,y, we infer that

Moreover, owing to (6.1b), we infer that

1
alloy < (max(¢ + ewp, e1G)7 + esw5) lalla,v-

1
Aﬂ(qa I’) = Aﬂ(qv Cq) + C3W5Aﬂ(q7q) > 7”|qwz,Va
whence we infer (6.2). O

Remark 6.1 (Factor wg). An upper bound on wg yields a lower bound on p. A simple upper bound is to
replace h by a global length scale associated with Q (i.e., h can be replaced by a global length scale in (6.1a)
and (6.1b)). A sharper bound is wg < L¢|B[y7 under the mild assumption L¢h < 1 (meaning that h resolves
the scale of spatial variations of ().

We now verify property (I3) in the context of the CDO scheme with upwinding studied in Section 4.3.

Lemma 6.2 ((I3) with upwinding). Assume (B82) and (A1). Let the discrete contraction and surface Hodge
operators be given by (4.16)-(4.17)-(4.18). Then, (13) holds.

Proof. To prove property (6.1a), we observe that, for all q € V, since A > 0 for all e € E,
ICal2ns = D [Cal?AcBe < 23 (LCH2 10l + {aB2ICT2) Ache,

ecE ecE

where {C}e = 33 .ev, Cv), [Cle = Zuev. L)), fake = 3 ,ev, qu, and [qfe is defined in
Lemma 4.3. Since 2{¢}? < 2{5 and [¢]? < (L¢he)?, we infer that

”’Cqmupw,ﬂ < 2€ﬁ |||q|||upw,,8 +2 Z LthEQ}}erﬁe,
ecE

and we conclude using 0 < A.8. < [Bls|f(e)], {a}? < < 33 .ev, 92, and mesh regularity. Since, owing
o (4.18), |||§q|H|2B,n| < C§|||q|||‘2ﬁ,n|, this completes the proof of (6.1a).
Proof of (6.1b). The idea of the proof consists of writing Ag(q, (q) in the form Asg(q,q) plus a perturbation

which can be bounded by the variations of (. A straightforward computation proceeding as in the proof of
Lemma 4.3 shows that Ag(q,{q) = T1 + T» + T3 with

=S Y it [ mpgdf ¢ Yl r Y at [ c(am)” df

veEV ecEy eeE veEVO fov)
L=Y Y ja / EORIEEVREED S) O L quge(Ce — C0)AveBe,
vEV e€E, ’vGVeEEv

L= 3 6 [ (@)~ OBn) df,

veVo o)

19



CDO schemes for advection-diffusion problems P.Cantin and A.Ern

with g = GRAD(q) and (. the mean-value of ¢ in e. Since ¢ > 1, still proceeding as in the proof of
Lemma 4.3 and using now (82) leads to the bound 77 > %]”q”]zv Furthermore, using Cauchy—Schwarz

inequalities, (A2), and mesh regularity, we obtain 13| < wg|qlupw,s (7'_% llall2,v). Proceeding similarly leads
1 : : .
to [Ts] < wsllallpon (7 lally)- Since Ag(a,a) = L(1al2,s + IalPs.ny) owing to (411), we infer that

1, 1
To| + T3] < wpAs(a,9)2 (772 lall2,v),
and the conclusion follows using Young’s inequality. O

Remark 6.2 (Conservative advection). Using the conservative form of the advective derivative is also possible
under assumption (82). The above proofs are adapted by considering the function ¢" = 1 + [[{[[ () — ¢
which is bounded by [|¢|| () and satisfies (" > 1 and V-(¢'8) > 771 a.e. in Q.

6.2 Advection-diffusion

As in Section 5.3, we consider the Péclet-dependent upwinding parameters A, = @(Lf( €),é(v) Pe.) under
assumptions (01)-(02). Recall that (©1) implies (Al).

Lemma 6.3 (Inf-sup stability). Assume (82). Let the discrete contraction and surface Hodge opera-

tors be given by (4.16)-(4.17)-(4.18) with Péclet-dependent upwinding parameters under assumption (©1).
14+2¢§ (¢ +ed)

Assume (H1) and (N1) for the diffusion-related terms. Then, provided ny > e~ With ¢4 =
max(03w5,2C5w/2\), c5 = (QCﬁleyE)%, Ny g being the mazimum number of edges touching a mesh verteg,
the following holds:
A A, r
lallaay < sup 22200 g e, (63)

eV rllagy
with o = %(max(CﬁZ + cowg + 2c2wy, ClCuZa 2{?)% )7t

Proof. Set r := (q + c4q. Since (Al) holds, we infer from Lemma 6.2 that (I3) holds. Moreover, since
c4 > cswg and Ag(q,q) > 0, Lemma 6.1 implies that

1
As(a,1) = Ag(a, a + cswpa) = —[lall3 - (6.4)

Moreover, owing to (3.13) and to Lemma 6.4 below, we infer that

1 1
Ax(@,1) > (1 +ca)llgli — en(Ge + collgliallallan — esws lellar™2 llallzy +m0(1 + ca)llall3 .

where we have set g = GRAD(q). Using Young’s inequality for the third term on the right-hand side yields

1 _
Ax(@,1) > llgllx — en(Ce + ca)llglallallam +m0(1 + ea)llallsn — g7 lall3 v,

8

since ¢4 > 2csw?. Using the same quadratic identity as in Lemma 5.1, this time with v = en (¢ + c4) and
142§ (Gs+c3)

0 = no(1 + c4), and observing that the choice ny > e

infer that

2
implies 6 > % + %72 so that % > %, we

1 1 _
A0 = gllalliy = 57 lallzy-

Combining this bound with (6.4) yields Aga(q,r) > %|||q|||§dvv. We conclude using ||rflaay < ||¢allad,y +

1
callallaq,y and [[€allag,y < max(¢F + caws + 2w, 167, 2¢F) 2 [lallaa,v- O

Remark 6.3 (no). The lower bound for 7y obtained in Lemma 6.3 slightly differs, up to a numerical factor,
from that obtained in Lemma 3.1 for zero advection; the reason is that both proofs have not been optimized
regarding the lower bound in the quadratic identity.

20



CDO schemes for advection-diffusion problems P.Cantin and A.Ern

Lemma 6.4 (Multiplication by (). Assume (H1)-(N1). The following holds for all q € V with g =
GRAD(q):

v < 2¢alldy + 2¢5wrt " lall3,y, (6.5a)
L _1

Ax(a,¢a) > llgllx + molla’ll3/n — enGillglialla®liagm — csws llglia(r~2 lallzv)- (6.5b)

Proof. Proof of (6.5a). The definition of H?\/h implies that ||¢q° ”|/\/h = [¢q?, H?\/h(Cq )] wRo < Cﬁ |||q3H]/\/h

Furthermore, owing to the cell-wise assembly of the discrete Hodge operator Hif and using the triangle
inequality, we infer that

IGRAD(Ca)lI3 = > [GRAD.(¢a), H@C-GRADC@qn]@;)

ceC

= 3" 2C2[GRAD.(a), Hy " GRAD.(a)] .5, + D 20l
ceC ceC

< 2GZIGRAD(a)I13 + D 20c(q)?

ceC

where (. is the value of { at the barycenter of ¢ and d.(q) := || GRAD.(w)]|,c and w := ({ — {.)q. The upper
bound in (H1), the definition of GRAD, and that of the ||-[|2,¢,-norm yield

2
5c(Q)2 < Cﬁlkﬁ,chc Z ( Z Lv,e(C(U) - Cc)qv)

€€Ec ’UGVE

—1 -1
< 2eq M L2RY Y Y an < 2¢5 Ny e LElall3y, -
e€E. veEV,

Combining the above bounds leads to (6.5a).
Proof of (6.5b). Using (N1), (3.12), and ¢ > 1, we infer that

Ax(a.Ca) = [GRAD(Cq). H5™-GRAD(@)], 5 — [(¢a)°, N&-GRAD(@)] 5,0 + 10 [(Ca)”. g1 (6°)] 30
> [GRAD(Cq), H§™-GRAD(q)] . ; — enlIGRAD(Q)[IAI(C)” l/n + molla’
> [GRAD(Ca). H§™-GRAD(a)] . — enGlGRAD(@) [x e l/n + molla’l13 1

Moreover, owing to the cell-wise assembly of the discrete Hodge operator Hif; and proceeding as above, we
infer that

[GRAD(¢q), H{"-GRAD(q)] .z = 3 [GRAD.(¢q), HS™*-GRAD.(q)]
ceC

€Pe

> [|GRAD(q) I3 + 3 [GRAD.(w), H{*-GRAD, (q)
ceC

les.

Since Hgff)c is self-adjoint and monotone, we infer that

|[GRAD.(w), H{7'*-GRAD,()] 3, | < 0c(a)|GRAD(a)x
so that )
2
[GRAD(¢q), HY™-GRAD(q)] .z > [|GRAD(a)|3 — (Z Oe( ) IGRAD(a)]lx-
ceC
Using the above bound on é.(q) yields (6.5b). O

7 Numerical results

In this section, we investigate numerically CDO advection-diffusion schemes on four families of successively-
refined, polyhedral meshes of the unit cube Q = (0,1)3, see Figure 5 for an example of mesh within each
family. These mesh families have been proposed in the FVCA benchmark [26], see also [5].

21



CDO schemes for advection-diffusion problems P.Cantin and A.Ern

Kershaw (K)
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. NCTEEL
i1
/Ly

7

WT‘

Figure 5: Polyhedral meshes

The error with respect to the exact solution p is measured using the following two quantities:

Erryy i lp — Rv(®)ll2,v Errygy i Ip — Ry (D) lad,v
Vo ’ ad, - .
IRy () ll2,v IRy (P)ad,v

In our numerical tests, the integrals for the source term and the boundary data are computed using a
fourth-order quadrature on elementary sub-simplices of each polyhedral cell. The linear systems are solved
using a Bi-Conjugate Gradient method combined with a Symmetric Successive Over-Relaxation (SSOR)
preconditioner.

7.1 Anisotropic diffusion and variable advective velocity

We consider the conservative form of the scheme (5.1), where the bilinear form Ag is given by (4.8). The
exact solution is p(x,y, z) = 1 4 sin(7zx) sin (ﬂ' (y + %)) sin (77 (z + %)), and the diffusive tensor A and the
velocity field B are equal to (in the canonical basis of R3)

1 05 0 y—1/2
A=|05 1 05|, B=|1/2-2],
0 05 1 2

so that the velocity field satisfies hypothesis (81) for the conservative form (see Remark 4.2). The discrete
contraction operator V7 is built using either full upwinding as in Section 4.3 or Péclet-based upwinding as
in Section 5.3 using the Sharfetter—Gummel map.

Figure 6 presents the numerical results, which reflect the theoretical analysis with convergence rates
between one and two. The use of Péclet-based upwinding leads to lower errors than full upwinding; the
improvement is more pronounced on the SkP mesh sequence than on the other sequences, and is observed
on the finer meshes.

7.2 Exponential boundary layer with constant advective velocity

The second test case investigates the behavior of the CDO scheme in the presence of an exponential boundary
layer resulting from small diffusion. We consider an isotropic diffusive tensor, i.e. A = Ald, and a constant
vector field B with components (2, 3,0), so that assumption (82) is satisfied. The exact solution is p(z,y, z) =
(x — 62(17;1))(!7;2 - eg(y;n) and exhibits a boundary layer near z = 1 and y = 1 when A tends to 0. The
discrete contraction and Hodge operators are designed as above.

Figure 7 reports numerical results for A = 1 (solid lines) and A = 10~* (dashed lines). Note that in
this second case, the considered meshes do not resolve the boundary layer. The transition between the two
convergence regimes as predicted by Theorem 5.3 is clearly visible. The present test case is also considered by
Da Veiga et al. [17] on the same SkP mesh sequence with a different same scheme, where similar convergence

rates are reported but with somewhat larger error values.

Acknowledgement. The authors thank Jérome Bonelle (EDF R&D) for fruitful discussions.
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Figure 6: Test case 7.1: Convergence curves for the two error measures on the four mesh families using full
upwinding (dashed lines) or Péclet-based upwinding (solid lines); first- and second-order slopes are indicated.
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Figure 7: Test case 7.2: Convergence curves for the two error measures on the four mesh families using
Péclet-based upwinding for A = 1 (solid lines) and A = 10~* (dashed lines); half-, first-, and second-order

slopes are indicated.
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