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Abstract

Among the computational intelligence techniques employed to solve classification problems, the fuzzy rule-based

classification system (FRBCS) is a popular tool capable of building a linguistic model interpretable to users. However,

it may face lack of accuracy in some complex applications, by the fact that the inflexibility of the concept of the

linguistic variable imposes hard restrictions on the fuzzy rule structure. In this paper, we extend the fuzzy rule in

FRBCS with a belief rule structure and develop a belief rule-based classification system (BRBCS) to address imprecise

or incomplete information in complex classification problems. The two components of the proposed BRBCS, i.e., the

belief rule base (BRB) and the belief reasoning method (BRM), are designed specifically by taking into account the

pattern noise that existes in many real-world data sets. Four experiments based on benchmark data sets are carried out

to evaluate the classification accuracy, robustness, interpretability and time complexity of the proposed method.

Keywords: Pattern classification, Fuzzy rule-based classification system, Belief rule-based classification system,

Belief functions theory, Pattern noise

1. Introduction

The fuzzy rule-based classification system (FRBCS) [10, 24, 50] is a useful tool to address classification problems,

and it has become a popular framework for classifier design. It is widely employed due to its capability of building

a linguistic model interpretable to users and addressing both quantitative and qualitative information coming from

expert knowledge, mathematical models or empirical measures [45]. The FRBCS has been successfully applied to

different real world classification tasks, including, but not limited to, image processing [49], intrusion detection [52],

fault classification [44], target recognition [55], and medical applications [2, 53].

However, on one hand, the FRBCS may face lack of accuracy when dealing with some complex applications, due

to the inflexibility of the concept of the linguistic variable, which imposes hard restrictions on the fuzzy rule structure
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[4]. For example, when the input-output mapping varies in complexity within the space, homogeneous partitioning

using linguistic variables for the input and output spaces becomes inefficient. Moreover, as the size of the rule base

directly depends on the number of fuzzy partitions for each feature, the derivation of an accurate FRBCS causes the

number of rules to rise significantly, which may make the system lose the capability of being interpretable to the users.

As both the interpretability (depends on several factors, mainly the rule structure, the number of rules, the number of

features, the number of fuzzy partitions, and the shape of the fuzzy sets [21]) and the accuracy are important in system

modeling, two ways of improving the accuracy of an interpretable FRBCS have been developed. One is learning an

optimized rule base with sophisticated methods, such as FURIA [23], PDFC [9], or FARC-HD [3]. The other, as

our main focus in this paper, is changing the rule structure to make it more flexible to characterize the input-output

mapping, for example through introducing probability distribution [11] or interval-valued fuzzy sets [45].

In fact, different types of uncertainty, such as fuzziness, imprecision and incompleteness, may coexist in real-

world complex systems. The FRBCS, which is based on fuzzy sets theory [60], cannot effectively address imprecise

or incomplete information in the modeling and reasoning processes. The belief functions theory, also called Dempster-

Shafer theory, proposed and developed by Dempster [13] and Shafer [46] et al., has become one of the most powerful

frameworks for uncertain modeling and reasoning. As fuzzy sets theory is well suited to dealing with fuzziness, and

belief functions theory provides an ideal framework for handling imprecision and incompleteness, many researchers

have investigated the relationship between fuzzy sets theory and belief functions theory and suggested different meth-

ods of integrating them [6, 7, 34, 56, 57]. Among these methods, Yang et al. [57] extended the fuzzy rule in belief

functions theory and proposed a new knowledge representation scheme in a belief rule structure, which is capable

of capturing fuzzy, imprecise, and incomplete causal relationships. The belief rule structure has been successfully

applied in clinical risk assessment [31], inventory control [32], and new product development [51, 58].

This paper aims to extend the fuzzy rule in FRBCS with the belief rule structure developed in [57] for classifi-

cation applications. Compared with the fuzzy rule, the consequence part of the belief rule is in a belief distribution

form, which is more informative and can characterize the uncertain information (i.e., fuzziness, imprecision, and in-

completeness) existing in the training set. In addition, feature weights are introduced in the belief rule to characterize

the different degrees of importance of features to the consequence. Therefore, the belief rule is more suitable for

modeling those complex classification problems with great uncertainty. Based on the belief rule structure, a belief

rule-based classification system (BRBCS) is developed as an extension of FRBCS in belief functions framework. In

the proposed BRBCS, a data-driven belief rule base (BRB) generation method is developed to establish the uncertain

association between the feature space and the class space. This BRB generation method enables the automatic gen-

eration of belief rules from the training data without the requirement of a priori expert knowledge. Then, to classify

a query pattern based on the BRB, a belief reasoning method (BRM) is developed based on belief functions theory.

This BRM can well address the uncertainty existing in the consequences of activated belief rules for a query pattern.

To handle the pattern noise commonly existing in many real-world data sets, two techniques are developed in the

BRB generation and BRM design processes. First, the consequence part of each belief rule in BRB is generated by
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fusing the information coming from all of the training patterns assigned to the corresponding antecedent fuzzy region.

In this way, the adverse effects of the noisy training patterns on the consequence of the belief rule can be reduced

to some extent. Furthermore, in BRM, the final consequent class of a query pattern is obtained by combining the

consequence parts of all of the belief rules activated by the query pattern. Thus, even if some unreliable belief rules

are generated in noisy conditions, this procedure can further reduce the risk of misclassification.

Using belief functions theory to solve classification problems is not new, and some proposals have been introduced

[15, 16, 18, 36, 37]. In [15], an evidential K-nearest neighbor (EK-NN) classification rule was proposed by extending

the classical K-NN rule within the framework of belief functions theory. Liu et al. [36, 37] further extended the

EK-NN method considering the belief assigned to meta-classes. These methods mainly focus on the uncertainty

modeling and reasoning in K-nearest neighbor classification, whereas the BRBCS proposed in this paper aims to

use the belief functions theory in the rule-based classification system, so these two schemes are different in nature.

Recently, Chen et al. [8] started to study the possibility of using belief functions theory in the rule-based classification

system, but although the belief rule structure was introduced, the authors did not provide a method to derive the

belief rule base from the data sets, and only the traditional fuzzy rule base was used in the experiment for illustration.

Later, a belief rule base representation, generation and inference method was proposed in [33], where each training

sample was developed as a rule with belief degrees embedded in the antecedent terms to model the input-output

relationship. Although it has a similar theoretical foundation, the BRBCS proposed in our paper is developed in a

quite different way. First, we use the rule structure considering belief distribution in the consequence part to well

characterize the incompleteness induced by the limited training patterns. Second, we construct a belief rule associated

with each activated fuzzy region by fusing all of the training samples assigned to this fuzzy region. In this manner,

the constructed belief rules are more reliable, and the number of rules can be reduced greatly.

The rest of this paper is organized as follows. In Section 2, the basics of the fuzzy rule-based classification

system and belief functions theory are introduced. The belief rule-based classification system (BRBCS) is developed

in Section 3, and then four experiments are performed to evaluate the accuracy, robustness, interpretability and time

complexity of the proposed BRBCS in Section 4. At last, Section 5 concludes the paper.

2. Preliminaries: fuzzy rule-based classification system and belief functions theory

In this section, we provide some preliminaries of the fuzzy rule-based classification system (FRBCS) and the

belief functions theory. In Section 2.1, we describe the classical fuzzy rule structure followed by one of the most

popular FRBCSs developed by Chi et al. [10]. In Section 2.2, we introduce some basic concepts of belief functions

theory that are necessary for developing the belief rule-based classification system.

2.1. Fuzzy rule-based classification system

A fuzzy rule-based classification system (FRBCS) is composed of two main conceptual components, the fuzzy

rule base (FRB) and the fuzzy reasoning method (FRM). The FRB establishes an association between the space of
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pattern features and the space of consequent classes. The FRM provides a mechanism to classify a query pattern based

on the FRB.

The fuzzy rule in the FRB for an M-class (denoted as Ω , {ω1, ω2, · · · , ωM}) pattern classification problem with

P features has the following structure [10]:

Fuzzy Rule Rq : If x1 is Aq
1 and · · · and xP is Aq

P, then the consequence is Cq

with rule weight θq, q = 1, 2, · · · ,Q,
(1)

where x = (x1, x2, · · · , xP) is the pattern feature vector and Aq = (Aq
1, · · · , A

q
P) is the antecedent part, with each

Aq
p belonging to fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np } associated with the p-th feature. Cq ∈ Ω is the label of the

consequent class, and Q is the number of fuzzy rules in the FBR. The rule weight θq, characterizing the certainty

grade of the fuzzy rule Rq, is used as the strength of Rq in fuzzy reasoning.

Based on the above fuzzy rule structure, several FRB generation methods have been proposed [9, 10, 25]. Here,

we introduce the one proposed by Chi et al. [10] because it is one of the most widely used algorithms. To generate the

FRB, this method uses the following steps:

1. Establishment of the fuzzy regions. Usually, the partition of the pattern space is related to the specific classifica-

tion problem. If no prior knowledge is available, the method based on simple fuzzy grids is usually employed

[24]. Fig. 1 shows an example of the fuzzy partition of a two-dimensional pattern space with triangular fuzzy

sets. Based on this method, once the domain interval and the partition number for each feature are determined,

the fuzzy regions are easily computed.

A1,1 A1,2 A1,3 A1,4 A1,5

A
2
,1

A
2
,2

A
2
,3

A
2
,4

A
2
,5

Figure 1: An example of the fuzzy partition of a two-dimensional pattern space by simple fuzzy grids

2. Generation of a fuzzy rule for each training pattern. Assume that N labeled P-dimensional training patterns

xi = (xi1, · · · , xiP), i = 1, 2, · · · ,N are available. For each training pattern xi, the following steps are necessary

(a) To calculate its matching degree µ(xi) with different fuzzy regions using the product operator

µAq (xi) =
P∏

p=1

µAq
p
(xip), (2)
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where µAq
p
(·) is the membership function of the fuzzy set Aq

p,

(b) To assign the training pattern xi to the fuzzy region with the greatest matching degree,

(c) To generate a rule for this training pattern, with the antecedent part determined by the selected fuzzy

region and the consequent class equal to the class label of the training pattern, and

(d) To compute the rule weight θq.

Rules with the same antecedent part may be generated during the learning process. In this case, only the one

having the maximum rule weight is maintained, whereas the remainder are removed.

Once the FRB is constructed, the query patterns can be classified by the following single winner FRM. Let S be

the set of Q constructed fuzzy rules. A query pattern y = (y1, y2, · · · , yP) is classified by a single winner rule Rw,

which is chosen from rule set S as

Rw = arg max
Rq∈S
{µAq (y) · θq}. (3)

That is, the winner rule Rw has the maximum product of the matching degree µAq (y) and the rule weight θq in S .

Because it is limited by the number of training patterns, the query pattern may not always be covered by any rule in

the FRB, in which case the classification is rejected. To avoid the non-covering problem, several techniques have been

proposed, such as using bell-shaped fuzzy sets instead of the triangular fuzzy sets [39] or stretching a rule by deleting

one or more of its antecedent terms [23].

2.2. Basics of belief functions theory

In belief functions theory, a problem domain is represented by a finite set Θ = {θ1, θ2, · · · , θn} of mutually exclu-

sive and exhaustive hypotheses called the frame of discernment. A mass function or basic belief assignment (BBA)

expressing the belief committed to the elements of 2Θ by a given source of evidence is a mapping function m(·):

2Θ → [0, 1], such that

m(∅) = 0 and
∑
A∈2Θ

m(A) = 1. (4)

Elements A ∈ 2Θ having m(A) > 0 are called the focal elements of the BBA m(·). The BBA m(A) measures the degree

of belief exactly assigned to a proposition A and represents how strongly the proposition is supported by evidence. The

belief assigned to Θ, or m(Θ), is referred to as the degree of global ignorance. The probability assigned to any subset

of 2Θ, except for any individual proposition θi (i = 1, · · · , n) and Θ, is referred to as the degree of local ignorance.

If there is no local or global ignorance, a belief function reduces to a conventional probability function, and the BBA

m(·) is said to be Bayesian.

Shafer [46] also defines the belief function and plausibility function of A ∈ 2Θ as follows

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A,∅
m(B). (5)
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Bel(A) represents the exact support to A and its subsets, and Pl(A) represents the total possible support to A and its

subsets. The interval [Bel(A), Pl(A)] can be seen as the lower and upper bounds of support to A. The belief functions

m(·), Bel(·) and Pl(·) are in one-to-one correspondence.

For decision-making support, Smets [47] proposed the pignistic probability BetP(A) (from the Latin word pignus,

meaning a bet) to approximate the unknown probability in [Bel(A),Pl(A)] as follows

BetP(A) =
∑

B⊆Θ
A∩B,∅

|A ∩ B|
|B| m(B), (6)

where |X| is the cardinality of set X.

Two useful operations in the manipulation of belief functions are Shafer’s discounting operation and Dempster’s

rule of combination. The discounting operation is used in the case that a source of evidence provides a BBA m(·), but

one knows that this source has probability α ∈ [0, 1] of reliability. Then, one may adopt (1 − α) as the discount rate,

which results in a new BBA mα(·) defined by

mα(A) =

 αm(A), for A , Θ

αm(Θ) + (1 − α), for A = Θ.
(7)

Several distinct bodies of evidence characterized by different BBAs can be combined using Dempster’s rule. Mathe-

matically, Dempster’s rule of combination of two BBAs m1(·) and m2(·) defined on the same frame of discernment Θ

is

m(A) =


0, for A = ∅∑

B∩C=A
m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C) , for A ∈ 2Θ and A , ∅.
(8)

In Dempster’s rule, the total conflicting belief mass
∑

B∩C=∅
m1(B)m2(C) is redistributed back to all of the focal elements

through normalization.

Sometimes, the dissimilarity measure between two sources of evidence is needed, which is characterized by the

distance between two BBAs. The choice for a well-adapted distance is not easy, and many distances have been defined,

as shown in [30]. Here, we present the definition of Jousselme’s distance dJ [29], which is one of the most commonly

used distances. The dJ between two BBAs m1(·) , m1 and m2(·) , m2 defined on the same frame of discernment Θ is

dJ(m1,m2) =

√
1
2

(m1 −m2)D(m1 −m2)T , (9)

where D is a 2|Θ| × 2|Θ| matrix with elements given by Di, j =
|Ai∩B j |
|Ai∪B j | , Ai, B j ∈ 2Θ.

To interpret the belief functions theory in a more obvious way and to demonstrate its capacity for representing and

reasoning with uncertain information, we provide the following murder example [17] for illustration.

Example 1. Suppose a murder has been committed. There are three suspects: Peter, John, and Mary. In the belief

functions framework, the set Θ = {Peter, John,Mary} can be seen as the frame of discernment of the considered

problem.
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Suppose a witness saw the murderer going away, but he is short-sighted, and he only saw that it was a man. Based on

this evidence, the following BBA can be constructed for the murderer

m1({Peter, John}) = 1. (10)

Further, we know that the witness is drunk 20% of the time. This means that the above evidence holds with probability

α = 0.8. Thus, Shafer’s discounting operation in Eq. (7) can be used to obtain the corresponding BBA as

mα1 ({Peter, John}) = 0.8, mα1 (Θ) = 0.2. (11)

Suppose when investigating the scene of the crime, a blond hair has been found, and we know there is a probability

α = 0.6 that the room has been cleaned before the crime. In a similar way, we can obtain the second BBA as

mα2 ({John,Mary}) = 0.6, mα2 (Θ) = 0.4. (12)

With the above two distinct pieces of evidence, Dempster’s rule of combination can be used to fuse them into a final

BBA as

m({John}) = 0.48, m({Peter, John}) = 0.32, m({John,Mary}) = 0.12, m(Θ) = 0.08. (13)

To judge who is most likely to be the murderer based on the above final BBA, we compute the belief Bel(·), the

plausibility Pl(·) and the pignistic probability BetP(·) for each suspect using Eqs.(5,6), as shown in Table 1. The

belief Bel(·) and the plausibility Pl(·) for each suspect provide its lower and upper probabilities to be the murderer,

respectively. The pignistic probability BetP(·) provides an approximate estimation between the lower and upper

probabilities. For this example the same decision is made by maximizing Bel(·), Pl(·) and BetP(·): John is most likely

to be the murderer.

Table 1: The belief, plausibility and pignistic probability with regard to each suspect

Suspects Bel Pl BetP

Peter 0 0.4 0.19

John 0.48 1 0.73

Mary 0 0.2 0.09

From the above example, it can be seen that the belief functions theory can adequately deal with uncertainty

induced by partial evidence. As a generalized probability distribution, the mass function can represent local ignorance

(such as the belief assigned to {John,Mary} and {Peter, John}) as well as global ignorance (the belief assigned to

the frame of discernment Θ). In addition, belief functions theory provides effective tools (such as Dempster’s rule

of combination) for uncertain reasoning at the credal level using the formalism of mass function. At last, the final

mass function is transformed into a probability measure (pignistic probability) to support the decision making at the

pignistic level.
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3. Belief rule-based classification system (BRBCS)

Considering the advantages of belief functions theory for representing and reasoning with uncertain information,

in this section we extend the classical FRBCS in belief functions framework and develop the belief rule-based clas-

sification system (BRBCS). As in Fig. 2, the proposed BRBCS is composed of two components: the belief rule base

(BRB) that establishes an association between the feature space and the class space and the belief reasoning method

(BRM) that provides a mechanism to classify a query pattern based on the BRB. In Section 3.1, we first describe the

belief rule structure for classification applications, which extends the traditional fuzzy rule structure in belief functions

framework. Based on the belief rule structure, we learn the belief rule base from the training patterns in Section 3.2,

and then the belief reasoning method is developed in Section 3.3.

Query

Pattern
Class

Training

Patterns

Belief Rule Base

(BRB)

Belief Reasoning Method

(BRM)

BRB Learning

Figure 2: Belief rule-based classification system

3.1. Belief rule structure

The fuzzy rule structure expressed in Eq. (1) is relatively simple in that it does not consider the distribution of

consequence and the relative importance of each feature. To take the above aspects into consideration, two concepts

are introduced [57]:

• Belief degrees of consequence. For a complex classification problem, it is likely that the consequence of a

rule may take a few values with different belief degrees. Suppose the consequence may have M different

classes, ω1, ω2, · · · , ωM , and the corresponding belief degrees are represented by βi(i = 1, 2, · · · ,M), then the

consequence with a belief structure can be represented by {(ω1, β1), (ω2, β2), · · · , (ωM , βM)}.

• Feature weights. As indicated in [26, 27], in real-world classification problems, different features may behave

distinctly in determining the consequent class. Thus, there is a need to assign a weight to each feature to

describe such degrees of importance.
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To take into account the belief degrees of consequence and the feature weights, the fuzzy rule structure expressed

in Eq. (1) can be extended to the following belief rule structure for classification purposes:

Belief Rule Rq : If x1 is Aq
1 and · · · and xP is Aq

P, then the consequence is Cq = {(ω1, β
q
1), · · · , (ωM , β

q
M)}

with rule weight θq and feature weights δ1, · · · , δP, q = 1, 2, · · · ,Q,
(14)

where βq
m is the belief degree to which ωm is believed to be the consequent class for the q-th belief rule. In the belief

structure, the consequence may be incomplete, i.e.,
∑M

m=1 β
q
m < 1, and the left belief 1 − ∑M

m=1 β
q
m denotes the degree

of global ignorance about the class label. The rule weight θq with 0 ≤ θq ≤ 1 characterizes the certainty grade of the

belief rule Rq and the feature weights δ1, · · · , δP with 0 ≤ δ1, · · · , δP ≤ 1 describe the importance of different features

in determining the consequent class.

Remark 1. Compared with the fuzzy rule structure, the belief rule structure has some advantages for classification

problems as follows. a) In the belief rule structure, the consequence is in a belief distribution form. On the one hand,

with the distribution form, any difference in the antecedent part can be clearly reflected in the consequence, whereas

in a traditional fuzzy rule, different antecedents may lead to the same consequence. On the other hand, by introducing

belief functions theory, the belief structure makes the rule more appropriate to characterize the uncertain information.

In generating each rule, only limited training patterns are available, and each training pattern only provides partial

evidence about the consequence of this rule. Thus, the corresponding consequence of this rule should not be complete.

The belief rule structure can well characterize this incompleteness, with the remained belief 1−∑M
m=1 β

q
m denoting the

degree of global ignorance about the class label induced by the limited training patterns. b) With the introduction of

feature weights, the importance of different features to the consequence can be well characterized, which is closer to

reality. In summary, compared with the traditional fuzzy rule, the belief rule is more informative, more flexible and

thus more suitable for modeling those complex classification problems.

3.2. Belief rule base (BRB) generation

To make a classification with BRBCS, the first step is to generate a BRB from the training set. The FRB generation

method given by Chi et al. [10] is used as a base model in this section to develop the BRB generation method in belief

functions framework. As displayed in Eq. (14), each belief rule is composed of four components, namely, the

antecedent part, the belief degrees of consequence, the rule weight and the feature weights. Because the antecedent

part in the belief rule is the same as that in the fuzzy rule, here we only focus on the generation of the latter three

components, i.e., the belief degrees of consequence, the rule weight and the feature weights.

3.2.1. Generation of belief degrees of consequence

In this part, with the symbols defined in Section 2.1 and Section 3.1, we develop an algorithm to generate the

belief degrees of consequence in BRB.

Similar to the generation of the consequent class in FRB in the first step, we also need to calculate the matching

degree µAq (xi) of each training pattern xi with the antecedent part Aq using Eq. (2). In FRB, the consequent class is
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directly specified as the class label of the training pattern having the greatest matching degree with the antecedent part

Aq. However, this procedure may entail great risk, especially when class noise exists in the training set. In BRB, we

fuse the class information of all of the training patterns assigned to the corresponding antecedent fuzzy region to get

the consequence in a belief distribution form.

Denote as T q the set of training patterns assigned to the antecedent fuzzy region Aq. From the view of belief

functions theory, the class set Ω = {ω1, · · · , ωM} can be regarded as the frame of discernment of the problem. For any

training pattern xi ∈ T q, the class label Class(xi) = ωm can be regarded as a piece of evidence that increases the belief

that the consequent class belongs to ωm. However, this piece of evidence does not by itself provide 100% certainty. In

belief functions theory, this can be expressed by saying that only some part of the belief (measured by the matching

degree µAq (xi)) is committed to ωm. Because Class(xi) = ωm does not point to any other particular class, the rest of

the belief should be assigned to the frame of discernment Ω representing global ignorance. Therefore, this item of

evidence can be represented by a BBA mq
i (·) verifying:

mq
i ({ωm}) = µAq (xi)

mq
i (Ω) = 1 − µAq (xi)

mq
i (A) = 0, ∀A ∈ 2Ω \ {Ω, {ωm}},

(15)

with 0 < µAq (xi) ≤ 1.

For each xi ∈ T q, a BBA depending on both its class label and its matching degree with the antecedent part can

therefore be defined. To obtain the consequence associated with the antecedent part Aq in a belief distribution form,

these BBAs can be combined using Dempster’s rule. As shown in Eq. (15), only two focal elements are involved in

each BBA. Because of the particular structure of the BBA, the computational burden of Dempster’s rule can be greatly

reduced, and the analytical formulas can be derived as

mq({ωm}) = 1
1−Kq

1 − ∏
xi∈T q

m

(1 − µAq (xi))

 · ∏
r,m

∏
xi∈T q

r

(1 − µAq (xi)),

m = 1, 2, · · · ,M,

mq(Ω) = 1
1−Kq

M∏
r=1

∏
xi∈T q

r

(1 − µAq (xi)),

(16)

where T q
m is a subset of T q, corresponding to those training patterns belong to class ωm, and Kq is the total conflicting

belief mass

Kq = 1 + (M − 1)
M∏

r=1

∏
xi∈T q

r

(1 − µAq (xi)) −
M∑

m=1

∏
r,m

∏
xi∈T q

r

(1 − µAq (xi)). (17)

Therefore, the belief degrees of consequence of rule Rq can be given by

β
q
m = mq({ωm}), m = 1, 2, · · · ,M,
β

q
Ω
= mq(Ω),

(18)

where βq
Ω

is the belief degree unassigned to any individual class.
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Remark 2. In the classical FRBCS reviewed in Section 2.1, the consequence of each rule is only determined by the

class label of the training pattern having the greatest matching degree with the antecedent part, whereas the conse-

quence in the belief rule fuses information that comes from all of the training patterns assigned to the corresponding

antecedent fuzzy region. Thus, it can effectively reduce the adverse effects of some noisy training patterns. The

method to generate the consequence is similar to some data-cleaning approaches [5, 12]. The difference is that the

data-cleaning approaches remove the unreliable training samples, whereas our method retains all training samples and

generates the consequence in a belief distribution form, which can be considered as soft labels. Compared with the

data cleaning approaches, the belief distribution form maintains more information from the training samples and can

be further combined with the consequences of other rules in later processing.

Remark 3. The idea to generate the belief degrees of consequence in this paper is inspired by the EK-NN classifica-

tion method developed by Denœux [15], in which each of the k nearest neighbors of the query sample is considered as

an item of evidence that supports certain hypotheses regarding the class membership of that pattern. The correspond-

ing relations of the two methods are as follows: a) the training patterns assigned to the corresponding antecedent fuzzy

region correspond to the k nearest neighbors of the query pattern in EK-NN, and b) the importance of each training

pattern is measured by the matching degree with the antecedent part, and in EK-NN, that is measured by the distance

from the query pattern. With the above relationship, it can be further deduced that the consequence generation method

in FRB revisited in Section 2.1 has a similar idea to the voting K-NN classification method [20]. As illustrated in

[15], the EK-NN classifier can obtain much better performance than the voting K-NN classifier, especially in noisy

conditions. Thus, it is expected that the belief distribution form of consequence in the BRB can handle the class noise

more effectively than the single class form of consequence in the FRB.

3.2.2. Generation of rule weights

In the area of data mining, two measures called confidence and support have often been used for evaluating

association rules [1]. Our belief rule Rq in Eq. (14) can be viewed as a type of association rule of the form Aq ⇒ Cq.

The main difference from the standard formulation of the association rule is that in our belief if-then rule, the input

variable is in fuzzy form and the output variable is in belief distribution form. In this part, we will draw the rule weight

θq from the concepts of confidence and support.

The confidence is defined as a measure of the validity of one association rule [1]. For our belief if-then rule, the

consequence part Cq is obtained by combining the items of evidence coming from all of the training patterns assigned

to the antecedent fuzzy region Aq. It is believed that if the items of evidence involved are in conflict with each

other (for example, if the items of evidence assign different classes with the highest belief), then the consequence has

low validity. In belief functions theory, several models are proposed to measure the conflict among different items of

evidence [35, 48]. The conflict factor
∑

B∩C=∅
m1(B)m2(C) derived in Dempster’s rule is employed here for its simplicity
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and convenience. The confidence of the belief rule Rq is hence defined as

c(Rq) = 1 − Kq, (19)

with the average conflict factor 0 ≤ Kq ≤ 1 calculated by

Kq =


0, if |T q| = 1,

1
|T q |(|T q |−1)

∑
xi,x j∈T q;i< j

∑
B∩C=∅

mq
i (B)mq

j (C), otherwise. (20)

where |T q| is the number of training patterns assigned to the fuzzy region Aq.

On the other hand, as described in [1], the support indicates the grade of the coverage by one association rule.

For our belief if-then rule, N training patterns are available for rule generation, while only those assigned to the

corresponding antecedent fuzzy region are used to generate the consequence. Therefore, the support of the belief rule

Rq is defined as

s(Rq) =
|T q|
N
. (21)

As defined above, the confidence and support characterize the weight of the belief rule in two distinct aspects and

should therefore be considered jointly. On the one hand, if the belief rule Rq has high confidence but low support (for

example, if only one training pattern is assigned to the antecedent fuzzy region Aq), the belief rule weight should be

decreased, as the consequence may be easily affected by the class noise. On the other hand, if the belief rule Rq has

high support but low confidence (for example, if a large number of training patterns are contained in T q but with great

divergence in the class label), the belief rule weight should also be decreased, considering the great conflicts. The

product of the confidence c(Rq) and the support s(Rq) is used to characterize the weight of the belief rule Rq as

θq ∝ c(Rq) · s(Rq). (22)

Following a normalization process, we obtain the weights of all of the belief rules as

θq =
c(Rq) · s(Rq)

max
q
{c(Rq) · s(Rq), q = 1, · · · ,Q} , q = 1, 2, · · · ,Q. (23)

3.2.3. Generation of feature weights

In the belief rule displayed as Eq. (14), the feature weights reflect the relative importance of the antecedent

features with respect to their influence on the consequence of the rule. In other words, an antecedent feature with a

higher weight is more influential on the consequence. Therefore, to determine a feature weight is to find a way to

measure the relative intensity of the influence that this antecedent feature imposes on the consequence in comparison

with others. In this part, such a measurement is quantified by a so-called correlation factor (CF) between each feature

and the consequence.

Suppose np fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np } are established for feature Ap. Now, we will derive the weight

of feature Ap through correlation analysis with the corresponding consequence. Specifically, we use the relationship
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between the changes of different fuzzy partitions that Ap takes and the changes of the consequence to determine the

correlation between Ap and the consequence.

As Q belief rules with different antecedent parts are available in the BRB, in the first place, for feature Ap,

according to its np fuzzy partitions {Ap,1, Ap,2, · · · , Ap,np }, we divide the BRB into np sub-BRBs Bk, k = 1, 2, · · · , np,

with each sub-BRB Bk containing all of the belief rules using the fuzzy partition Ap,k for feature Ap:

Bk =
{
Rq | Aq

p = Ap,k, q = 1, 2, · · · ,Q
}
, k = 1, 2, · · · , np. (24)

Then, for each sub-BRB Bk, the consequence parts of all of the contained belief rules are combined to obtain the

integrated consequence mk(·) with the weighted averaging operation:

mk({ωm}) = 1∑
Rq∈Bk

θq
∑

Rq∈Bk

θq · βq
m, m = 1, 2, · · · ,M,

mk({Ω}) = 1∑
Rq∈Bk

θq
∑

Rq∈Bk

θq · βq
Ω
,

(25)

where βq
m, m = 1, 2, · · · ,M, and βq

Ω
are the belief degrees of consequence of rule Rq generated in Section 3.2.1, and

θq is the rule weight of Rq generated in Section 3.2.2.

Thus, when Ap changes its fuzzy partition from Ap,k to Ap,k+1, k = 1, 2, · · · , np − 1, the change of the consequence

is

∆Cp,k = dJ(mk,mk+1), (26)

where mk = mk(·), and dJ is Jousselme’s distance, as displayed in Eq. (9).

Then, the average change of the consequence for k changing from 1 to np − 1 is given by

∆Cp =

np−1∑
k=1
∆Cp,k

np − 1
. (27)

In this paper, we define ∆Cp as the correlation factor (CF) between feature Ap and the consequence, i.e.,

CFp = ∆Cp. (28)

In a similar way, we obtain the correlation factors CFp, p = 1, 2, · · · , P for all features. Further, δp, the weight of

feature Ap, can be generated from the normalized CFp as follows

δp =
CFp

max
p
{CFp, p = 1, 2, · · · , P} , p = 1, 2, · · · , P. (29)

3.3. Belief reasoning method (BRM)

As revisited in Section 2.1, in FRBCS, the single winner FRM is used to classify a new query pattern. However,

when excessive noise exists in the training set, this method may have a great risk of misclassification. In this section,

we will fuse the consequences of all of the rules activated by the query pattern within the framework of belief functions

theory to get a more robust classification. The main idea is firstly calculating the association degrees of the query

pattern with the consequences of the activated belief rules and then combining these consequences with respect to

their reliability (characterized by the association degrees) based on belief functions theory.
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3.3.1. Association degree with the consequence of a belief rule

Denote y = (y1, y2, · · · , yP) as a query pattern to be classified. In the first place, the matching degree of the query

pattern with the antecedent part of each rule is calculated. As the feature weights are complemented in the belief rule,

we use the following simple weighted multiplicative aggregation function to calculate the matching degree

µAq (y) =

 P∏
p=1

[
µAq

p
(yp)
]δp


1/P

, (30)

where µAq
p
(·) is the membership function of the antecedent fuzzy set Aq

p, and δp is the weight of the p-th feature given

in Eq. (29).

Remark 4. In Eq. (30), the contribution of a feature towards the matching degree is positively related to the weight

of the feature. In other words, a more important feature plays a greater role in determining the matching degree.

Particularly, if δp = 0, then
[
µAq

p
(yp)
]δp
= 1, which shows that a feature with zero importance does not have any

impact on the matching degree; if δp = 1, then
[
µAq

p
(yp)
]δp
= µAq

p
(yp), which shows that the most important feature has

the largest impact on the matching degree.

Let S be the set of Q constructed belief rules in the BRB. Denote as S ′ ⊆ S the set of belief rules activated by

query pattern y:

S ′ = {Rq | µAq (y) , 0, q = 1, 2, · · · ,Q} . (31)

The association degree of query pattern y with the consequence of one activated belief rule Rq ∈ S ′ is determined by

two factors, the matching degree and the rule weight. The matching degree reflects the similarity between the query

pattern and the antecedent part of the belief rule, while the rule weight characterizes the reliability of the belief rule.

Thus, the association degree is defined as

αq = µAq (y) · θq, for Rq ∈ S ′. (32)

Remark 5. As a result of limitation due to the number of training patterns, in some applications, there may be no

rule activated by query pattern y. In such a case, we classify the non-covered query pattern based on the generated

rule which has the nearest distance with it. For a non-covered query pattern y, we first find the fuzzy region A∗ =

(A∗1, A
∗
2, · · · , A∗P) that has the greatest matching degree with it. The distance between a non-covered query pattern y

and one generated rule Rq is defined as d(y,Rq) = ∥A∗ − Aq∥2, where Aq is the antecedent fuzzy region of rule Rq.

Further, if several generated rules have the same nearest distance to the non-covered query pattern, the consequences

of these rules are combined using belief functions theory in the following section, considering the rule weight as the

reliability factor α.

3.3.2. Reasoning using belief functions theory

In the previous part, the association degrees of query pattern y with the consequences of the activated belief rules

are calculated. In [57], an evidential reasoning (ER) method was used to combine different rules, considering their
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association degrees (or weights). As the ER method was first proposed for multi-attribute decision making problems

[59], it considers the weights as the importance factors representing the decision maker’s subjective preference in

the fusion process. However, for pattern classification problems, the weights should be considered as the reliability

factors representing the rules’ capability to provide a correct assessment of the input query pattern [28]. Therefore, the

ER method is not reasonable for the pattern classification problems, and in the following, a belief reasoning method

(BRM) is developed to combine the belief rules activated by the query pattern.

In belief functions theory, Shafer’s discounting operation, displayed as Eq. (7), is usually used to discount the

unreliable evidence before combination. Regarding association degree α in Eq. (32) as the reliability factor, the

consequence of one activated belief rule in Eq. (18) is discounted using Shafer’s discounting operation as

mα({ωm}) = α · βm, m = 1, 2, · · · ,M,
mα(Ω) = α · βΩ + (1 − α)

(33)

For all of the |S ′| = L activated belief rules, through the above formula, we can get the corresponding discounted

consequences mαi (·), i = 1, 2, · · · , L.

To make a decision regarding the discounted consequences of activated belief rules, the corresponding BBAs can

be combined using Dempster’s rule. However, as indicated in [19, 54], the direct use of Dempster’s rule will result

in an exponential increase in computational complexity for the reason of enumerating all subsets or supersets of a

given subset A of Ω, and the operation becomes impractical when the frame of discernment has more than 15 to 20

elements. The following part is intended to develop an operational algorithm for evidence combination with linear

computational complexity, considering the fact that the focal elements of each associated BBA are all singletons

except the ignorance set Ω.

Define I(i) as the index set of the former i BBAs. Let mI(i)(·) be the BBA after combining all of the former i BBAs

associated with I(i). Given the above definitions, a recursive evidence combination algorithm can be developed as

follows
mI(i+1)({ωq}) = KI(i+1)

[
mI(i)({ωq}) ·mαi+1({ωq}) +mI(i)(Ω) ·mαi+1({ωq})

+mI(i)({ωq}) ·mαi+1(Ω)
]
, q = 1, 2, · · · ,M

mI(i+1)(Ω) = KI(i+1)

[
mI(i)(Ω) ·mαi+1(Ω)

]
KI(i+1) =

[
1 −

M∑
j=1

M∑
p=1,p, j

mI(i)({ω j}) ·mαi+1({ωp})
]−1

i = 1, 2, · · · , L − 1,

(34)

where KI(i+1) is a normalizing factor, so that
M∑

q=1
mI(i+1)({ωq}) +mI(i+1)(Ω) = 1.

Note that mI(1)({ωq}) = mα1 ({ωq}) for q = 1, 2, · · · ,M and mI(1)(Ω) = mα1 (Ω). Thus, this recursive evidence

combination algorithm can initiate with the first BBA. Accordingly, as the recursive index i reaches L − 1, the final

results mI(L)({ωq}) and mI(L)(Ω) (m({ωq}) and m(Ω) for short, respectively) are obtained by combining all of the L

BBAs. This combination result is the basis for the later decision process.

For decision making based on the combined BBA m(·) calculated with Eq. (34), the belief function Bel(·), plausi-
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bility function Pl(·) and pignistic probability BetP(·) are common alternatives. As the focal elements of the combined

BBA m(·) are all singletons except the ignorance set Ω, the credibility, plausibility and pignistic probability of each

class ωq are calculated as follows

Bel({ωq}) = m({ωq})
Pl({ωq}) = m({ωq}) +m(Ω)

BetP({ωq}) = m({ωq}) + m(Ω)
M

q = 1, 2, · · · ,M.

(35)

It is supposed that based on this evidential body, a decision has to be made in assigning query pattern y to one of

the classes inΩ. Because of the particular structure of the combined BBA (i.e., the focal elements are either singletons

or the whole frame Ω), it can be easily discovered that

ω = arg max
ωq∈Ω

Bel({ωq})

= arg max
ωq∈Ω

Pl({ωq})

= arg max
ωq∈Ω

BetP({ωq})

= arg max
ωq∈Ω

m({ωq}).

(36)

That is, the strategies maximizing the three criteria Bel(·), Pl(·), and BetP(·) in Eq. (35) lead to the same decision: the

pattern is assigned to the class with maximum basic belief assignment m(·).

Remark 6. For some classification applications under harsh working conditions (e.g., battlefield target recognition),

significant noise may exist in the training set. Though the consequence generation method proposed in Section 3.2.1

can reduce the adverse effects from pattern noise, the consequence of one rule may still be unreliable in excessively

noisy conditions. The BRM developed within the framework of belief functions theory combines the consequences

of all of the activated rules to obtain the final consequent class. Therefore, compared with the single winner FRM, the

BRM can further reduce the risk of misclassification.

4. Experiments

The performance of the proposed BRBCS will be empirically assessed through three different experiments with

20 real-world classification problems from the well-known UCI Repository of Machine Learning Databases [38]. In

the first experiment, the original data sets are used to evaluate the classification accuracy of the proposed BRBCS.

In the second one, the noise is added to the data sets artificially in controlled settings to evaluate the classification

robustness of the proposed BRBCS in noisy training set conditions. In the latter two experiments, we will provide an

analysis of its interpretability and time complexity, respectively.

4.1. Data sets and experiment conditions

Twenty well-known benchmark data sets from the UCI repository are selected to evaluate the performance of the

BRBCS. The main characteristics of the 20 data sets are summarized in Table 2, where “# Instances” is the number
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of instances in the data set, “# Features” is the number of features, and “# Classes” is the number of classes. Notice

that for the data sets Cancer, Diabetes and Pima, we have removed the instances with missing feature values.

Table 2: Description of the benchmark data sets employed in the study

Data set # Instances # Features # Classes

Banknote 1,372 4 2

Breast 106 9 6

Cancera 683 9 2

Diabetesa 393 8 2

Ecoli 336 7 8

Glass 214 9 6

Haberman 306 3 2

Iris 150 4 3

Knowledge 403 5 4

Letter 20,000 16 26

Liver 345 6 2

Magic 19,020 10 2

Pageblocks 5,473 10 4

Pimaa 336 8 2

Satimage 6,435 36 6

Seeds 210 7 3

Transfusion 748 4 2

Vehicle 846 18 4

Vertebral 310 6 3

Yeast 1,484 8 10

aFor the data sets containing missing values, instances with missing feature values are removed.

To develop the different experiments, we consider the B-Fold Cross-Validation (B-CV) model [41]. Each data set

is divided into B blocks, with B−1 blocks as a training set and the remaining block as a test set. Therefore, each block

is used exactly once as a test set. We use the 5-CV here, i.e., five random partitions of the original data set, with four

of them (80%) as the training set and the remainder (20%) as the test set. For each data set, we consider the average

results of the five partitions.

For the first, third and fourth experiments, the original data sets described above are used directly, while for the

second, some additional processes are needed. As discussed in [42, 43, 61], the pattern noise in the data set can be

distinguished into two categories: class noise and feature noise. The class noise, also known as labeling error, occurs

when a sample is assigned to an incorrect class. It can be attributed to several causes, including subjectivity during the

labeling process, data entry errors, or limitations of the equipped measure instrument. In contrast, the feature noise is

used to refer to corruptions in the values of one or more features of samples in a data set, which is often encountered

in harsh working conditions. With the above consideration, in the second experiment, we will manage the robustness

evaluation under two types of noise scenarios, class noise and feature noise.
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As the initial amount of noise present in the original data sets is unknown, we use manual mechanisms to indepen-

dently add noise to each data set to control the noise level for comparison. Additionally, to observe how noise affects

the accuracy of the classifiers, the noise is only added in the training sets, while the test sets remain unchanged. Based

on the type of noise, as in [42], different schemes of noise introduction are designed as follows.

• Introduction of class noise. In this scheme, a class noise level of x% indicates that x% of the samples in the

training set are mislabeled. The class labels of these samples are randomly changed to different ones within the

domain of the class.

• Introduction of feature noise. In this scheme, a feature noise level of x% indicates that x% of the feature values

in the training set are erroneous. The corrupted feature is assigned a random value between the minimum and

maximum of the domain of that feature, following a uniform distribution.

To evaluate the performance of the difference methods, in the first experiment, the classification accuracy rate

criterion is utilized. In the second experiment, apart from the classification accuracy rate under each level of induced

noise, we also take into account the following relative loss of accuracy (RLA) to observe the form in which the

accuracy of one algorithm is affected when increasing the level of noise with respect to the case without noise.

RLAx% =
Acc0% − Accx%

Acc0%
, (37)

where RLAx% is the relative loss of accuracy at noise level x%, Acc0% is the classification accuracy in the test with the

original data set, and Accx% is the classification accuracy when testing the data set with noise level x%.

To assess whether significant differences exist among different methods, we adopt a nonparametric statistical anal-

ysis. For conducting multiple statistical comparisons over multiple data sets, as suggested in [14, 22], the Friedman

test and the corresponding post hoc Bonferroni-Dunn test are employed. For performing multiple comparisons, it

is necessary to check whether the results obtained by different methods present any significant difference (Friedman

test), and in the case of finding one, we can find out by using a post hoc test to compare the control method with the

remaining methods (Bonferroni-Dunn test). We use α = 0.05 as the level of significance in all cases. For a detailed

description of these tests, one can refer to [14, 22].

4.2. Classification accuracy evaluation

In the first experiment, we aim to compare the classification accuracy of our proposed BRBCS with the classical

FRBCS proposed by Chi et al. [10], as reviewed in Section 2.1, and the following two methods improved through

changing the rule structure to make it more flexible to characterize the input-output mapping.

1. FRBCS extended by Cordón et al. [11] (EFRBCS): Compared with the basic fuzzy rule structure in Eq. (1), in

this method, a fuzzy rule with certainty degrees for all classes in the consequent part is considered.

Rq : If x1 is Aq
1 and · · · and xP is Aq

P, then (rq
1, · · · , r

q
M), for q = 1, 2, · · · ,Q, (38)
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where rq
j is the certainty degree for rule Rq to predict class ω j for a pattern belonging to the fuzzy region

represented by the antecedent part of the rule. Different from the belief rule structure employed in our proposed

BRBCS, the consequence of this rule is in probability distribution, i.e., the sum of certainty degrees for all

classes equals one. Accordingly the additive combination reasoning method is employed to classify a query

pattern.

2. EBRB method proposed by Liu et al. [33]: In this method, a rule base is designed with belief degrees embedded

in the consequence part as well as in all of the antecedent terms of each rule for expert inference. However,

when using for classification, the consequence part of each rule degenerates into a signal class label.

Rq : If x1 is
{
(A1, j, α

q
1, j), j = 1, · · · , n1

}
and · · · and xP is

{
(AP, j, α

q
P, j), j = 1, · · · , nP

}
, then the consequence is Cq

with rule weight θq, q = 1, 2, · · · ,Q,
(39)

where the antecedent term for each feature
{
(Ap, j, α

q
p, j), j = 1, · · · , np

}
is in belief distribution. Based on the

above rule structure, each training sample is developed as a rule to model the input-output relationship, and

accordingly, the query pattern is classified by the additive combination of the weighted consequences of all of

the rules.

The settings of the considered methods are summarized in Table 3. As for the considered data sets no prior knowledge

about the establishment of the fuzzy regions is available, and the simple fuzzy grids are used to partition the feature

space. We normalize each feature value into a real number in the unit interval [0, 1]. Once the number of partitions

for each feature is determined, the fuzzy partitions can be easily computed. Here, different numbers of partitions

(C = 3, 5, 7) are employed to make the comparison.

Table 3: Settings of considered methods for classification accuracy evaluation

Method Setting

Rule structure Reasoning method Membership function Partition number

FRBCS Rule structure in Eq. (1) Single winner Triangular C = 3,5,7

EFRBCS Rule structure in Eq. (38) Additive combination Triangular C = 3,5,7

EBRB Rule structure in Eq. (39) Additive combination Triangular C = 3,5,7

BRBCS Rule structure in Eq. (14) Belief reasoning Triangular C = 3,5,7

Table 4 and Table 5 show the classification accuracy rates of our proposed BRBCS in comparison with other

rule-based methods over the training data and the test data, respectively. The numbers in brackets represent the rank

of each method. It can be seen that in both cases, the proposed BRBCS outperforms other methods for most of the

data sets. To compare the results statistically, we use nonparametric tests for multiple comparisons to find the best

method, considering the average ranks obtained over the test data. First, we use the Friedman test to determine whether
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significant differences exist among all of the mean values. Table 6 shows the Friedman statistic FF for each number of

partitions, and it relates them to the corresponding critical values by using a level of significance of α = 0.05. Given

that the Friedman statistics are clearly greater than their associated critical values, there are significant differences

among the observed results with a level of significance α = 0.05 for all of the three partition numbers. Then, we

apply the Bonferroni-Dunn test to compare the best ranking method (BRBCS) with the remaining methods. Table 7

presents these results. We can see that the Bonferroni-Dunn test rejects all of the hypotheses of equality with the rest

of the methods with p < α/(k − 1). Therefore, by the analysis of the statistical study shown in Tables 6 and 7, we

conclude that our BRBCS is a solid model for classifier design, as it has shown itself to be the best accuracy method

when compared with the other rule-based methods applied in this study.

Table 4: Classification accuracy rate (in %) of our proposed BRBCS in comparison with other rule-based methods for different numbers of partitions

(over the training data)

C = 3 C = 5 C = 7

FRBCS EFRBCS EBRB BRBCS FRBCS EFRBCS EBRB BRBCS FRBCS EFRBCS EBRB BRBCS

Banknote 95.63(3) 96.27(2) 93.40(4) 96.54(1) 98.36(3) 99.27(2) 97.45(4) 99.64(1) 99.64(3) 99.73(2) 97.08(4) 99.82(1)

Breast 70.59(4) 76.47(3) 80.00(2) 89.41(1) 71.76(4) 77.65(3) 89.41(2) 94.12(1) 63.53(4) 75.29(3) 81.18(2) 90.59(1)

Cancer 93.24(4) 96.89(2) 95.98(3) 97.44(1) 96.53(3) 96.89(2) 95.06(4) 99.82(1) 93.78(3) 94.88(2) 93.59(4) 98.35(1)

Diabetes 88.25(4) 91.11(2) 88.89(3) 92.06(1) 95.24(3) 93.65(4) 95.87(2) 96.83(1) 91.11(4) 95.56(3) 99.05(1) 97.46(2)

Ecoli 89.22(4) 92.94(1) 89.59(3) 91.08(2) 94.42(2) 92.19(3) 89.96(4) 98.88(1) 92.94(2) 89.59(3) 88.10(4) 94.80(1)

Glass 73.84(3) 73.26(4) 75.58(2) 83.14(1) 93.02(2) 87.21(3) 85.47(4) 94.77(1) 85.47(3) 86.05(2) 81.40(4) 90.12(1)

Haberman 72.65(4) 76.73(1) 73.47(3) 75.51(2) 80.82(1) 74.29(3) 73.47(4) 78.78(2) 78.78(3) 80.00(2) 73.47(4) 81.22(1)

Iris 95.00(2) 90.00(4) 95.83(1) 94.17(3) 93.33(4) 96.67(1) 95.83(2) 95.00(3) 95.83(4) 96.00(3) 99.17(1) 96.67(2)

Knowledge 89.16(4) 90.40(2) 89.78(3) 91.64(1) 92.88(2) 92.26(3) 91.33(4) 94.74(1) 96.59(3) 97.21(2) 95.05(4) 99.07(1)

Letter 93.75(3) 96.88(2) 93.06(4) 97.50(1) 92.19(4) 95.94(2) 92.81(3) 96.56(1) 91.19(3) 93.44(1) 89.32(4) 93.06(2)

Liver 63.77(2) 58.70(4) 62.68(3) 67.03(1) 71.74(2) 67.75(4) 70.29(3) 76.81(1) 86.96(2) 77.17(4) 79.71(3) 88.04(1)

Magic 82.81(3) 82.94(2) 82.28(4) 83.60(1) 82.81(2) 82.15(3) 81.49(4) 85.44(1) 81.49(4) 82.02(3) 82.68(2) 84.25(1)

Pageblocks 91.35(4) 95.46(2) 93.17(3) 96.37(1) 92.72(4) 95.00(2) 93.63(3) 96.83(1) 89.29(4) 91.57(3) 93.40(2) 94.09(1)

Pima 78.05(4) 79.67(3) 81.30(2) 86.18(1) 82.93(4) 91.71(2) 86.18(3) 94.15(1) 78.54(4) 81.14(3) 84.55(1) 82.76(2)

Satimage 88.75(3) 87.98(4) 90.52(2) 92.64(1) 88.58(4) 91.30(3) 92.46(2) 93.24(1) 89.72(4) 91.28(2) 90.89(3) 91.86(1)

Seeds 89.29(4) 89.88(3) 92.86(2) 94.05(1) 92.86(4) 94.05(3) 97.62(1) 97.02(2) 88.10(4) 90.48(3) 94.05(1) 93.45(2)

Transfusion 77.13(3) 77.30(2) 75.57(4) 78.46(1) 76.96(2) 76.46(3) 73.46(4) 81.80(1) 79.13(3) 79.47(2) 74.79(4) 84.97(1)

Vehicle 79.91(4) 81.24(3) 82.72(2) 84.49(1) 78.43(4) 79.03(3) 79.91(2) 80.85(1) 74.59(4) 77.55(2) 78.43(1) 75.04(3)

Vertebral 74.60(4) 80.65(2) 76.61(3) 81.45(1) 82.26(3) 87.10(2) 79.44(4) 89.11(1) 82.66(2) 81.05(3) 79.71(4) 85.89(1)

Yeast 55.56(3) 52.02(4) 59.85(2) 65.74(1) 58.92(4) 59.68(3) 60.69(2) 69.63(1) 58.08(3) 53.73(4) 66.67(1) 64.31(2)

Av. Rank 3.45 2.60 2.75 1.20 3.05 2.70 3.05 1.20 3.30 2.60 2.70 1.40
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Table 5: Classification accuracy rate (in %) of our proposed BRBCS in comparison with other rule-based methods for different numbers of partitions

(over the test data)

C = 3 C = 5 C = 7

FRBCS EFRBCS EBRB BRBCS FRBCS EFRBCS EBRB BRBCS FRBCS EFRBCS EBRB BRBCS

Banknote 94.23(4) 95.33(3) 98.16(1) 96.42(2) 94.53(4) 97.59(1) 96.13(3) 97.15(2) 99.05(3) 99.64(2) 97.08(4) 99.71(1)

Breast 58.57(4) 66.10(2) 65.33(3) 68.33(1) 62.38(4) 67.38(3) 69.24(2) 73.57(1) 59.52(4) 63.33(3) 69.24(2) 70.38(1)

Cancer 90.00(4) 90.44(3) 92.44(2) 95.82(1) 91.82(3) 92.00(2) 91.47(4) 96.74(1) 89.32(4) 91.82(3) 93.59(1) 92.47(2)

Diabetes 67.95(4) 68.56(2) 68.21(3) 69.67(1) 73.08(3) 71.54(4) 73.21(2) 77.82(1) 75.28(2) 75.44(1) 73.67(4) 74.05(3)

Ecoli 76.12(3) 77.79(2) 71.49(4) 78.34(1) 86.57(2) 82.39(3) 81.19(4) 88.06(1) 85.16(2) 84.00(4) 84.49(3) 86.57(1)

Glass 66.05(3) 61.38(4) 66.67(2) 69.04(1) 72.94(1) 68.57(3) 67.00(4) 71.84(2) 67.14(1) 64.57(2) 63.29(4) 64.29(3)

Haberman 67.13(4) 71.80(2) 72.79(1) 68.85(3) 69.18(3) 71.80(2) 62.95(4) 72.46(1) 70.16(3) 71.80(2) 63.77(4) 73.44(1)

Iris 92.67(4) 93.00(3) 95.33(1) 93.67(2) 95.33(2) 94.67(3) 92.00(4) 96.33(1) 96.33(2) 95.67(3) 90.00(4) 96.67(1)

Knowledge 83.25(3) 80.25(4) 86.75(2) 87.25(1) 91.00(3) 82.75(4) 92.75(2) 93.75(1) 83.50(3) 85.00(1) 80.25(4) 84.75(2)

Letter 92.05(3) 94.44(2) 91.92(4) 95.60(1) 90.50(4) 94.12(2) 92.86(3) 95.15(1) 89.32(4) 91.46(3) 93.68(1) 93.00(2)

Liver 56.52(3) 55.65(4) 60.29(1) 59.42(2) 63.07(3) 64.87(2) 58.84(4) 66.52(1) 66.39(3) 66.84(2) 60.00(4) 68.22(1)

Magic 79.55(4) 82.75(2) 82.12(3) 84.96(1) 82.44(2) 81.38(3) 81.06(4) 85.32(1) 76.28(4) 79.45(3) 81.55(2) 82.14(1)

Pageblocks 89.34(4) 95.58(2) 91.63(3) 96.03(1) 90.41(4) 92.67(3) 94.87(2) 95.42(1) 87.89(4) 88.34(3) 90.37(2) 91.67(1)

Pima 64.05(3) 68.10(2) 61.18(4) 69.93(1) 65.36(4) 72.16(2) 71.10(3) 74.71(1) 63.40(4) 66.33(1) 64.10(3) 64.75(2)

Satimage 86.45(4) 87.78(3) 90.65(2) 91.15(1) 82.83(4) 84.36(3) 91.48(1) 89.04(2) 79.38(4) 82.65(3) 89.97(1) 84.56(2)

Seeds 79.52(4) 82.38(3) 85.90(2) 87.00(1) 88.57(3) 90.00(2) 84.76(4) 90.48(1) 86.67(3) 87.30(2) 81.90(4) 88.57(1)

Transfusion 71.81(4) 76.24(2) 75.57(3) 76.51(1) 77.84(2) 76.24(3) 71.68(4) 80.84(1) 78.52(2) 77.72(3) 73.47(4) 83.89(1)

Vehicle 60.36(4) 64.50(3) 69.64(2) 70.91(1) 60.36(4) 66.44(3) 67.45(2) 68.25(1) 57.99(4) 62.72(3) 65.99(2) 66.30(1)

Vertebral 67.42(4) 72.90(2) 69.03(3) 73.87(1) 82.26(3) 83.74(2) 77.29(4) 86.77(1) 81.29(2) 79.71(3) 78.06(4) 84.84(1)

Yeast 48.51(3) 47.30(4) 49.32(2) 56.62(1) 56.32(3) 57.77(2) 52.70(4) 58.53(1) 55.81(1) 53.73(4) 53.95(3) 54.05(2)

Av. Rank 3.65 2.70 2.40 1.25 3.05 2.60 3.20 1.15 2.95 2.55 3.00 1.50

Table 6: Friedman test of the accuracy rate for the considered methods (α = 0.05)

Partition number Statistic FF Critical value Hypothesis

C = 3 27.005 2.490 Rejected

C = 5 21.000 2.490 Rejected

C = 7 7.798 2.490 Rejected
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Table 7: Bonferroni-Dunn test of the accuracy rate for comparing BRBCS with other methods (α = 0.05)

Partition number Method z value p value Critical value α/(k − 1)a Hypothesis

FRBCS 5.88 4.13E-9 0.0167 Rejected

C = 3 EFRBCS 3.55 3.83E-4 0.0167 Rejected

EBRB 2.82 0.0048 0.0167 Rejected

FRBCS 4.65 3.26E-6 0.0167 Rejected

C = 5 EFRBCS 3.55 3.83E-4 0.0167 Rejected

EBRB 5.02 5.13E-7 0.0167 Rejected

FRBCS 3.55 3.83E-4 0.0167 Rejected

C = 7 EFRBCS 2.57 0.0101 0.0167 Rejected

EBRB 3.67 2.39E-4 0.0167 Rejected

ak is the number of considered methods.

To analyze the effect of partition numbers on classification performance, in Table 4 and Table 5, the best accuracy

rate for each data set is underlined. It can be seen that the classification accuracy is not always ideally improving

according to the increase of partition number, especially for those data sets with relatively more features, which is

caused by the limited number of training samples. Additionally, as will be shown in Section 4.5, a larger partition

number usually means a greater computation burden. Therefore, in practice, for those data sets with fewer features

(M < 10), we suggest using a partition number C = 5; otherwise, a partition number C = 3 is suggested to get a better

trade-off between accuracy and complexity.

4.3. Classification robustness evaluation

In the second experiment, we aim to analyze the classification robustness of our proposed BRBCS when noise

is present in the training sets. Apart from the classical FRBCS introduced in Section 2.1, the following two robust

classifiers are also considered for comparison.

1. C4.5 [40]: C4.5 is considered to be a robust learner tolerant to noisy data. It iteratively builds a decision tree

that correctly classifies the largest number of examples. Additionally, a pruning strategy is used to reduce the

chances of the classifier being affected by noisy data from the training set.

2. BagC4.5 [42]: This is a multiple classifier system that considers C4.5 as the base classifier. In this method,

the bagging technique is used to resample the original training set, and then the base classifier is trained with

different data sets. As experimentally analyzed in [42], BagC4.5 is a good noise-robust multiple classifier

system.

The settings of the considered methods are summarized in Table 8. In the following, different types of noise (class

noise and feature noise) with different noise levels (NL = 10%, 20%, 30%, 40%, 50%) are tested for comparison.
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Table 8: Settings of considered methods for classification robustness evaluation

Method Setting

FRBCS • C = 5 for feature number M < 10, otherwise C = 3

C4.5 • Confidence level c = 0.25; •Minimal instances per leaf i = 2; • Prune after the tree building

BagC4.5 • Replicate number T = 10; •Majority vote combination

BRBCS • C = 5 for feature number M < 10, otherwise C = 3

Fig. 3 shows the classification accuracy rate of each data set at different class noise levels. It may be observed

that for most data sets, the proposed BRBCS outperforms the other methods at any class noise level. To verify the

robustness of the proposed method more specifically, Table 9 gives the RLA of our proposed BRBCS in comparison

with other robust methods at different class noise levels. The numbers in brackets represents the rank of each method.

For nonparametric statistical analysis, firstly, based on the average ranks of the different methods in Table 9, the

Friedman test is conducted to evaluate whether significant differences exist among the different methods. Table 10

shows the Friedman test result of RLA for the considered methods at different class noise levels. Given that the

Friedman statistics are clearly greater than their associated critical values, there are significant differences among the

observed results with a level of significance of α = 0.05 at all class noise levels. Then, we use the Bonferroni-Dunn

test to compare the best ranking method (BRBCS) with the remaining methods. Table 11 presents these results.

We can see that the Bonferroni-Dunn test rejects all of the hypotheses of equality with the rest of the methods with

p < α/(k − 1), except for the BagC4.5 method at noise level NL = 10%. This means that there is no significant

difference only between BRBCS and BagC4.5 at noise level NL = 10% with significance level α = 0.05. With the

increase of the noise level, the p value associated with each of the remaining methods becomes much lower. Thus, the

RLA differences are more significant at higher noise levels, showing the superior robustness of the proposed BRBCS

in disruptive class noise conditions.
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Figure 3: Classification accuracy rate (in %) of our proposed BRBCS in comparison with other methods at different class noise levels. The symbol
′△′ denotes the FRBCS, ′◦′ denotes the C4.5, ′∗′ denotes the BagC4.5, and ′�′ denotes the BRBCS.
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Table 9: RLA (in %) of our proposed BRBCS in comparison with other robust methods at different class noise levels.

NL = 10% NL = 30% NL = 50%

FRBCS C4.5 BagC4.5 BRBCS FRBCS C4.5 BagC4.5 BRBCS FRBCS C4.5 BagC4.5 BRBCS

Banknote 2.89(4) 1.40(1) 2.67(3) 1.58(2) 10.04(4) 6.40(2) 8.78(3) 5.71(1) 26.34(4) 15.13(2) 16.32(3) 14.74(1)

Breast 6.41(4) 3.75(2) 4.93(3) 3.34(1) 17.33(2) 22.63(4) 13.87(1) 17.80(3) 32.52(4) 29.61(3) 25.14(2) 24.40(1)

Cancer 5.19(4) 2.64(3) 2.50(2) 1.07(1) 11.27(4) 9.47(3) 8.69(2) 6.48(1) 23.12(4) 21.50(3) 11.10(1) 14.57(2)

Diabetes 12.28(4) 5.00(3) 3.27(1) 3.86(2) 14.04(4) 11.67(3) 9.97(2) 7.74(1) 15.79(3) 38.33(4) 14.50(2) 10.28(1)

Ecoli 6.93(4) 3.77(2) 4.07(3) 1.69(1) 16.71(2) 37.74(4) 18.34(3) 8.47(1) 22.41(2) 45.28(4) 29.83(3) 15.24(1)

Glass 5.48(2) 9.22(3) 9.85(4) 4.08(1) 16.45(3) 20.07(4) 14.98(2) 8.26(1) 26.05(3) 29.56(4) 18.99(2) 17.78(1)

Haberman 1.47(1) 3.34(3) 4.85(4) 2.72(2) 13.98(3) 8.27(1) 17.57(4) 11.77(2) 24.41(4) 19.25(2) 22.61(3) 16.29(1)

Iris 3.11(2) 4.20(4) 3.53(3) 2.89(1) 6.57(2) 19.23(4) 10.03(3) 1.73(1) 23.88(3) 38.46(4) 17.30(2) 13.50(1)

Knowledge 3.85(2) 7.04(4) 5.66(3) 3.47(1) 10.45(3) 9.86(2) 11.05(4) 8.53(1) 22.25(3) 25.35(4) 21.70(2) 20.00(1)

Letter 6.06(4) 3.46(3) 1.74(1) 2.26(2) 12.86(4) 10.26(2) 12.03(3) 9.09(1) 28.69(4) 27.97(3) 23.31(2) 22.23(1)

Liver 5.79(2) 8.70(3) 10.87(4) 4.51(1) 15.53(3) 15.22(2) 17.40(4) 15.03(1) 14.98(1) 17.39(3) 18.37(4) 17.04(2)

Magic 5.22(3) 5.97(4) 3.88(2) 3.49(1) 16.40(4) 15.27(3) 9.41(1) 9.94(2) 25.46(4) 25.38(3) 13.64(1) 15.89(2)

Pageblocks 4.09(2) 4.78(4) 3.33(1) 4.63(3) 10.99(3) 14.60(4) 9.05(2) 8.93(1) 20.04(2) 23.61(4) 20.99(3) 16.16(1)

Pima 3.00(2) 3.67(4) 3.25(3) 2.68(1) 9.00(3) 8.26(2) 6.96(1) 12.10(4) 24.30(3) 30.28(4) 17.06(2) 12.60(1)

Satimage 4.49(3) 5.13(4) 2.76(1) 3.16(2) 12.79(3) 17.30(4) 8.27(1) 12.10(2) 28.28(4) 25.62(3) 16.73(1) 19.40(2)

Seeds 5.91(3) 6.72(4) 4.23(1) 5.26(2) 11.29(1) 19.03(3) 19.58(4) 15.29(2) 37.63(4) 32.77(3) 31.67(2) 28.95(1)

Transfusion 1.71(3) 0.59(2) 0.25(1) 3.71(4) 6.00(2) 8.89(3) 10.85(4) 4.95(1) 49.91(4) 47.01(3) 12.68(2) 8.24(1)

Vehicle 8.10(4) 3.66(3) 2.88(1) 3.26(2) 17.67(3) 16.52(2) 18.62(4) 12.70(1) 28.76(4) 25.07(2) 28.20(3) 23.85(1)

Vertebral 7.45(4) 6.09(3) 4.32(2) 1.11(1) 20.00(4) 19.34(3) 14.68(2) 10.78(1) 37.26(4) 32.54(3) 30.39(2) 22.60(1)

Yeast 6.14(4) 0.83(1) 4.10(2) 4.22(3) 17.34(4) 12.03(3) 11.30(2) 9.91(1) 24.41(3) 27.95(4) 15.89(2) 13.33(1)

Av. rank 3.05 3.00 2.25 1.70 3.05 2.90 2.60 1.45 3.35 3.25 2.20 1.20

Table 10: Friedman test of RLA for considered methods at different class noise levels (α = 0.05)

Noise level Statistic FF Critical value Hypothesis

NL = 10% 6.3672 2.490 Rejected

NL = 30% 8.7372 2.490 Rejected

NL = 50% 30.096 2.490 Rejected
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Table 11: Bonferroni-Dunn test of RLA for comparing BRBCS with other methods at different class noise levels (α = 0.05)

Noise level Method z value p value Critical value α/(k − 1) Hypothesis

FRBCS 3.31 9.44E-4 0.0167 Rejected

NL = 10% C4.5 3.18 0.0015 0.0167 Rejected

BagC4.5 1.35 0.1779 0.0167 Accepted

FRBCS 3.92 8.88E-5 0.0167 Rejected

NL = 30% C4.5 3.55 3.83E-4 0.0167 Rejected

BagC4.5 2.82 0.0048 0.0167 Rejected

FRBCS 5.27 1.39E-7 0.0167 Rejected

NL = 50% C4.5 5.02 5.13E-7 0.0167 Rejected

BagC4.5 2.45 0.0143 0.0167 Rejected

Fig. 4 shows the classification accuracy rate of each data set with different feature noise levels. Similar to the

results under class noise conditions, for most data sets, the test accuracy is always higher for BRBCS than for the other

robust methods under the feature noise scheme. Table 12 shows the RLA of our proposed BRBCS in comparison with

other robust methods at different feature noise levels. In a similar manner, we first use the Friedman test to evaluate

whether significant differences exist among the different methods. Table 13 shows the Friedman test result of RLA for

the considered methods at different feature noise levels. It can be seen that the Friedman statistics are clearly greater

than their associated critical values at all feature noise levels, which means that there are significant differences among

the observed results with a level of significance of α = 0.05. Then, we use the Bonferroni-Dunn test to compare the

best ranking method (BRBCS) with the remaining methods. As shown in Table 14, the Bonferroni-Dunn test rejects

all of the hypotheses of equality with the rest of the methods with p < α/(k − 1), except for the BagC4.5 method

at noise levels NL = 10% and NL = 30%. In other words, there is no significant difference between BRBCS and

BagC4.5 at noise levels NL = 10% and NL = 30% with significance level α = 0.05. This is mainly because the feature

noise is not very disruptive at relatively lower noise levels. With the increase of the noise level, the p value associated

with each of the remaining methods becomes much lower. Thus, the RLA differences are more significant at higher

noise levels, which shows the superior robustness of the proposed BRBCS in disruptive feature noise conditions.
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Figure 4: Classification accuracy rate (in %) of our proposed BRBCS in comparison with other methods at different feature noise levels. The

symbol ′△′ denotes the FRBCS, ′◦′ denotes the C4.5, ′∗′ denotes the BagC4.5, and ′�′ denotes the BRBCS.
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Table 12: RLA (in %) of our proposed BRBCS in comparison with other robust methods at different feature noise levels.

NL = 10% NL = 30% NL = 50%

FRBCS C4.5 BagC4.5 BRBCS FRBCS C4.5 BagC4.5 BRBCS FRBCS C4.5 BagC4.5 BRBCS

Banknote 3.44(3) 2.71(2) 4.06(4) 1.05(1) 8.79(4) 8.53(3) 7.02(2) 4.62(1) 12.48(3) 15.60(4) 11.40(2) 8.27(1)

Breast 5.34(4) 4.48(3) 3.33(2) 2.26(1) 12.34(1) 16.79(3) 20.00(4) 13.91(2) 20.46(2) 21.42(3) 26.67(4) 17.99(1)

Cancer 4.91(3) 5.52(4) 1.17(1) 4.38(2) 8.81(3) 9.63(4) 7.95(1) 8.38(2) 16.22(4) 12.78(2) 15.94(3) 12.44(1)

Diabetes 0.36(1) 6.67(4) 3.92(3) 1.15(2) 7.20(1) 12.23(4) 11.03(3) 9.39(2) 14.04(4) 12.23(2) 13.27(3) 9.39(1)

Ecoli 8.62(3) 9.44(4) 4.69(2) 2.82(1) 13.78(4) 13.21(3) 10.72(2) 5.09(1) 24.14(4) 17.63(3) 17.35(2) 10.18(1)

Glass 5.48(4) 1.08(1) 3.07(3) 1.30(2) 8.23(3) 10.58(4) 7.70(2) 4.08(1) 15.08(3) 16.00(4) 14.03(2) 7.53(1)

Haberman 0.38(1) 6.22(4) 0.79(2) 1.59(3) 11.19(4) 10.15(3) 7.56(2) 7.35(1) 20.62(4) 18.20(3) 11.28(1) 12.90(2)

Iris 0.70(1) 1.77(3) 3.45(4) 1.39(2) 2.45(2) 4.90(3) 5.52(4) 2.08(1) 3.85(2) 9.09(4) 7.59(3) 2.78(1)

Knowledge 3.85(3) 4.69(4) 2.14(1) 2.66(2) 9.26(2) 9.40(3) 9.89(4) 7.99(1) 14.84(1) 16.73(3) 17.15(4) 15.13(2)

Letter 4.00(4) 0.73(1) 2.64(2) 3.31(3) 9.34(3) 8.58(2) 9.44(4) 7.28(1) 16.21(4) 14.36(3) 13.35(2) 11.56(1)

Liver 0.33(1) 2.17(4) 1.55(3) 0.67(2) 5.79(1) 15.22(3) 15.51(4) 7.72(2) 12.68(1) 26.09(4) 20.22(3) 15.68(2)

Magic 3.55(4) 1.77(3) 1.30(2) 1.01(1) 6.82(3) 9.63(4) 3.58(1) 5.27(2) 12.88(2) 13.63(4) 13.45(3) 12.72(1)

Pageblocks 3.86(3) 2.99(2) 4.55(4) 2.73(1) 10.22(3) 12.43(4) 9.48(2) 7.07(1) 14.07(2) 18.98(4) 15.24(3) 11.15(1)

Pima 1.00(1) 3.67(3) 5.22(4) 1.14(2) 4.18(1) 9.28(2) 12.28(4) 9.89(3) 10.70(1) 12.09(2) 19.50(4) 16.17(3)

Satimage 4.85(3) 5.20(4) 0.90(1) 1.02(2) 7.63(3) 11.01(4) 4.74(1) 6.14(2) 14.93(3) 16.03(4) 9.91(1) 10.41(2)

Seeds 4.30(4) 4.08(3) 3.04(2) 2.63(1) 8.60(3) 12.70(4) 5.66(1) 5.98(2) 13.28(3) 16.79(4) 11.92(2) 10.84(1)

Transfusion 1.84(2) 0.85(1) 5.71(4) 5.35(3) 7.05(3) 4.33(1) 7.80(4) 6.19(2) 10.70(3) 9.40(2) 12.02(4) 6.19(1)

Vehicle 4.82(3) 5.29(4) 1.30(1) 2.06(2) 10.40(4) 10.12(3) 7.99(2) 6.47(1) 20.00(4) 19.58(3) 17.34(2) 15.34(1)

Vertebral 2.58(4) 2.13(3) 1.18(1) 1.68(2) 9.02(4) 7.35(3) 6.03(1) 6.95(2) 13.88(4) 10.61(1) 12.40(3) 12.08(2)

Yeast 6.14(4) 5.71(3) 1.94(2) 0.22(1) 17.34(4) 12.03(3) 8.14(2) 5.52(1) 24.41(4) 20.40(3) 14.17(2) 8.20(1)

Av. rank 2.80 3.00 2.40 1.80 2.80 3.15 2.50 1.55 2.90 3.10 2.65 1.35

Table 13: Friedman test of RLA for considered methods at different feature noise levels (α = 0.05)

Noise level Statistic FF Critical value Hypothesis

NL = 10% 3.8365 2.490 Rejected

NL = 30% 7.4993 2.490 Rejected

NL = 50% 11.303 2.490 Rejected

28



Table 14: Bonferroni-Dunn test of RLA for comparing BRBCS with other methods at different feature noise levels (α = 0.05)

Noise level Method z value p value Critical value α/(k − 1) Hypothesis

FRBCS 2.45 0.0143 0.0167 Rejected

NL = 10% C4.5 2.94 0.0033 0.0167 Rejected

BagC4.5 1.47 0.1416 0.0167 Accepted

FRBCS 3.06 0.0022 0.0167 Rejected

NL = 30% C4.5 3.92 8.89E-5 0.0167 Rejected

BagC4.5 2.33 0.0200 0.0167 Accepted

FRBCS 3.80 1.47E-4 0.0167 Rejected

NL = 50% C4.5 4.29 1.81E-5 0.0167 Rejected

BagC4.5 3.18 0.0015 0.0167 Rejected

4.4. Interpretability analysis

As mentioned in the introduction, in addition to accuracy, interpretability is also an important criterion for rule-

based systems. In [21], the authors presented an overview of the interpretability measures of rule-based systems. In

this experiment, the following three widely accepted interpretability measures recommended in [21] are utilized to

make a quantitative analysis.

• Number of rules (# Rule): According to the principle of Occam’s razor (the best model is the simplest one fitting

the system behavior well), the set of fuzzy rules should be as small as possible under conditions in which the

model performance is preserved to a satisfactory level.

• Number of conditions (# Conditions): The number of conditions should be as small as possible in order to ease

the readability of the rules.

• Number of fired rules for a given input (# Fired rule): The number of rules used for the reasoning of a given

input should be as small as possible in order to control the semantic interpretability.

Based on the above three interpretability measures, we test the four rule-based methods shown in Table 3. Twenty

real-world problems shown in Table 2 are considered for evaluation, and the 5-CV model is used to calculate the

average results. For those data sets with few features (M < 10), we use the partition number C = 5; otherwise the

partition number C = 3 is selected. Table 15 shows the results of the three interpretability measures for different

methods.
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Table 15: Results of interpretability measures for our proposed BRBCS in comparison with other rule-based methods

# Rule # Conditions # Fired rule

FRBCS EFRBCS EBRB BRBCS FRBCS EFRBCS EBRB BRBCS FRBCS EFRBCS EBRB BRBCS

Banknote 74.4 74.4 1098 74.4 4 4 4 4 1 9.8 1098 9.8

Breast 49 49 85 49 9 9 9 9 1 7.2 85 7.2

Cancer 167.2 167.2 547 167.2 9 9 9 9 1 4.2 547 4.2

Diabetes 248.8 248.8 315 248.8 8 8 8 8 1 18.5 315 18.5

Ecoli 105.8 105.8 269 105.8 7 7 7 7 1 11.3 269 11.3

Glass 80.4 80.4 172 80.4 9 9 9 9 1 7.2 172 7.2

Haberman 49 49 245 49 3 3 3 3 1 5.2 245 5.2

Iris 42.6 42.6 120 42.6 4 4 4 4 1 5.8 120 5.8

Knowledge 120.2 120.2 323 120.2 5 5 5 5 1 6.8 323 6.8

Letter 1354.6 1354.6 16000 1354.6 16 16 16 16 1 67.3 16000 67.3

Liver 112.6 112.6 276 112.6 6 6 6 6 1 16.8 276 16.8

Magic 346.2 346.2 15216 346.2 10 10 10 10 1 29.3 15216 29.3

Pageblocks 55.4 55.4 4379 55.4 10 10 10 10 1 21.7 4379 21.7

Pima 190.8 190.8 615 190.8 8 8 8 8 1 26.9 615 26.9

Satimage 1443.2 1443.2 5148 1443.2 36 36 36 36 1 87 5148 87

Seeds 96.8 96.8 168 96.8 7 7 7 7 1 9.5 168 9.5

Transfusion 28.6 28.6 599 28.6 4 4 4 4 1 5.5 599 5.5

Vehicle 288.2 288.2 677 288.2 18 18 18 18 1 61.5 677 61.5

Vertebral 93.2 93.2 248 93.2 6 6 6 6 1 18.8 248 18.8

Yeast 208 208 1188 208 8 8 8 8 1 27.4 1188 27.4

By the analysis of the results presented in Table 15, we can draw the following conclusions.

1. According to the measure # Rule, the proposed BRBCS and the other two fuzzy rule-based methods, FRBCS

and EFRBCS, have higher interpretability than the EBRB method. As the same fuzzy partition approach of

the feature space is used for the FRBCS, EFRBCS and BRBCS methods, the three methods generate the same

number of rules. However, for the EBRB method, as each training pattern is used to generate a rule, the number

of generated rules equals the number of training patterns.

2. According to the measure # Conditions, the four considered methods show the same interpretability. All of the

four methods do not take into account the selection of features, and so all features are considered as conditions

in the antecedent part of a rule.

3. According to the measure # Fired rule, the proposed BRBCS has higher interpretability than the EBRB method

but a lower interpretability than the FRBCS method. This is because for the FRBCS method, the single winner

rule is used to classify a query pattern, while for the proposed BRBCS method, all of the activated rules are

combined to obtain the final result.

Considering the above three measures, the proposed BRBCS shows a slight decrease in interpretability com-

pared with the classical FRBCS. As declared in [21], accuracy and interpretability are always two contradictory
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requirements. The accuracy improvement of the proposed BRBCS is achieved at the expense of a slight decrease in

interpretability.

4.5. Time complexity analysis

In this section, a time complexity analysis of the proposed BRBCS is provided to show to what extent the runtime

depends on factors such as the number of instances, the number of features and the number of partitions. Twenty real-

world problems (with the numbers of training instances ranging from 85 to 16, 000 and the numbers of features ranging

from 3 to 36) shown in Table 2 are considered for evaluation. Three different numbers of partitions, C = 3, 5, 7, are

tested, and the 5-CV model is used to calculate the average runtime. The numerical experiments are executed by

MATLAB 7.12 on an HP EliteBook 8570p with an Intel(R) Core(TM) i7-3540 M CPU @3.00 GHz and 8 GB memory.

Table 16 shows the average runtime of the proposed BRBCS in the training and testing phases for different data sets

and different partition numbers, where “# Tra.” is the number of training instances in the data set, “# Fea.” is the

number of features, and “# Rule” is the number of generated rules. “T. Tra.” and “T. Tes.” are the average runtimes

in the training phase and testing phase (classifying one pattern), respectively.

Table 16: Average runtime (in s) of our proposed BRBCS for different data sets and different partition numbers

C = 3 C = 5 C = 7

Data sets # Tra. # Fea. # Rule T. Tra. T. Tes. # Rule T. Tra. T. Tes. # Rule T. Tra. T. Tes.

Banknote 1,098 4 30.6 0.166 1.3E-3 74.4 0.225 2.7E-3 151.2 0.293 5.2E-3

Breast 85 9 26 0.025 2.2E-3 49 0.031 3.3E-3 61.6 0.047 4.3E-3

Cancer 547 9 209 0.181 1.4E-2 267.2 0.209 1.8E-2 323.2 0.284 2.1E-2

Diabetes 315 8 80.2 0.091 5.4E-3 248.8 0.125 1.6E-2 297.8 0.162 1.8E-2

Ecoli 269 7 44.8 0.050 2.1E-3 105.8 0.072 4.4E-3 178.4 0.094 7.1E-3

Glass 172 9 39.8 0.053 2.9E-3 80.4 0.072 5.7E-3 115.8 0.099 8.2E-3

Haberman 245 3 17.2 0.029 6.0E-4 49 0.041 1.4E-3 82.2 0.047 2.4E-3

Iris 120 4 14.4 0.025 6.1E-4 42.6 0.029 1.6E-3 63 0.031 2.3E-3

Knowledge 323 5 61.4 0.033 2.4E-3 120.2 0.041 5.0E-3 154.2 0.059 6.3E-3

Letter 16,000 16 1354.6 7.025 8.4E-2 3593 11.963 2.0E-1 6939 17.708 3.7E-1

Liver 276 6 42.8 0.053 2.4E-3 112.6 0.078 5.7E-3 171.6 0.106 8.2E-3

Magic 15,216 10 346.2 4.034 2.8E-2 1854.8 5.123 5.7E-2 4573.2 6.933 8.2E-2

Pageblocks 4,379 10 55.4 0.642 4.7E-3 162 0.950 1.1E-2 286.6 1.542 2.2E-2

Pima 615 8 104.6 0.149 6.9E-3 190.8 0.231 2.4E-2 340.8 0.303 3.2E-2

Satimage 5,148 36 1443.2 1.857 1.6E-1 2046.6 5.997 2.5E-1 2531.6 6.730 3.1E-1

Seeds 168 7 53.2 0.041 3.2E-3 96.8 0.062 5.9E-3 121.8 0.078 7.7E-3

Transfusion 599 4 12.6 0.081 5.1E-4 28.6 0.112 1.1E-3 56 0.147 2.0E-3

Vehicle 677 18 288.2 0.374 5.2E-2 334 0.577 8.0E-2 370.8 0.633 8.5E-2

Vertebral 248 6 34 0.049 1.9E-3 93.2 0.066 4.7E-3 142.2 0.094 6.9E-3

Yeast 1,188 8 96 0.312 6.6E-3 208 0.515 1.3E-2 462 0.608 2.8E-2

By analyzing the results presented in Table 16, we can see that the runtimes for both the training and testing
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phases mainly depend on the number of generated rules. More rules usually means more time to train the BRB and

also more time to classify a pattern based on the generated BRB. Thus, we can instead analyze how the factors affect

the number of rules. First, for each data set, the number of rules always increases with increases in the partition

number. However, the number of rules cannot increase indefinitely, as it is constrained by the number of training

instances. Second, by comparing different data sets, we can see that a larger number of features usually results in a

larger number of rules (e.g., the data sets Letter and Satimage). However, this tendency is also constrained by the

number of training instances. For example, although the data set Vehicle has a larger number of features than Magic, it

has a relatively smaller number of rules under any partition condition, mainly because its number of training instances

is quite small. In brief, with the growth in the numbers of partitions and features, the runtime of the proposed BRBCS

will increase, but this increase is constrained by the number of available training instances.

5. Conclusion

This paper extends the traditional FRBCS in belief functions framework and develops a belief rule-based clas-

sification system (BRBCS) to address imprecise or incomplete information in complex classification problems. The

two components of the proposed BRBCS, i.e., the belief rule base (BRB) and the belief reasoning method (BRM),

are designed specifically by taking into account the possible pattern noise in many real-world data sets. The ex-

periments show that the proposed BRBCS achieves better classification accuracy compared with other rule-based

methods. Moreover, this method can effectively address the class or feature noise in the training data set. This allows

us to conclude that the introduction of the belief rule structure improves the behavior of the rule-based classification

system.
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