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Abstract

In this paper, we propose a regression tree procedure to estimate the conditional

distribution of a variable which is not directly observed due to censoring. The model

that we consider is motivated by applications in insurance, including the analysis

of guarantees that involve durations, and claim reserving. We derive consistency

results for our procedure, and for the selection of an optimal subtree using a prun-

ing strategy. These theoretical results are supported by a simulation study, and

two applications to insurance datasets. The first one concerns income protection

insurance, while the second deals with reserving in third-party liability insurance.

Keywords : survival analysis, censoring, regression tree, model selection, insurance

Introduction

In numerous applications of survival analysis, analyzing the heterogeneity of a population

is a key issue. For example, in insurance, many evaluation of risks are linked with the

analysis of duration variables, such as lifetime, time between two claims, time between the

opening of a claim and its closure. A strategic question is then to determine clusters of
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individuals which represent different levels of risk. Once such groups have been identified,

it becomes possible to improve pricing, reserving or marketing targeting. In this paper,

we show how to adapt CART methodology (Classification And Regression Trees) to a

survival analysis context, with such applications in perspective. The presence of censoring

represents a specificity when dealing with such data containing duration variables. Here,

these variables naturally appear in the applications we consider, either because we are

focusing on lifetimes or because we are interested in quantities that are observed only

when some event has occurred (typically, the final settlement of a claim). The procedure

we develop is shown to be consistent, while its practical behavior is investigated through

a simulation study and two real data analyses.

The CART procedure (Breiman et al. [1984]) is a natural candidate for dealing with

such problems, since it provides simultaneously a regression analysis (which allows to con-

sider nonlinearities in the way the response depends on the covariates) and a clustering

of the population under study. Moreover, its tree-based algorithmic simplicity makes it

easy to implement. It consists of successively splitting the population into less heteroge-

neous groups. A model selection step then allows to select from this recursive partition a

final subdivision into groups of observations of reasonable size, with simple classification

rule to affect an individual to one of these classes. Tree-based methods have met with

many success in medical applications, due to the need for clinical researchers to define

interpretable classification rules for understanding the prognostic structure of data (see

e.g. Fan et al. [2009], Gao et al. [2004], Ciampi et al. [1995], Bacchetti and Segal [1995]).

In survival analysis, a recent review on these methods is available in Bou-Hamad et al.

[2011]. Let us also mention Wey et al. [2014] who recently considered tree-based estima-

tion of a censored quantile regression model, which extends the methodology of Wang and

Wang [2009]. For insurance applications, Olbricht [2012] highlighted their usefulness to

approximate mortality curves in a reinsurance portfolio and compare them to german life

tables in a nonparametric way, but based on fully observed data, which is not the case in

the present paper.

As already mentioned, one of the most delicate problems when dealing with survival

analysis is the presence of censoring in the data, and the necessity to correct the bias it

introduces in statistical methods. Our approach is based on the IPCW strategy (“Inverse

Probability of Censoring Weighting”), see van der Laan and Robins [2003] chapter 3.3. It

consists in determining a weighting scheme that compensates the lack of complete obser-

vations in the sample. Therefore, our procedure has to be connected with the technique
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presented in Molinaro et al. [2004]. The main differences in our approach stands in the

specificity of the weighting scheme we consider (based on the Kaplan-Meier estimator

of the censoring distribution) and on the fact that we do not only focus on a duration

(subject to censoring): our interest lies in the conditional distribution of a related vari-

able that is observed only if the duration is. This particular framework is motivated by

applications in insurance where the final claim amount to be paid is known only after the

claim has been settled, which can take several years in some cases. Another difference

with Molinaro et al. [2004] stands in the fact that their approach requires the modeling

of the conditional distribution of the censoring. In our case, no such model is required

since we use weights based on a Kaplan-Meier estimator (Kaplan and Meier [1958]), our

strategy relying on Kaplan-Meier integrals (see e.g. Stute [1999], Gannoun et al. [2005]

and Lopez et al. [2013] for applications of similar strategies to censored regression).

The rest of the paper is organized as follows. In section 1, we describe the specificities

of the censored observations we consider. Section 2 is devoted to the description of the

regression tree procedure, and its adaptation to the presence of censoring. Its consistency

is shown in section 3. A simulation study and two real data examples from insurance’s

field are respectively presented in sections 4 and 5.

1 Observations and general framework

This section aims at summarizing the observations we have at our disposal (section 1.1),

and defining the regression function we wish to estimate (section 1.2). Section 1.3 is

devoted to the nonparametric estimation of the distribution function of the variables

involved in our model.

1.1 Censored observations

In the following, we are interesting in a random vector (M,T,X), where M ∈ Rp, T ∈ R+

is a duration variable, and X ∈ X ⊂ Rd denote a set of random covariates that may

have impact on T and/or M. The presence of censoring prevents the direct observation

of (M,T ), while X is always observed. Let us introduce a censoring variable C ∈ R+. For

the sake of simplicity, we assume that T and C are continuous random variables. We also

assume, for convenience but without loss of generality, that the components of M are all
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strictly positive. The variables that are observed instead of (M,T ) are

Y = inf(T,C),

δ = 1T≤C ,

N = δM.

The data is made of i.i.d. replications (Ni, Yi, δi,Xi)1≤i≤n. Compared to a classical censor-

ing regression scheme, such as the one described for example in Stute [1993], the variables

Mi correspond to quantities that are observed only when the individual i is fully observed.

An illustration of such phenomenon is described in section 5.2, where T represents the

time before a claim is fully settled, and M is the total corresponding amount (only known

at the end of the claim settlement process). The censored regression framework of Stute

[1993] can be seen as a special case, taking M = T.

1.2 Regression function

Our aim is to understand the impact of X, and possibly T, on M. More precisely, we wish

to estimate a function

π0 = arg min
π∈P

E [φ(M,π(T,X))] , (1.1)

where P is a subset of an appropriate functional space and φ a loss function. In the

following, we will restrain ourselves to real-valued functions π. Table 1 below shows the

different type of regression models corresponding to different possible choices of φ, and

the corresponding set P . These examples cover mean-regression and quantile regression.

Function φ P π0(t,x)

(m− π)2 L2(Rd) π0(t,x) = E[M |X = x]

L2(Rd+1) π0(t,x) = E[M |X = x, T = t]

(m− π)(τ − 1(m−u)≤0) L1(Rd) π0(t,x) = qτ,X(x)

L1(Rd+1) π0(t,x) = qτ,X,T (x, t)

Table 1: Expression of π0 for some classical choices of φ and P . The notation Lp(Rd)

indicates a restriction to the set of function π(x, t) which do not depend on t, and, for a

random vector U qτ,U(u) denotes the τ−th conditional quantile of M with respect to U,

that is the value of mu such that P(M ≤ mu|U = u) = τ.
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1.3 Estimation of the distribution function of (M,T,X)

In this framework, the empirical distribution function of (M,T,X) can not be computed,

since M and T are not directly observed. Since most of statistical methods rely on this

nonparametric estimator, a particular effort should be dedicated to finding an alternative

estimator that takes censoring into account. Due to classical identifiability issues, an

assumption on the way C depends from the variables (M,T,X) must be specified. In the

sequel, we assume that the following Assumption 1 holds.

Assumption 1. Assume that:

1. C is independent from (M,T ),

2. and P(T ≤ C |M,T,X) = P(T ≤ C |T ).

Under Assumption 1, observe that, for all function ψ ∈ L1,

E

[
δψ(N, Y,X)

1−G(Y−)

]
= E [ψ(M,T,X)] , (1.2)

where G(t) = P(C ≤ t). The function G is usually unknown. However, Assumption 1

ensures that it can be estimated consistently by the Kaplan-Meier estimator (see Kaplan

and Meier [1958]), that is

Ĝ(t) = 1−
∏
Yi≤t

(
1− δi∑n

j=1 1Yj≥Yi

)
,

since T and C are independent, and P(T = C) = 0 for continuous random variables (see

Stute and Wang [1993] about the consistency of Kaplan-Meier estimator). Therefore, a

natural estimator of F (t,m,x) = P(T ≤ t,M ≤ m,X ≤ x) is

F̂ (t,m,x) =
1

n

n∑
i=1

δi1Yi≤t,Ni≤m,Xi≤x

1− Ĝ(Yi−)
, (1.3)

while the integral ∫
ψ(t,m,x)dF̂ (t,m,x) =

1

n

n∑
i=1

δiψ(Yi, Ni,Xi)

1− Ĝ(Yi−)
,

is a consistent estimator of E[ψ(T,M,X)] due to the consistency of Ĝ and the relation

(1.2), under appropriate conditions. This type of approach can be linked with the IPCW

method (van der Laan and Robins [2003], chapter 3.3). In the case where M = T (that is

we are only interested in the time T ), the estimator (1.3) is the same as the one defined

by Stute [1993], due to a relationship between Ĝ and the jumps of the Kaplan-Meier

estimator of the distribution of T (see Satten and Datta [2001]).
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Remark 1.1. Assumption 1 is a natural extension of the identifiability condition con-

sidered by Stute [1993]. Alternative assumptions have been proposed by several authors

for censored regression. For example, Van Keilegom and Akritas [1999], Heuchenne and

Van Keilegom [2010a], Heuchenne and Van Keilegom [2010b] assume that T and C are

independent conditionally on X (in absence of an additional variable M). A special case

of Assumption 1 is the situation where (M,T,X) is independent from C. But, as shown

in Stute [1993] (where Assumptions (i) and (ii) p.91 are identical to ours in the case

where T = M), Assumption 1 is more general. However, it still introduces constraints on

the way C is allowed to depend on the covariates. An alternative would be to assume that

(M,T ) is independent from C conditionally on X. A way to adapt our approach to this

framework would be to replace the Kaplan-Meier estimator Ĝ by the conditional Kaplan-

Meier estimator of Beran [1981] and Dabrowska [1989], as in Lopez [2011] (see also Lopez

et al. [2013]). However, this complicates the procedure due to the introduction of kernel

smoothing with respect to X, with a potential erratic behavior when the dimension of the

covariates d is high. We therefore restrain ourselves to the condition in Assumption 1,

which is adapted to the practical applications we have in mind (see section 5).

Remark 1.2. In practice, we use a learning sample to build the regression tree, and a

validation sample to select the most adapted subtree (further details in section 2.3). Let us

say that the learning sample is of size n, while there are v observations in the test sample.

In this situation, the estimator Ĝ can be computed either from the learning sample (n

observations) or from the whole sample (n+ v observations), this latter option leading to

a slight modification in the definition of Ĝ. As we will explain in section 2.3, we use this

second strategy in practice, which has no significant consequence in the theory provided

that v is at most of the same order as n.

2 Adapting CART to survival data with Kaplan-Meier

weights

This section is devoted to the description of our regression tree methodology adapted to

censoring. Section 2.1 explain the growing procedure, that is the successive partitions of

the observations into elementary classes, while section 2.2 shows the relation between a

subtree extracted from this procedure and an estimator of the regression function. Section

2.3 presents the pruning strategy to select our final estimator.

6



2.1 Growing the tree

The building procedure of a regression tree is based on the definition of a splitting criterion

that furnishes partition rules at each step of the algorithm. More precisely, at each step s, a

tree with Ls leaves is constituted, each of these leaves representing disjoint subpopulations

of the initial n observed individuals. In our case, the rules used to create these populations

are based on the values of Y and X. More precisely, the leaves correspond to a partition

of the space T = R+ × X into Ls disjoint sets T (s)
1 , ..., T (s)

Ls
. The individual i belongs to

the subpopulation of the leaf l if X̃i := (Ti,Xi) ∈ T (s)
l .

At step s+1, each leaf is likely to become a new node of the tree by making use of the

splitting criterion. Let X̃(j) denote the j−th component of X̃. In absence of censoring,

to partition the subpopulation of the l−th leaf into two subpopulations, one determines,

for each component X̃(j), the threshold x
(j)
l that minimizes

min
(π,π′)∈Γ2

{∫
φ(m,π)1

x̃∈T (s)
l

1
x̃(j)≤x(j)l

dF̂n(m, t,x)

+

∫
φ(m,π′)1

x̃∈T (s)
l

1
x̃(j)>x

(j)
l
dF̂n(m, t,x)

}
=: Ll(j, x

(j)
l ), (2.1)

where Γ ⊂ R, x̃ = (t,x), and F̂n denotes the empirical distribution of (M,T,X). The

first term of (2.1) can be seen as an estimator of E[φ(M,π) | X̃ ∈ T (s)
l , X̃(j) ≤ x

(j)
l ],

while the second term estimates E[φ(M,π) | X̃ ∈ T (s)
l , X̃(j) > x

(j)
l ]. Then one determines

j0 = arg minj=1,..,d+1 Ll(j, x
(j)
l ). Next, the partition of the population of the l−th leaf

is performed by separating the individuals having X̃
(j0)
i ≤ x

(j0)
l , and those such that

X̃
(j0)
i > x

(j0)
l .

In our framework, the empirical distribution function F̂n is unavailable. The idea is to

replace F̂n in (2.1) by F̂ defined in (1.3). In other words, in the previous regression tree

procedure, the empirical means that we would use in absence of censoring are replaced

by weighted sums, the weight Wi,n = δin
−1[1 − Ĝ(Yi−)]−1 being affected to the i−th

observation, in order to compensate the presence of the censoring.

An important remark has to be done in view of both the definition of the splitting

criterion and the weights Wi,n. The splitting criterion consists of a rule which is based

on the values of X̃, whose first component T is unobserved for the censored individuals.

Hence, under random censoring, this procedure cannot be understood as a rule to perform

classification of all the observations in the sample: only uncensored individuals are classi-

fied. Nevertheless, the fact that the censored ones are not assigned to any leaf of the tree

does not constitute an obstacle in view of performing the growing procedure: indeed, if
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the i−th individual is censored, Wi,n = 0. Therefore, at each step, a censored observation

could be assigned to any subpopulation without modifying the value of Ll(j, x
(j)
l ). This

does not mean that the information contained in the censored observations is not used,

since the censored observation play an important role to compute Ĝ, and thus Wi,n.

To summarize, the aforementioned procedure therefore produces clusters of individuals

with rules to assign the uncensored observations to one of them. The question about how

to assign a censored observation should be considered separately, see an application in

section 5.2. The detail of our modified CART algorithm (with censoring weights) is

described as follows.

Step 0: compute the estimator Ĝ from the dataset with n individuals.

Step 1: initialization. Consider the tree with only one leaf (L1 = 1), corresponding

to the population composed by the totality of the nU uncensored observations (nU ≤ n).

Set T (1)
1 = T .

Step s: splitting. Consider the tree obtained at step s− 1, with Ls−1 leaves. Each

leaf l corresponds to a set T
(s−1)
l such that T (s−1)

l ∩ T (s−1)
l′ = ∅ and ∪lT (s−1)

l = T . The

uncensored observations (denote by el their number) such that X̃ ∈ T (s−1)
l are assigned

to leaf l. For each leaf l, with 1 ≤ l ≤ Ls−1:

s.1 if el = 1 or if all observations have the same values of X̃, do not split;

s.2 else, the leaf becomes a node in the next tree: determine j0 and x
(j0)
l that minimizes

Ll(j, x
(j)
l ) and define Ll = T (s−1)

l ∩{X̃(j0) ≤ x
(j0)
l }, and Ul = T (s−1)

l ∩{X̃(j0) > x
(j0)
l }.

Define a new collection of disjoints sets T (s)
l′ which consists of the sets Ll, Ul for 1 ≤ l ≤

Ls−1 (or T (s−1)
l if the l−th leaf satisfied the condition s.1). Set Ls the new number of

leaves. Go to step s + 1, unless Ls = Ls−1. The procedure stops when all the leaves are

in step [s.1]. This produces the maximal tree from which our final estimator is extracted.

2.2 From the tree to the regression function

Recall that our aim is to estimate the function π0 in (1.1). Consider a subtree S of the

maximal tree built from the algorithm of section 2.1. We now describe how this subtree

can be interpreted as an estimator of π0. Let K(S) denote the total number of leaves of S.

As previously explained, this subtree can be seen as a collection of rules (see Meinshausen

[2009] for further formalization of this concept). By construction, a leaf l is associated

with a set Tl (recall that the sets Tl being disjoint with reunion equal to T ) and a rule
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Rl(x̃) = 1x̃∈Tl that determines if an individual is affected or not to the corresponding

cluster. This induces the following estimator of π0 :

π̂S(t,x) =

K(S)∑
l=1

γ̂lRl(t,x), (2.2)

where

γ̂l = arg min
π∈Γ

∫
φ(m,π)Rl(x̃) dF̂ (m, t,x).

The coefficient γ̂l can be seen as an estimator of

γl = arg min
π∈Γ

E[φ(M,π) | X̃ ∈ Tl].

Hence, defining

πS(t,x) =

K(S)∑
l=1

γlRl(t,x),

πS(t,x) can be seen as a piecewise constant approximation of π0, which tends to be closer

to π0 when the partition of T is sharp. On the other hand π̂S should be close to πS

provided that the sets Tl are not too small. In view of estimating π0, a crucial issue is

thus to extract an appropriate subtree from the maximal tree, corresponding to a good

compromise between a sharp partition of T and the necessity to have enough observations

in each leaf to estimate correctly the coefficients γl. Achieving this is the aim of the pruning

strategy developed in the following section.

2.3 Selection of a subtree: pruning algorithm

Denote by Kn ≤ n the number of leaves of the maximal tree. The pruning strategy

consists of selecting from the data a subtree Ŝ with K̂ leaves. Let S denote the set of

subtrees from the maximal tree. The pruning strategy consists of determining Ŝ(α) such

that

Ŝ(α) = arg min
S∈S

{∫
φ(m, π̂S(x, t))dF̂ (m, t,x) +

αK(S)

n

}
,

and to use π̂Ŝ(α) as a final estimator of π0. We will denote K̂α the number of leaves in

Ŝ(α). A penalty term proportional to K(S)/n has initially been proposed by Breiman

et al. [1984], see also Gey and Nedelec [2005]. The procedure consists of starting with

α = 0, and then increase progressively its value, in order to determine a sequence 0 <

α1 < ... < αKn such that K̂αj+1
= K̂αj . The existence of such a sequence has been proved

by Breiman et al. [1984]. Moreover, it follows from Breiman et al. [1984] (p.284–290) that
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S(αj+1) ⊂ S(αj), and that S(α) = S(αj) for αj ≤ α < αj+1. Then, the question is to

select the right αj in this list. To this purpose, a test sample (see Remark 1.2) of size

v is used. More precisely, let (Ni, Yi, δi,Xi)n+1≤i≤n+v denote the observations in the test

sample. For all j, we compute

V(αj) =
n+v∑
i=n+1

δi φ(Ni, π̂
K(αj)(Xi, Yi))

1− Ĝ(Yi−)
, (2.3)

and select αj0 such that V(αj) is minimal. This procedure differs from the classical one by

the introduction of the weights involving Ĝ. Section 3.3 shows that this strategy remains

valid in presence of censoring.

Observe that different strategies may be used for computing the estimator Ĝ in-

volved in (2.3). We chose to compute it once for all, that is using the whole sample

(Ni, Yi, δi,Xi)i=1,...,n+v, and use this estimator both in the construction of the trees and

in the validation step. Alternatively, one could use in the growing step an estimator Ĝ

computed from the learning sample, and, in the validation step, another one computed

from the test sample. We argue that such a strategy is likely to increase the instability

of the procedure since the estimator Ĝ computed from the information contained in the

test sample would be usually of poorer performance (usually v << n). Therefore, taking

an estimator Ĝ computed from the whole sample seems more relevant, observing that

correcting the presence of the censoring and selecting the most appropriate tree are two

separate problems.

Remark 2.1. This selection criterion, in its uncensored version, has been shown to be

consistent for selecting the best subtree in many cases, see Breiman et al. [1984] and Gey

and Nedelec [2005]. See also Molinaro et al. [2004] for application of close strategies.

Optimality properties and practical evidence for some of these techniques can be found in

van Der Laan et al. [2006], van Der Laan and Dudoit [2003], or Dudoit et al. [2003].

3 Consistency of the CART weighted estimator

The study of the consistency of our regression tree procedure is studied in three steps.

In section 3.1, we provide a deviation bound which is the cornerstone of the following

results. Section 3.2 applies this inequality to study the performance of an estimator of

the regression function constructed from a subtree, while section 3.3 shows the consistency

of the pruning strategy we develop. To simplify the notations, we consider hereafter that
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Ĝ is computed from the learning sample only, that is using n observations. Extension to

the case where Ĝ is computed from n + v observations is straightforward, since it only

lowers the part of the error due to the presence of the censoring (but with no significant

change in the rate if v is smaller than n).

3.1 A bound on the deviations of the criterion

We consider in this section a tree with leaves Tl (l = 1, ..., K), where Tl is a random

subdivision of T corresponding to the scheme defined in section 2.1. Let

Mn,l(γ) =
1

n

n∑
i=1

δi

1− Ĝ(Yi−)
φ(Ni, γ)1(Yi,Xi)∈Tl ,

Ml(γ) =

∫
φ(m, γ)1x̃∈TldF (m, t,x),

and define the relative variation of Mn,l −Ml around γl as

∆l(γ, γl) =
{Mn,l(γ)−Mn,l(γl)} − {Ml(γ)−Ml(γl)}

|γ − γl|
.

The quantity ∆l(γ, γl) is a way of measuring, in the leaf l, some normalized variation of

the error made by replacing the criterion Ml by its empirical counterpart. The cornerstone

of our theoretical results is Theorem 1 below, which furnishes a bound for the deviations

of ∆l. Before stating the result, some assumptions on the regularity of the loss function

are required.

Assumption 2. There exists a constant M <∞ such that, for all m,

sup
(π,π′)∈Γ2

|φ(m,π)− φ(m,π′)|
|π − π′|

≤M.

Assumption 2 holds provided that φ is continuously differentiable with respect to π,

with uniformly bounded derivative. The second assumption that we need on function φ

requires to introduce some notations concerning covering numbers. For a class of func-

tions F and a probability measure Q, let N(ε, L2(Q),F) denote the minimum number

of L2(Q)−balls of radius ε required to cover the set F . In the following, for a class of

functions F with envelope function E (by envelope, we mean that all functions in F are

uniformly bounded by E), we will use the following notation,

NE(ε,F) = sup
Q:‖E‖L2(Q)<∞

N(ε‖E‖L2(Q), L
2(Q),F).
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Assumption 3. Define the class of functions

Φ =

{
m→ (φ(m,π)− φ(m,π′))

(π − π′)
: (π, π′) ∈ Γ2

}
.

Assume that, for some positive constants C1 and w,

NM(ε,Φ) ≤ C1

(
1

ε

)w
,

where we recall that the functions in Φ are bounded by M from Assumption 2.

Assumption 3 holds provided that the function φ is regular enough. Indeed, if φ is

twice continuously differentiable with respect to π, and if its second order derivative with

respect to π is, for a fixed m, Hölder with Hölderian constant Hm satisfying E[Hm] <∞,
it is easy to check that we are in the situation of Example 19.7 in van der Vaart [1998],

for which Assumption 3 holds.

We now state the main result of this section.

Theorem 1. Let τ be such that P(Y ≤ τ) < 1, and let Tτ ⊂ [0; τ ] × X . Assume that

X is a random vector with d continuous and k discrete components, where each discrete

component has at most m modalities. Then, under Assumptions 2 and 3, there exist

positive constants Cj (j = 1, ..., 5) such that

P
(

sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆l(γ, γl)| > x

)
≤ 2

{
exp

(
−C1nx

2
)

+ exp (−C2nx)
}

+2.5 exp
(
−C3nx

2 + C4x
)

+ un, (3.1)

with un = O(exp(−n)), for x ≥ C5[kd logm]1/2n−1/2. Moreover, the constants Cj (j =

1, ..., 5) do not depend on n nor (k, d,m).

The introduction of τ is required due to the erratic behavior of the Kaplan-Meier

estimator at the right-hand side of the distribution. We therefore need to remove the

observations that are too large, which is the purpose of considering only leaves such that

Tl ⊂ Tτ . This type of truncation is classical in censored regression, see e.g. Sánchez Sellero

et al. [2005], Heuchenne and Van Keilegom [2010b] and Lopez et al. [2013].

Sketch of the proof of Theorem 1. The probability (3.1) is decomposed into

P
(

sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆l(γ, γl)| > x

)
≤ P

(
sup

l:Tl⊂Tτ
sup
γ∈Γ
|∆l,C(γ, γl)| > x/2

)
+P
(

sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆∗l (γ, γl)| > x/2

)
, (3.2)

12



where

∆l,C(γ, γl) =
{Mn,l(γ)−Mn,l(γl)} − {M∗

n,l(γ)−M∗
n,l(γl)}

|γ − γl|
,

∆∗l (γ, γl) =
{M∗

n,l(γ)−M∗
n,l(γl)} − {Ml(γ)−Ml(γl)}
|γ − γl|

,

introducing

M∗
n,l(γ) =

1

n

n∑
i=1

δi
1−G(Yi−)

φ(Ni, γ)1(Yi,Xi)∈Tl .

This means that ∆l,C corresponds to the replacement of Ĝ by G in the definition of

Mn,l, while ∆∗l corresponds to the deviation we would consider in a situation where the

distribution of the censoring would be known exactly.

The two probabilities in the decomposition (3.2) are studied separately in Lemma 1

and Lemma 2 respectively. The main idea is to use a concentration inequality due to

Talagrand (Talagrand [1994]) to study the deviations of ∆∗l , while the replacement of

Ĝ by G (corresponding to ∆l,C) is handled via the adaptation of the Dvóretsky-Kiefer-

Wolfowitz inequality for Kaplan-Meier estimator due to Bitouzé et al. [1999]. Using the

notations of these two Lemmas, the result follows by taking C1 = B1/4, C2 = B2/2,

C3 = A/4, C4 = B/2, and C5 = 2B3.

Remark 3.1. The sequence un appears in Lemma 1, as un = P(En), where En =

{supt<τ |Ĝ(t)−G(t)| > cG/2} with cG = (1−G(τ)). From the proof of Theorem 1,

P
({

sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆l(γ, γl)| > x

}
∩ Ec

n

)
≤ 2

{
exp

(
−C1nx

2
)

+ exp (−C2nx)
}

+2.5 exp
(
−C3nx

2 + C4x
)
. (3.3)

Remark 3.2. If n + v observations are used to compute Ĝ, n simply becomes n + v in

the third exponential term of (3.1), and un is replaced by un+v.

3.2 Consistency of the regression tree

Consider a leaf Tl ⊂ Tτ . Once again, restraining ourselves to Tτ is required due to the bad

performance of the Kaplan-Meier estimator near the tail of the distribution. Theorem 1

allows to easily deduce the consistency of γ̂l, up to adding some regularity assumptions

on the function φ, that we now list.

13



Assumption 4. φ(m, γ) is twice continuously differentiable with respect to γ for all m,

and there exists a constant c > 0 such that

inf
γ∈Γ,l

∣∣∣∣∫ ∂2
γφ(m, γ)1x̃∈TldF (t,m,x)

∣∣∣∣ ≥ cµX̃(Tl),

where µX̃(χ) =
∫
1x̃∈χdF (t,m,x).

We also require some reasonable restriction on the parameter space Γ.

Assumption 5. Γ is compact, convex with non-empty interior, and for all l = 1, ..., K,

γl belongs to the interior of Γ.

By definition of γ̂l, we have Mn,l(γ̂l) −Mn,l(γl) ≥ 0, while Ml(γ̂l) −Ml(γl) ≤ 0 by

definition of γl. Hence,

0 ≤ −{Ml(γ̂l)−Ml(γl)}
|γ̂l − γl|

≤ ∆l(γ̂l, γl) ≤ sup
γ∈Γ
|∆l(γ, γl)|.

Moreover, if follows from a second order Taylor expansion and Assumptions (4) and (5)

that

−{Ml(γ̂l)−Ml(γl)} ≥
cµX̃ (Tl) |γ̂l − γl|2

2
,

from which one deduces

|γ̂l − γl|µX̃ (Tl) ≤
2 supγ∈Γ |∆l(γ, γl)|

c
. (3.4)

The following Proposition 1 then easily follows from (3.4) and Theorem 1.

Proposition 1. Under the Assumptions of Theorem 1 and under Assumptions 4 and 5,

we have

P
(

sup
l:Tl⊂Tl

|γ̂l − γl|µX̃ (Tl) > x

)
≤ 2

{
exp

(
−C1nc

2x2/4
)

+ exp (−C2ncx/2)
}

+2.5 exp
(
−C3nc

2x2/4 + C4cx/2
)

+ un,

for x ≥ 2C5[kd logm]1/2c−1n−1/2, where we used the notations of Theorem 1, and where

µX̃ is defined in Assumption 4.

This Proposition means that, in each leaf, the estimator γ̂l is close to γl with high

probability. Nevertheless, the term µX̃(Tl) shows that the performance of estimation in

the leaf deteriorates when the leaf is ”too small” (that is when the selection rules define

a region of the space T which has a small measure with respect to the distribution of X̃).
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This is a classical issue when proving consistency of regression trees, see e.g. Condition

1 in Chaudhuri [2000] and Condition 1 in Chaudhuri and Loh [2002]. Condition (3.5)

in Corollary 1 is clearly linked to this issue since, in a random design, µX̃(Tl) somewhat

represents the number of observations in Tl.

Corollary 1. Let T′τ = ∪l:Tl⊂TτTl. Assume that, for all Tl ⊂ Tτ ,

µX̃(Tl) ≥ m > 0. (3.5)

Define ‖π̂S − πS‖2,τ =
{∫ ∣∣π̂S(x, t)− πS(x, t)

∣∣2 1x̃∈T′τdF (t,m,x)
}1/2

and P (x) =

P(‖π̂S − πS‖2
2,τ > x). Then, for some positive constants C ′j,

P (x) ≤ K
(
2
{

exp (−C ′1nx) + exp
(
−C ′2nx1/2

)}
+2.5 exp

(
−C ′3nx+ C ′4x1/2

)
+ un

)
, (3.6)

for x ≥ C ′5n−1. Moreover,

E
[
K(S)−1‖π̂S − πS‖2

2,τ

]
= O(1/n). (3.7)

Proof. We have∫ ∣∣π̂S(x, t)− πS(x, t)
∣∣2 1x̃∈T′τdF (t,m,x) ≤

K∑
l=1

[|γ̂l − γl|µX̃(Tl)]2
1Tl⊂Tτ
m

,

since the intersection of Tl and Tl′ is empty for l 6= l′, and using (3.5). Equation (3.6)

then follows from Proposition 1.

To show (3.7), observe, following Remark 3.1, that P (n)(x) := P({‖π̂S −πS‖2
2,τ > x}∩

En) = P (x)− 2.5un, where Ec
n = {supt<τ |Ĝ(t)−G(t)| > cG/2}. Then, since ‖π̂S −πS‖2

2,τ

is bounded (say by a finite constant A),

E
[
K(S)−1‖π̂S − πS‖2

2,τ

]
≤
∫ ∞

0

P (n)(x)dx+AP(En),

and the result follows since P(En) = 2.5un.

3.3 Consistency of the pruning strategy

The next result shows that penalizing the subtree S by a factor αK(S)/n is a relevant

strategy. This idea seems already reasonable in view of (3.7). Indeed,
∫
φ(m, π̂S)dF̂ (m, t,x)

is, due to the regularity assumptions of φ (Assumption 4), of the same order as ‖π̂S −
πS‖2

2,τ , which is of order K(S)/n. Penalizing by αK(S)/n can then be interpreted as com-

pensating the structural decreasing of ‖π̂S − πS‖2,τ when K(S) increases. The following

Proposition 2 confirms this.
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Proposition 2. Let S = (S1, ...,SKn) denote a sequence of subtrees all satisfying the

assumptions of Corollary 1, and with S1 ⊂ S2 ⊂ ... ⊂ SKn . Let

K0 = arg min
K=1,...,K(n)

∫
φ(m,πSK (x, t))dF (m, t,x).

Define π̂Ŝ(α) as the estimator selected using the pruning strategy with parameter α. Let

∆(K) = −
∫

[φ(m,πSK0 (x, t))− φ(m,πSK (x, t))] dF (m, t,x).

Assume that

inf
K<K0

∆(K)− α[K −K0]n−1 ≥ C−1
6 n−1 log n, (3.8)

for some absolute constant C6 > 0, and supγ,m |∂2
γφ(m, γ)| ≤ B for some finite constant

B. Then, if C6 is small enough, under assumptions of Corollary 1,E
[
‖π̂Ŝ(α) − π0‖2

2,τ

]
K0

1/2

=
‖πK0 − π0‖2,τ

K
1/2
0

+O(n−1/2),

where the O(n−1)−term does not depend on K0.

The proof of this Proposition 2 is postponed to the appendix section. It introduces

an optimal choice of complexity K0 for the selected tree. It is optimal in the sense

that K0 minimizes
∫
φ(t, πK)dF (t,m,x) over K, that is the unachievable criterion that

would be optimized if we knew the distribution F. The result of Proposition 2 shows that

the penalization strategy gives approximatively the same performance as if we knew the

optimal complexity K0. Indeed, the L2−norm of the error is of order K0n
−1, plus some

approximation term (distance between πK0 and π0).

4 Simulations

We investigate here the practical behaviour of tree-based estimators for censored data

via simulations. For the sake of simplicity, we consider the case where one is interested

in the distribution of the lifetime T , thus focusing on estimating π0(x) = E[T |X = x].

Consider the following simulation scheme (see the parameter values in Table 2):

1. draw n+ v iid replications (X1, ...,Xn) of the covariate, with Xi ∼ U(0, 1);

2. draw n + v iid lifetimes (T1, ..., Tn) following an exponential distribution such that

Ti ∼ E(β = α111Xi∈[a,b[ + α211Xi∈[b,c[ + α311Xi∈[c,d[ + α411Xi∈[d,e]).

(notice that there thus exist four subgroups in the whole population)
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3. draw n+ v iid censoring times, Pareto-distributed: Ci ∼ Pareto(λ, µ);

4. from the simulated lifetimes and censoring times, get for all i the actual observed

lifetime Yi = inf(Ti, Ci) and the indicator δi = 1Ti≤Ci ;

5. compute the estimator Ĝ from the whole generated sample (Yi, δi)1≤i≤n+v.

Descriptive statistics corresponding to various simulated datasets (of different sizes)

are available in Table 3. On each simulated sample, we fit a regression tree with our

algorithm of section 2.1, and prune it using the strategy of section 2.3. Then we compute

the weighted squared errors given by WSEi = δin
−1[1− Ĝ(Yi−)]−1(γ̂l(i)−π0(Xi))

2, where

the ith observation belongs to the leaf l(i) and knowing that π0(Xi) = 1/β.

In order to gain some robustness in our results, we repeat 5000 times the simulation

scheme 1-5 to compute empirical means of WSEi, leading to the MWSE. We also

consider different values for (λ, µ) in the censoring process so as to measure the impact

of censoring on the performance of the procedure (see Table 2 for the related parameters

of the Pareto distribution). The performance of the procedure is shown in Figure 1

and Table 4. Clearly, the strength of the censoring phenomenon has an impact on the

performance of the procedure. One can also observe that the performance in the group

with the highest mean (Group 2) is worse than in the others, which has to be linked with

the fact that largest observations are more likely to be censored. However, the hierarchy

of the groups in term of performance of the procedure can not be entirely summarized by

Group-specific means Component probabilities Censorship rate

α1 α2 α3 α4 [a, b[ [b, c[ [c, d[ [d, e] 10% 30% 50%

0.08 0.05 0.16 0.5 [0, 0.3[ [0.3, 0.6[ [0.6, 0.8[ [0.8, 1] (λ, µ) (λ, µ) (λ, µ)

12.5 20 6.25 2 30% 30% 20% 20% (80,1.03) (20,1.2) (14,2)

Table 2: Different parameters involved in the simulation scheme.

Sample Group-specific exposure Sample

size n Group 1 Group 2 Group 3 Group 4 mean

100 35% 28% 17% 20% 11.08

500 26.8% 31.6% 20% 21.6% 11.37

1 000 30.1% 28.7% 20.6% 20.6% 11.33

5 000 31.42% 29.96% 19.5% 19.12% 11.53

10 000 30.25% 30.19% 19.79% 19.77% 11.52

Table 3: Descriptive statistics of a simulated dataset.
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Figure 1: MWSE in function of the sample size (n=100, 500, 1 000, 5 000, 10 000).

the question of the typical size of the lifetimes (see Group 4 which has a lesser mean, but

performs worse than Group 1).

% of Sample Group-specific MWSE Global

censored size Group 1 Group 2 Group 3 Group 4 MWSE

observations n MWSE MWSE MWSE MWSE

100 0.19516 0.42008 0.17937 0.30992 1.10454

500 0.03058 0.07523 0.03183 0.06029 0.19796

10% 1 000 0.01509 0.03650 0.01517 0.02619 0.09306

5 000 0.00295 0.00714 0.00289 0.00530 0.01804

10 000 0.00105 0.00378 0.00117 0.00292 0.00910

100 0.20060 0.43664 0.17448 0.29022 1.10765

500 0.03736 0.07604 0.04301 0.06584 0.22217

30% 1 000 0.01748 0.04095 0.01535 0.02674 0.10043

5 000 0.00319 0.00758 0.00291 0.00547 0.01904

10 000 0.00117 0.00372 0.00125 0.00292 0.00930

100 0.19784 0.45945 0.17387 0.28363 1.11476

500 0.04906 0.08993 0.05301 0.06466 0.25668

50% 1 000 0.02481 0.05115 0.01788 0.03004 0.12387

5 000 0.00520 0.00867 0.00389 0.00516 0.02299

10 000 0.00153 0.00407 0.00162 0.00308 0.01057

Table 4: Mean weighted squared errors depending on the censoring rate and sample size.
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5 Applications to real-life insurance datasets

In this section, we consider two applications to insurance. The first one, described in

section 5.1, focuses on the prediction of a duration variable only (duration in a disability

state). The second one, see section 5.2, is dedicated to claim reserving, illustrates our need

to introduce a supplementary variable M. In this situation, the key issue is to predict the

amount of a claim, this amount being known only after some time T subject to censoring.

5.1 Income protection insurance

The real-life database we consider reports the claims of income protection guarantees

during six years. It consists in 83547 claims, with the following information for each

claim: a policyholder ID, cause (sickness or accident), gender (male or female), socio-

professional category (SPC: manager, employee or miscellaneous), age at the claim date,

duration in the disability state (eventually right-censored), commercial network (3 kinds

of brokers). All considered insurance contracts have a common deductible of 30 days.

Here, the censoring rate equals 7.2%, the mean observed duration in the disability

state is about 100 days (beyond the deductible of 30 days) with a median of 42 days.

There is strong dispersion among the observed durations since the standard deviation is

162 days. Our objective is to find a segmentation into several classes of homogeneous

individuals, and to predict the duration in the disability state in each class.

In a first time we compute the Cox proportional-hazards model with the age at the claim

date as covariate, since the recovery rates used in the calculation of technical provisions

for this kind of guarantees depends on the age at the claim date due to local prudential

regulation. This adjustment leads to consider the high predictive power of this variable.

However, the proportional hazards assumption is indubitably rejected by all classical

statistical tests (likelihood ratio, Wald and log-rank tests). Nevertheless the obtained

results will be considered as benchmarks to enable a comparison with those resulting from

the tree approach. We thus try to explain the disability duration by sex, SPC, commercial

network, age at the claim date (5 pre-determined classes using a prior regression technique)

and cause of disability. The final tree (after pruning) is given in Figure 2. Observe in

Table 5 the significant differences between tree and Cox estimates. These differences can

be explained by two phenomena resulting from using the Cox proportional-hazards model:

• our approach directly targets the duration expectation while Cox partial-likelihood

is focused on estimating the hazard rate; and
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Figure 2: Disability duration explained by sex, SPC, commercial network, age and cause.

Classes Mean Age Tree Cox

a 26.83 64.44 80.01

b 34.19 85.48 96.35

c 39.57 100.04 110.19

d 45.05 111.38 126.03

e 51.29 126.40 146.28

Table 5: Estimates of expected disability time (days) depending on age at disability time.

• the estimation of the baseline hazard is very sensitive to highest durations (mainly

concentrated in class e), which affect the estimates of all other classes (whereas our

estimation is expected to be less sensitive to this phenomenon for classes a to d).

These differences enforce the interest of such an approach to incorporate heterogeneity

in the reserving process of an insurance portfolio.

5.2 Reserving in third-party liability insurance

This real-life database was extracted in the 2000’s by an international insurance company,

and reports about 650 claims related to a medical malpractice insurance during seven

successive years. The initial dataset contains information about various dates concerning

the claims (date for reporting, opening or closing the case, ...), contract features, and

some data on associated payments. These payments encompass indemnity payments and

ALAE (Allocated Loss Adjustment Expenses), where ALAE are assignable to specific
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claims and represent fees paid to outside attorneys used to defend the claims. After some

treatments, one can compute useful quantities for our purpose, especially the (potentially

censored) development times and total payments. Here Ti is the ”lifetime” of a claim,

that is the time between its issue date and the claim settlement date. The consorship Ci

is the delay between the claim issue date and the extraction date of the database, and

Mi is the total amount of the ith claim. The latter is observed only if the claim has been

fully settled (32% of the observations are censored). In this setting it is reasonable to

assume that Ci does not depend on (Mi, Ti,Xi), but this would clearly be wrong in the

case of covariates depending on the claim issue date. Table 6 sums up some descriptive

statistics about the covariates that are used when running the weighted CART algorithm

to explain the response Mi. As we could expect in this kind of business, the data are

highly skewed : for instance, lots of declared claims are assigned no payments because

the company is still waiting for the court decision to start paying. A parametric model

would then be quite tricky to fit, which emphasizes the interest of using such techniques.

As already said, a key issue is to predict the future coming expenses related to the

claims that are still under payment. Typically, computing

M∗(Ni, Yi, δi,Xi) := E[Mi |Ni, Yi, δi, Xi],

would give the best L2−approximation of the amount Mi based on the information one

Statistical indicators

Type Median Mean Std. Min. Max. # categories

Insurance type categorical 2

Specialty categorical 41

Class categorical 19

Report date date N N+7

Area categorical 30

Closed without payments boolean 2

Closed without indemnity boolean 2

Time before opening (days) continuous 1164 1223 614 2 4728

Time before declaration continuous 734 724 560 0 4657

Reopen status boolean 2

Cancel status boolean 2

Reserves continuous 0 44170 138867 0 1062000

Development time continuous 419 606 506 0 2249

Observed payments continuous 2617 41810 152319 0 1557000

Table 6: Statistics on final selected information for our application.
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has on claim i. Our aim is then to produce an estimator M̂ of this ideal (but unachievable)

predictor. Of course M∗ is known if δi = 1, that is M∗(m, y, 1,x) = m, but the key issue

is to predict it for unsettled claims (δi = 0). For such claims, rewrite

M∗(m, y, 0,x) = E[M |M > m,T > y,X = x]

=
E[M 11(M > m,T > y) |X = x]

P(M > m,T > y |X = x)
, (5.1)

and introduce Z1(m, y) = 11(M > m,T > y), and Z2(m, y) = M Z1.

In view of (5.1), we have to estimate the quantities πm,y0,1 (x) = E[Z1|X = x] and πm,y0,2 (x) =

E[Z2|X = x]. Each of these quantities are estimated using the CART procedure described

in section 2. Hence, for each censored claim, we use two regression trees to compute a

prediction M̂i obtained as the ratio M̂i = π̂Ni,Yi0,2 (Xi)/π̂
Ni,Yi
0,1 (Xi). Note that, for each

censored claim, the trees we compute are different since the values of Yi and Ni are. We

now determine a reserve to be constituted by summing the M̂i. To check that the proposed

amount is reasonable, we can compare the values of M̂i with the prediction of experts

that are present in the database. The aggregated results are stored in Table 7 and 8.

The predictions are highly overdispersed for both “expert” and “tree” reserves (see

Table 7) but, as it was mentioned earlier, this is not surprising from a business-line

consideration. We observe that our regression tree approach produces amounts of reserves

which are significantly higher than the reserves made by the experts, except for the lower

amounts. We argue that this has to be linked with the fact that the expert reports are

made close to the opening of the claim. In our approach, we use a posterior information:

if a claim is open for a long time, our procedure tends to predict an higher final value

Expert reserves Tree reserves

Mean Std Mean Std

Quantiles

0-25% 52 193 45 324 55 566 45 446

0-33% 58 703 68 427 95 198 118 237

0-50% 84 251 134 878 122 293 109 460

0-66% 112 551 188 676 145 005 108 844

0-75% 115 216 196 829 209 696 478 048

0-90% 150 790 224 863 308 190 494 322

0-99% 144 239 218 913 343 892 500 388

Table 7: Descriptive statistics of the reserves (in US$) for both approaches (tree estimators

and expert’s judgment) and for different quantile levels.
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Reserve gap total US$ in % mean std min. max.

Censored data:

0-25% 158 496 +6% 2 911 116 233 -170 288 205 082

0-33% 2 262 728 +38% 321 655 669 894 -170 288 2 262 728

0-50% 3 576 000 +31% 1 383 074 1 626 570 -170 288 4 522 203

0-66% 4 024 335 +22% 2 175 544 2 024 009 -170 288 5 870 474

0-75% 13 321 685 +45% 2 660 409 2 484 695 -170 288 13 321 685

0-90% 26 600 691 +51% 5 779 725 7 587 193 -170 288 27 079 860

0-99% 37 135 400 +58% 8 216 874 10 594 793 -170 288 37 135 400

Table 8: Reserve gaps given by both approaches (reserves by tree estimators minus reserves

following experts’ judgments) for different level of information, going from the lowest

censored observation up to the x− th percentile of censored observations.

(claims with long duration before settlement are more likely to be associated with larger

amounts). This difference justifies the practical use of our technique as a second diagnosis

in complement of expert judgment. Finally, notice in Table 8 that the gap between the

two reserves is not necessary increasing when increasing the level of information. For

instance, the tree global reserve is 1.22 times bigger than the expert one when considering

two third of the censored observations (from the minimum to the 66− th percentile of the

censored observations), whereas it is 1.31 times bigger with the half.

6 Conclusion

In this paper, we defined a regression tree procedure adapted to the presence of incomplete

observations due to censoring, and we proved its consistency. The framework that we

considered is motivated by the field of survival analysis, but also allows to consider related

applications, such as claim reserving in insurance. In such type of problems, a duration

is present (and subject to censoring), but also an additional variable (the amount of the

claim) that is observed only if the observation is uncensored. We presented two practical

applications of this technique that demonstrate its feasibility and its interest.
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A Main Lemmas

Lemmas 1 and 2 below are the key results required to show Theorem 1.

Lemma 1. Under Assumptions 2, we have

P
(

sup
l:Tl∈Tτ

sup
γ∈Γ
|∆l,C(γ, γl)| > x

)
≤ 2.5

{
exp

(
−nAx2 +Bn1/2x

)
+ un

}
,

with un = O(exp(−n)), and A and B two positive constants.

Proof. Since Tl ∈ Tτ , we have that 1x̃∈Tl = 0 if t > τ. Let cG = (1 − G(τ)) and cF =

(1− F (τ)). We have cF > 0 and cG > 0.Therefore, we have

sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆l,C(γ, γl)| ≤ sup

t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t)
× 1

n

n∑
i=1

δiM

1−G(Yi−)
,

where we used Assumption 2. Since (1 − G) is bounded away from zero, the empirical

mean on the right-hand side is bounded by Mc−1
G . On the other hand,

P

sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t)
> y

 ≤ P
(

sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣ > cG/2

)

+P

sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣ ≤ cG/2, sup

t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t)
> y

 .

On the event {supt<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣ ≤ cG/2}, we have

sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t−)
= sup

t<Y(n)

∣∣∣Ĝ(t)−G(t)
∣∣∣

1−G(t) + {G(t)− Ĝ(t−)}

≤
supt<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

cG/2
.

Moreover,

P
(

sup
t<τ

cF

∣∣∣Ĝ(t)−G(t)
∣∣∣ > z

)
≤ P

(
sup
t<τ

(1− F (t))|Ĝ(t)−G(t)| > z

)
,

and the probability on the right-hand side can be bounded by 2.5 exp(−2nz2 +Cn1/2z), for

some absolute constant C > 0, where we used the Dvoretsy-Kiefer-Wolfowitz inequality

for the Kaplan-Meier estimator proved in Bitouzé et al. [1999]. Hence the result follows,

with A = c2
F c

4
G[2M ]−1, B = CcF c2

G[2M ]−1, and un = exp(−n1/2cF cG[C+n1/2cF cG]/2).
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Lemma 2. Assume that X is a random vector with d continuous components and k

discrete components, where each discrete component has at most m modalities. Then,

under Assumptions 2 and 3, there exists strictly positive constants B1, B2 and B3, such

that

P
(

sup
l:χl∈Tτ

sup
γ∈Γ
|∆∗(γ, γl)| > x

)
≤ 2

{
exp

(
−B1nx

2
)

+ exp (−B2nx)
}
,

for x ≥ B3[kd logm]1/2n−1/2, where Bj for j = 1, 2, 3 depend on M, w, and cG = (1−G(τ)).

Proof. Let

F =

{
(n, y, d,x)→

d{φ(m, γ)− φ(m, γ′)}1(y,x)∈χ

{1−G(y−)}(γ − γ′)
: γ ∈ Γ, χ ∈ Eτ

}
, (A.1)

with Eτ denoting the set of subsets of Tτ of the type
∏d+1

j=1[xj−;xj+]. From Lemma 3,

NMc−1
G

(ε,F) ≤ 2w+4(d+1)(d+2)C1m
k

(
K̃

ε

)w+4d(d+1)

,

where cG = (1 − G(τ)) as in the proof of Lemma 1. As in Proposition C1 in Ap-

pendix C, introduce a sequence of i.i.d. Rademacher variables (εi)1≤i≤n, independent

from (Ni, Yi, δi,Xi)1≤i≤n, and define

Z = E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Ni, Yi, δi,Xi)εi

∣∣∣∣∣
]
.

Since

n sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆∗(γ, γl)| ≤ sup

f∈F

∣∣∣∣∣
n∑
i=1

{f(Ni, Yi, δi,Xi)−
∫
f(n, y, d, x̃)dP(n, y, d, x̃)}

∣∣∣∣∣ ,
we get, from Proposition C1,

P
(
n sup
l:Tl⊂Tτ

sup
γ∈Γ
|∆∗(γ, γl)| > A1(Z + y)

)
≤ 2

{
exp

(
−A2y

2

nσ2
F

)
+ exp

(
−cGA2y

M

)}
,

with σ2
F ≤M2c−2

G . It follows from Proposition C2 that

Z ≤ Ã[kd logm]1/2n1/2,

for some constant Ã. Hence, for y > Ã[kd logm]1/2n1/2, we get

P
(
n sup

l
sup
γ∈Γ
|∆∗(γ, γl)| > 2A1y

)
≤ 2

{
exp

(
−A2c

2
Gy

2

nM2

)
+ exp

(
−cGA2y

M

)}
.

The result follows by applying this inequality to y = nx/(2A1), with B1 = A2c
2
G[4A2

1M
2]−1,

B2 = A2cG[2A1M ]−1, and B3 = 2A1Ã.
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B Technical Lemmas

B.1 Covering numbers

This section is devoted to the computation of covering numbers of classes of functions

that appear naturally in the proof of Theorem 1.

Lemma 3. Let F denote the class of functions defined in (A.1). Then, assuming that X

is a random vector with d continuous components and k discrete components, where each

discrete component has at most m modalities,

NMc−1
G

(ε,F) ≤ 2w+4(d+1)(d+2)C1m
k

(
K̃

ε

)w+4d(d+1)

,

where K̃ is a constant depending only on cG = (1− G(τ)), and w is defined in Assump-

tion 3.

Proof. We combine Lemma 4 and Assumption 3 using Lemma A.1 in Einmahl and Mason

[2000]. This shows that the class

G =

{
(m, x̃)→ (φ(m,π)− φ(m,π′))

(π − π′)
1x̃∈χl : (π, π′) ∈ Γ× Γ, χl ∈ E

}
,

satisfies

NM(ε,G) ≤ 2w+4(d+1)(d+2)C1m
k

(
K

ε

)w+4(d+1)(d+2)

.

Multiplying the class G by some fixed bounded function (that is (d, y)→ d[1−G(y−)]−1)

hardly changes the covering number, leading to

NMc−1
G

(ε,F) ≤ 2w+4(d+1)(d+2)C1m
k

(
K̃

ε

)w+4d(d+1)

,

with K̃ = 2Kc−1
G , since 1−G(y−) ≥ cG for y ≤ τ.

Lemma 4. Assume that X is a random vector with d continuous components and k

discrete components, where each discrete component has at most m modalities. Then, let

Fτ = {x̃→ 1x̃∈χ : χ ∈ Eτ},

N1(ε, Fτ ) ≤ mk

(
K

ε

)4(d+1)(d+2)

,

for some universal constant K.
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Proof. Without loss of generality, we can assume that the first d variables in X =

(X(1), ..., X(d), X(d+1), ..., X(d+k)) are continuous, while the k other variables are discon-

tinuous with at most m modalities. Let {x(j)
1 , ..., x

(j)
m } denote the modalities of variable

X(j) for j > d. A set χl is of the form

(t,x) ∈ χl ⇐⇒



α0 < t ≤ β0

α1 < x(1) ≤ β1

...

αd < x(d) ≤ βd

x(d+1) = x
(d+1)
gd+1

...

x(d+k) = x
(d+k)
gd+k

,

with g := (gd+1, ..., gd+k) ∈ {1, ...,m}k. For any g ∈ {1, ...,m}k. Let Eg,τ = Eτ ∩ {(t,x) ∈
χl : (x(d+1), ..., x(d+k)) = (x

(d+1)
gd+1 , ..., x

(d+k)
gd+k )}. Let Hd be the family of subsets of Rd+1 which

are projections on Rd+1 of sets of Eτ (that is we keep only the first d coordinates). Clearly,

for any probability measure Q,

N1(ε, Fτ , L
2(Q)) ≤

∑
g∈{1,...,m}k

N1(ε, Fg,τ , L
2(Q)), (B.1)

where Fg,τ = {(t, x) → 1(t,x)∈χ : χ ∈ Eg,τ}, and N1(ε, Fg,τ , L
2(Q)) = N1(ε,Hd, L

2(Q)).

Moreover, a set H ∈ Hd can be expressed as

H = ∩j=0,...,d

(
{y ∈ Rd :< y, ej > ≤ βj} ∩ {y ∈ Rd :< y, ej > ≤ αj}c

)
,

where Ac denotes the complementary of a set A, ej denotes the vector of Rd+1 with all

components equal to zero except the (j+1)−th one, and< ·, · > denotes the scalar product

in Rd+1. It follows from Example 8.4 in van der Vaart and Wellner [1996], combined

with points (i) and (ii) in Proposition 8.2 in van der Vaart and Wellner [1996] (stability

properties of VC-classes), that Hd is a VC-class of sets (see a definition of VC-classes of

set in van der Vaart and Wellner [1996]), with VC-index 2(d+1)(d+2). As a consequence,

N1(ε,Hd, L
2(Q)) ≤

(
K

ε

)4(d+1)(d+2)

,

for some universal constant K (see Dudley [1999]), and the result follows from (B.1).
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B.2 Proof of Proposition 2

Observe that, for K > K0, π
SK = πSK0 . Hence,

‖π̂Ŝ(α) − πSK0‖2
2,τ = ‖π̂S(K0) − πSK0‖2

2,τ1Kα=K0 +

K0−1∑
K=1

‖π̂SK − πSK0‖2
2,τ1Kα=K

+
kmax∑

K=K0+1

‖π̂SK − πSK‖2
2,τ1Kα=K . (B.2)

Following the proof of Corollary 1, one has K−2E[‖π̂SK − πSK‖4
2,τ ] = O(1/n2). Hence,

from Cauchy-Schwarz inequality,

E

[
1

K0

kmax∑
K=K0+1

‖π̂SK − πSK‖2
2,τ1Kα=K

]
≤

(
kmax∑

k=K0+1

K

K0

P(Kα = K)1/2

)
×O(n−1).

Rewrite

kmax∑
k=K0+1

KP(Kα = K)1/2 = K0

kmax∑
k=K0+1

P(Kα = K)1/2 +
kmax∑

k=K0+1

[K −K0]P(Kα = K)1/2.

Due to Lemma 5 below, we have

K−1
0

kmax∑
k=K0+1

KP(Kα = K)1/2 = O(1). (B.3)

Next, since there exists a finite constant A such that ‖π̂SK − πSK0‖2
2,τ ≤ A, we have

E

[
K0−1∑
K=1

‖π̂SK − πSK0‖2
2,τ1Kα=K

]
≤ A

K0−1∑
K=1

P(Kα = K).

We now use Lemma 5 to deduce that

K−1
0

K0−1∑
K=1

P(Kα = K) = O(n−1). (B.4)

From (B.2), Corollary 1, and the combination of (B.3) and (B.4), we get

E

[
1

K0

‖π̂Ŝ(α) − πSK0‖2
2,τ

]
= O(n−1).

and the result follows from the fact that ‖π̂Ŝ(α)−π0‖2,τ ≤ ‖π̂Ŝ(α)−πSK0‖2,τ+‖π̂SK0−π0‖2,τ .

We now state our auxiliary Lemma 5.
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Lemma 5. Under the Assumptions of Proposition 2, we have

P (Kα = K)

K
=

{
O(n−1) if K < K0,

O(exp(−C ′6[K −K0])) if K > K0,

for some positive constant C ′6 <∞.

Proof. On the event {Kα = K}, we have∫
φ(m, π̂SK0 (x, t))dF̂ (m, t,x)−

∫
φ(m, π̂SK (x, t))dF̂ (m, t,x) +

α[K0 −K]

n
≥ 0. (B.5)

We decompose the left-hand side of (B.5) into A1(K0)−A1(K)−∆(K)+A2(K)−A2(K0),

where

A1(K) =

∫
[φ(m, π̂SK (x, t))− φ(m,πSK (x, t))]d[F̂ (m, t,x)− F (m, t,x)],

A2(K) =

∫
[φ(m, π̂SK (x, t))− φ(m,πSK (x, t))]dF (m, t,x).

We have, due to the regularity of φ,

|A1(K)| ≤ B‖π̂SK − πSK‖2
2,τ ,

|A2(K)| ≤ B‖π̂SK − πSK‖2
2,τ .

We distinguish two cases, depending if K < K0 or K > K0.

A bound for K < K0.

In this case, ∆(K) > 0, and

P(Kα = K) ≤ P
(

2B‖π̂SK − πSK‖ > ∆(K)− α[K0 −K]/n

2

)
+P
(

2B‖π̂SK0 − πSK0‖ > ∆(K)− α[K0 −K]/n

2

)
.

Hence,

P(Kα = K)/K = O (exp (−min(C ′6{∆(K)− α[K0 −K]/n}, 1)n)) ,

for some positive constant C ′6 from Corollary 1. Using (3.8), we have

P(Kα = K)/K = O
(
exp

(
−min(C ′6C−1

6 [log n]/n, 1)n
))
,

and the result follows if C6 ≤ C ′6.
A bound for K > K0.
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In this case, ∆(K) = 0, and α[K0 −K]/n < 0, and

P(Kα = K) ≤ P
(
2B‖π̂SK − πSK‖ > α[K −K0]/[2n]

)
+P
(
2B‖π̂SK0 − πSK0‖ > α[K −K0]/[2n]

)
.

From Corollary 1,
P(Kα = K)

K
= O (exp(−C ′6α[K −K0])) for some constant C ′6 > 0.

C Concentration inequality

The following inequality has been shown initially by Talagrand [1994]. See also Einmahl

and Mason [2005].

Proposition C1. Let (Ui)1≤i≤n denote i.i.d. replications of a random vector U, and let

(εi)1≤i≤n denote a vector of i.i.d. Rademacher variables (that is P(εi = −1) = P(εi =

1) = 1/2) independent from (Ui)1≤i≤n. Let F be a pointwise measurable class of functions

bounded by a finite constant M0. Then, for all u,

P

(
sup
f∈F

∥∥∥∥∥
n∑
i=1

{f(Ui)− E[f(U)]}

∥∥∥∥∥ > A1

{
E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Ui)εi

∣∣∣∣∣
]

+ u

})

≤ 2

{
exp

(
−A2u

2

nσ2
F

)
+ exp

(
−A2u

M0

)}
,

with σ2
F = supf∈F V ar(f(U)), and where A1 and A2 are universal constants.

The difficulty in using Proposition C1 stands in the need of controlling the symetrized

quantity E
[
supf∈F |

∑n
i=1 f(Ui)εi|

]
. Proposition C2 is due to Einmahl and Mason [2005]

and allows this control up to some assumptions on the considered class of functions F .

Proposition C2. Let F be a pointwise measurable class of functions bounded by M0 such

that, for some constants C, ν ≥ 1, and 0 ≤ σ ≤M0, we have

(i) NM0(ε,F) ≤ Cε−ν , for 0 < ε < 1,

(ii) supf∈F E [f(U)2] ≤ σ2,

(iii) M0 ≤ 1
4ν

√
nσ2/ log(C1M0/σ), with C1 = max(e, C1/ν).

Then, for some absolute constant A,

E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Ui)εi

∣∣∣∣∣
]
≤ A

√
νnσ2 log(C1M0/σ).
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