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QUADRATIC NORMALISATION IN MONOIDS

PATRICK DEHORNOY AND YVES GUIRAUD

Abstra
t. In the general 
ontext of presentations of monoids, we study normalisation pro-


esses that are determined by their restri
tion to length-two words. Garside's greedy normal

forms and quadrati
 
onvergent rewriting systems, in parti
ular those asso
iated with the

pla
ti
 monoids, are typi
al examples. Having introdu
ed a parameter 
alled the 
lass mea-

suring the 
omplexity of the normalisation of length-three words, we analyse the normali-

sation of longer words and des
ribe a number of possible behaviours. We fully axiomatise

normalisations of 
lass (4, 3), show the 
onvergen
e of the asso
iated rewriting systems, and


hara
terise those deriving from a Garside family.

1. Introdu
tion

A normal form for a monoid M , with a spe
i�ed generating subfamily S, is a map that

assigns to ea
h element of M a distinguished representative word over S. Our aim in this

paper is to investigate a 
ertain type of su
h normal forms and, more pre
isely, the asso
iated

normalisation pro
esses, that is, the synta
ti
 transformations that lead from an arbitrary word

to a normal word. Here we restri
t to geodesi
 normal forms, whi
h sele
t representatives of

minimal length, and investigate the quadrati
 
ase, that is, when some lo
ality 
onditions are

satis�ed: that a word is normal if, and only if, ea
h of its length-two fa
tors are normal, and

that one 
an always transform a word into a normal word by a �nite sequen
e of steps, ea
h of

whi
h 
onsists in normalising a length-two fa
tor.

This general framework in
ludes two well-known 
lasses of normalisation pro
esses: those

asso
iated with Garside families as investigated in [8℄ and [10℄, building on the seminal example

of the greedy normal form in Artin's braid monoids [1, 11, 12℄, and those asso
iated with

quadrati
 rewriting systems as investigated for instan
e in [14℄ for Artin monoids and in [3, 4℄

for pla
ti
 monoids. So our 
urrent development 
an be seen as an e�ort to unify various

approa
hes and understand their 
ommon features. This program is made natural by the

observation that, in spite of their unrelated de�nitions, the normalisation pro
esses arising in

the above mentioned situations share 
ommon me
hanisms: for instan
e, in ea
h 
ase, a length-

three word 
an be normalised in three steps, su

essively normalising the length-two fa
tors in

position 2-3, then in position 1-2, and in position 2-3 again.

D.Krammer's ideas had a seminal in�uen
e in our approa
h, in parti
ular for the 
onne
tion

between normalisation and the monoid underlying Subse
tion 4.3, whi
h he investigated in [18℄.

A similar 
onne
tion was independently dis
overed by A.Hess and V.Ozornova in [15, 19, 16℄,

partly building on unpublished work by M.Rodenhausen. Our 
urrent approa
h is 
lose to

theirs in the 
ase of graded monoids. In this 
ase, beyond minor terminology dis
repan
ies, the

fa
torability stru
tures of [16℄ 
orrespond to what we 
all normalisations of 
lass (4, 3). But, in
the general 
ase, the two viewpoints are not dire
tly 
omparable be
ause of divergent treatment

of units and invertible elements: in both approa
hes a �dummy� element is used, but with

di�erent assumptions, resulting in di�erent notions of 
omplexity and di�erent 
on
lusions. It

seems that every fa
torability stru
ture yields a normalisation of 
lass (4, 5) but understanding
whi
h normalisations of 
lass (4, 5) arise in this way remains open.
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Let us present our main results. The 
entral te
hni
al notion is that of a normalisation,

whi
h is a pair (S,Φ) made of a set S and an idempotent length-preserving map Φ from the

free monoid S∗
to itself: the intuition is that Φ(w) is the result of normalising w, that is, Φ(w)

is the distinguished element in the equivalen
e 
lass of w. The normalisation automati
ally

determines the asso
iated monoid via the de�ning relations w = Φ(w), and we take it as our

basi
 obje
t of investigation. We 
all quadrati
 a normalisation (S,Φ) su
h that a word w
is Φ-normal (meaning Φ(w) = w) if, and only if, ea
h length-two fa
tor of w is Φ-normal,

and su
h that one 
an go from w to Φ(w) by applying a �nite sequen
e of shifted 
opies

of the restri
tion Φ of Φ to the set S[2]
of length-two words. We then introdu
e, for every

quadrati
 normalisation, a 
lass, whi
h is a pair of positive integers des
ribing the 
omplexity

of normalisation for length-three words: by de�nition, if w is a length-three word, Φ(w) is equal
to Φ212...[m](w) or Φ121...[m](w), meaning a length-m sequen
e of alternate appli
ations of Φ in

positions 1-2 and 2-3, and we say that the 
lass is (c, c′) if one always rea
hes the normal form

after at most c steps when starting from the left, and c′ steps from the right. We observe that

the 
lass, if not in�nite, has the form (c, c′) with |c′ − c| 6 1 and that a system of 
lass (c, c′)
is of 
lass (d, d′) for all d > c and d′ > c′. We give a number of examples witnessing possible

behaviours for the 
lass and its analogue for the normalisation of longer words. However, most

of our general results involve quadrati
 normalisations of 
lass (4, 3) or (3, 4).
The �rst main result is an axiomatisation of normalisations of 
lass (4, 3) in terms of the

restri
tion of the normalisation map to length-two words:

Theorem A. If (S,Φ) is a quadrati
 normalisation of 
lass (4, 3), then the restri
tion Φ of Φ
to S[2]

is idempotent and satis�es Φ212 = Φ2121 = Φ1212. Conversely, if φ is an idempotent

map on S[2]
that satis�es φ212 = φ2121 = φ1212, there exists a quadrati
 normalisation (S,Φ) of


lass (4, 3) satisfying φ = Φ.

The dire
t impli
ation is easy and extends to all 
lasses. But the 
onverse dire
tion is more

deli
ate and does not extend: a map on length-two words normalising length-three words needs

not normalise words of greater length. The proof of Theorem A involves the monoidMp studied

in [18℄ and [16℄, whi
h is an asymmetri
 version of Artin's braid monoids where the relation

σ2σ1σ2 = σ1σ2σ1 is repla
ed with σ2σ1σ2 = σ1σ2σ1σ2 = σ2σ1σ2σ1. Let us mention that [16,

Theorem 3.4℄ is an analogue of Theorem A for fa
torability stru
tures but, be
ause of di�erent

treatment of units, it seems di�
ult to further 
ompare both results.

The se
ond main result involves termination. Every quadrati
 normalisation (S,Φ) gives rise
to a quadrati
 rewriting system, namely the one with rules w → Φ(w) for w a length-two word.

By de�nition, this rewriting system is 
on�uent and normalising, meaning that, for every initial

word, there exists a �nite sequen
e of rewriting steps leading to a unique Φ-normal word, but

its 
onvergen
e, meaning that any sequen
e of rewriting steps is �nite, is a di�erent question.

We prove

Theorem B. If (S,Φ) is a quadrati
 normalisation of 
lass (3, 4) or (4, 3), then the asso
iated

rewriting system is 
onvergent. More pre
isely, every rewriting sequen
e starting from a length-p
word has length at most 2p − p− 1.

The result 
an be 
ompared with the easier result that, in 
lass (3, 3), every rewriting se-

quen
e starting from a length-p word has length at most p(p − 1)/2, and it is optimal as we

exhibit a non
onvergent rewriting system of 
lass (4, 4). The proof of Theorem B is deli
ate and

relies on a diagrammati
 tool 
alled the domino rule. Theorem B exhibits a strong di�eren
e

between the fa
torability stru
tures of [16℄ and normalisations of 
lass (4, 3), sin
e the former


an indu
e nonterminating rewriting systems, as witnessed by the 
ounter-example of [16, Ap-

pendix, Prop. 7℄. However, there is a 
onne
tion between Theorem B and [16, Theorem 7.3℄,

whi
h states termination in the 
ase of a fa
torability stru
ture that obeys the domino rule,

hen
e, as a normalisation, is of 
lass (4, 3). The arguments are di�erent, and it is not 
lear how

restri
tive it is for a normalisation of 
lass (4, 3) to be asso
iated with a fa
torability stru
ture.
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As mentioned above, Garside normalisation [10℄ integrates into quadrati
 normalisations,

more pre
isely normalisations of 
lass (3, 3) in the 
ase of a bounded Garside family, and of


lass (4, 3) in the general 
ase. It is natural to to ask for a 
hara
terisation of Garside systems

inside the family of all normalisations of 
lass (4, 3). This is the last one of our main results:

Theorem C. Call a normalisation (S,Φ) left-weighted if, for all s, t in S, the element s left-

divides the �rst entry of Φ(s|t) in the asso
iated monoid. Then, for every normalisation (S,Φ)
su
h that the asso
iated monoid M is left-
an
ellative and 
ontains no nontrivial invertible

element, the family S is a Garside family in M and (S,Φ) is the derived normalisation if, and

only if, (S,Φ) is of 
lass (4, 3) and is left-weighted.

The proof relies on nontrivial properties of Garside families and, again, on the domino rule

available in 
lass (4, 3). A 
onsequen
e of Theorems B and C is that the rewriting system

derived from a Garside family is always 
onvergent, whi
h generalises the 
ase of Artin�Tits

monoids with the elements of the 
orresponding Coxeter group as generators [14, Theorem 3.1.3,

Prop. 3.2.1℄.

The paper is organised in �ve se
tions after this one. Se
tion 2 
ontains basi
 de�nitions

about normal forms and normalisations in the general 
ase. We explain how the adjun
tion

of a dummy generator with spe
i�
 properties extends the use of length-preserving normali-

sations to non-graded monoids. In Se
tion 3, we introdu
e quadrati
 normalisations as those

whose map is determined by its restri
tion to length-two words, and we establish a bije
tive


orresponden
e between the latter and a generalisation of 
onvergent rewriting systems (with

termination relaxed into normalisation). We also introdu
e the 
lass, and its generalisation

the p-
lass, as 
omplexity measures and establish their basi
 properties. In parti
ular, we give


ounterexamples showing the independen
e of the 3-
lass and of the p-
lass for p > 4. Se
tion 4

is devoted to the spe
i�
 
ase of quadrati
 normalisations of 
lass (4, 3). Su
h systems provide

well-behaved normalisation pro
esses; we establish in parti
ular an expli
it universal formula

for the normalisation of length-p words and, as an appli
ation, we show that being of 
lass (4, 3)
implies being of p-
lass (4, 3) for every p. The se
tion ends with Theorem A. In Se
tion 5, we

study the relationship between the 
lass of a quadrati
 normalisation and the termination of

the asso
iated rewriting system, proving in parti
ular Theorem B. Finally, Se
tion 6 is devoted

to the 
onne
tion with Garside families and the asso
iated greedy normal forms, establishing

Theorem C.

Note that almost all observations in this paper extend from the 
ontext of monoids to that

of 
ategories, seen as monoids with a partially de�ned produ
t.

2. Normalisations and geodesi
 normal forms

In this introdu
tory se
tion, we de�ne normalisations and 
onne
t them with geodesi
 normal

forms of monoids (Subse
tion 2.1). We explain how to add a �dummy� generator to make the

restri
tion to length-preserving maps inno
uous (Subse
tion 2.2).

2.1. Normalisations. If S is a set, we denote by S∗
the free monoid over S and 
all its

elements S-words, or simply words. We write ‖w‖ for the length of an S-word w, and w|w′
, or

simply ww′
, for the produ
t of two S-words w and w′

.

Our aim is to investigate normal forms of a monoid M with respe
t to a generating family S,
that is, maps from M to S∗

that 
hoose, for every element g of M , a distinguished expression

of g by an S-word, or, equivalently, maps from S∗
to itself that 
hoose a distinguished element

in ea
h equivalen
e 
lass. We shall privilege the latter approa
h, in whi
h the primary obje
t

is the word map and the monoid is then derived from it.

De�nition 2.1.1. A normalisation is pair (S,Φ), where S is a set and Φ is a map from S∗
to

itself satisfying, for all S-words u, v, w,

‖Φ(w)‖ = ‖w‖,(2.1.2)
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‖w‖ = 1 implies Φ(w) = w,(2.1.3)

Φ(u|Φ(w)|v) = Φ(u|w|v).(2.1.4)

An S-word w satisfying Φ(w) = w is 
alled Φ-normal. If M is a monoid, we say that (S,Φ) is
a normalisation for M if M admits the presentation

(2.1.5) 〈S | {w = Φ(w) | w ∈ S∗}〉+.

Note that (2.1.4) implies that Φ is idempotent. The homogeneity 
ondition (2.1.2) is dis-


ussed (and partly skirted around) in Subse
tion 2.2.

Example 2.1.6. Assume that S is a set and < is a linear order on S. For w in S∗
, de�ne Φ(w)

to be the <∗
-minimal word obtained by permuting letters in w, where <∗

is the lexi
ographi


extension of < to S∗
. So, for instan
e, assuming a, b, c ∈ S and a < b < c, we �nd Φ(bcabac) =

aabbcc. Then (S,Φ) is a normalisation for the free 
ommutative monoid N
(S)

over S.

The following fa
t is a dire
t 
onsequen
e of the de�nition:

Lemma 2.1.7. If (S,Φ) is a normalisation for a monoid M , then M admits a graduation su
h

that all elements of S have degree one, that is, there exists a morphism d : M → (N,+) su
h
that s ∈ S implies d(s) = 1.

Proof. For g in M , all the S-words representing g must have the same length by (2.1.2): de�ne

d(g) to be this 
ommon length. �

The following result 
onne
ts De�nition 2.1.1 with the alternative approa
h in whi
h the

monoid is given �rst. If a monoid M is generated by a set S, we denote by ev the 
anoni
al

proje
tion from S∗
to M .

Lemma 2.1.8. Assume that M is a monoid and S is a generating subfamily of M . If Φ is a

length-preserving map from S∗
to itself, then (S,Φ) is a normalisation for M if, and only if,

for all S-words w,w′
, the following 
onditions hold:

ev(Φ(w)) = ev(w),(2.1.9)

ev(w) = ev(w′) implies Φ(w) = Φ(w′).(2.1.10)

Proof. Assume that (S,Φ) is a normalisation for M . As (2.1.5) is a presentation of M , ea
h

relation Φ(w) = w is valid in M and, therefore, (2.1.9) holds. Next, assume that w,w′
are

S-words satisfying ev(w) = ev(w′). As (2.1.5) is a presentation of M , (2.1.10) follows from

Φ(u|w|v) = Φ(u|Φ(w)|v), whi
h is (2.1.4).

Conversely, assume that (2.1.9) and (2.1.10) are satis�ed. By assumption on Φ, (2.1.2) is sat-
is�ed and, for s in S, we have Φ(s) ∈ S, so that S ⊆ M implies ev(s) = s and ev(Φ(s)) = Φ(s),
when
e (2.1.3) by (2.1.9). Then, for S-words u, v, w, we have ev(u|Φ(w)|v) = ev(u|w|v)
by (2.1.9), when
e (2.1.4) by (2.1.10). So (S,Φ) is a normalisation. Finally, (2.1.5) is a presen-

tation of M be
ause, on the one hand, all relations Φ(w) = w are valid in M by (2.1.9) and,

on the other hand, ev(w) = ev(w′) implies Φ(w) = Φ(w′) by (2.1.10), hen
e (2.1.9) implies

that w and w′
are equivalent to Φ(w) modulo the relations of (2.1.5). �

We now 
onne
t normalisations with the usual notion of a normal form.

De�nition 2.1.11. If M is a monoid and S is a generating subfamily of M , a normal form

on (M,S) is a (set-theoreti
) se
tion of the 
anoni
al proje
tion ev of S∗
onto M . A normal

form nf on (M,S) is 
alled geodesi
 if, for every g in M , we have ‖nf(g)‖ 6 ‖w‖ for every

S-word w representing g.

For graded monoids, normalisations are equivalent to normal forms:
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Proposition 2.1.12. (i) If (S,Φ) is a normalisation for a monoid M , we obtain a normal

form on (M,S) by putting

(2.1.13) nf(g) = Φ(w), where w is any representative of g.

(ii) Conversely, assume that M is a graded monoid, S is a generating subfamily of M whose

elements have degree 1, and nf is normal form on (M,S). Then we obtain a normalisa-

tion (S,Φ) for M by putting

(2.1.14) Φ(w) = nf(ev(w)).

(iii) The 
orresponden
es of (i) and (ii) are inverses of one another.

Proof. (i) First the de�nition makes sense, sin
e, if w,w′
are two representatives of g, then (2.1.10)

implies Φ(w) = Φ(w′). Next, assuming ev(w) = g, we obtain ev(nf(g)) = ev(Φ(w)) =
ev(w) = g using (2.1.9), so nf is a se
tion of ev.

(ii) The assumption that M is graded implies ‖Φ(w)‖ = ‖w‖ for every S-word w. Then,

(2.1.14) implies ev(Φ(w)) = ev(nf(ev(w))) = ev(w) be
ause nf is a se
tion of ev, so (2.1.9)

holds. Finally, ev(w) = ev(w′) implies nf(ev(w)) = nf(ev(w′)), when
e (2.1.10). So, by

Lemma 2.1.8, (S,Φ) is a normalisation for M .

(iii) If (S,Φ) is a normalisation for M , and nf is de�ned by (2.1.13) and Φ′
by (2.1.14), then

Φ′(w) = nf(ev(w)) = Φ(w) holds, sin
e w is a representative of ev(w). Conversely, if nf is

a normal form on (M,S), and Φ is de�ned by (2.1.14) and nf

′
by (2.1.13), then ev(w) = g

implies nf

′(g) = Φ(w) = nf(g). Hen
e the 
orresponden
es of (i) and (ii) are inverses of one

another. �

2.2. The non-graded 
ase. So far, a

ording to Lemma 2.1.7, only graded monoids are eli-

gible. We explain how to adapt our approa
h to arbitrary monoids.

De�nition 2.2.1. We say that (S,Φ, e) is an epinormalisation if (S,Φ) is a normalisation and

e is a Φ-neutral element of S, meaning that

(2.2.2) Φ(w|e) = Φ(e|w) = Φ(w)|e

hold for every S-word w. If M is a monoid, we say that (S,Φ, e) is an epinormalisation for M
if M admits the presentation

(2.2.3) 〈S | {w = Φ(w) | w ∈ S∗} ∪ {e = 1}〉+,

and we then write eve for the 
anoni
al proje
tion of S∗
e onto M .

If (S,Φ) is a normalisation for a monoid M , (2.2.2) implies that there exists at most one

Φ-neutral element in S and, if e is su
h an element, that (S,Φ, e) is an epinormalisation for the

monoid obtained by 
ollapsing e in M .

Lemma 2.2.4. Assume that (S,Φ, e) is an epinormalisation for a monoid M . Put Se = S\{e}
and let πe be the 
anoni
al proje
tion from S∗

onto S∗
e .

(i) The monoid M admits the presentation

(2.2.5) 〈Se | {w = πe(Φ(w)) | w ∈ S∗
e}〉

+.

(ii) For all S-words w0, ... , wℓ, we have

(2.2.6) Φ(w0|e|w1| ··· |wℓ−1|e|wℓ) = Φ(w0| ··· |wℓ)|e
ℓ.

(iii) For every S-word w, we have Φ(w) = w′|eℓ, where w′
is an Se-word and ℓ is an upper

bound of the number of o

urren
es of e in w.

Proof. (i) By de�nition, M is generated by S, hen
e by Se. Next, for every Se-word w, the
relation w = πe(Φ(w)) is valid in M owing to πe(w) = w. As M admits the presentation (2.2.3),

it remains to 
he
k that all relations of (2.2.3) 
an be derived from those of (2.2.5) plus e = 1:
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this is be
ause the S-word Φ(w) is obtained from πe(Φ(w)) by inserting 
opies of e thanks to

the relation e = 1.
(ii) Use indu
tion on ℓ > 0. For ℓ = 0, the result is immediate. For ℓ > 1, we �nd

Φ(w0 |e|w1| ··· |wℓ−1|e|wℓ) = Φ(w0 |e|w1| ··· |wℓ−1|Φ(e|wℓ)) by (2.1.4)

= Φ(w0 |e|w1| ··· |wℓ−1|wℓ|e) by (2.2.2)

= Φ(w0 |e|w1| ··· |wℓ−1|wℓ)|e by (2.2.2)

= Φ(w0 | ··· |wℓ−1|wℓ)|e
ℓ

by indu
tion hypothesis.

(iii) By (ii), we have Φ(w) = v|ep, where v is Φ(πe(w)) and p is the number of o

urren
es

of e in w. By the same argument, we �nd that Φ(v) is w′|eq, where w′
is Φ(πe(v)) and q is the

number of o

urren
es of e in v. Sin
e Φ is idempotent, we have v = Φ(v) = w′|eq. We dedu
e

that w′

ontains no e and that Φ(w) = w′|ep+q

holds. �

The following variation of Proposition 2.1.12 requires no graduation assumption: the solution

is to add a dummy generator to preserve word length.

Proposition 2.2.7. (i) If (S,Φ, e) is an epinormalisation for a monoid M , we obtain a geodesi


normal form on (M,Se) by putting

(2.2.8) nf(g) = πe(Φ(w)), where w is any representative of g in S∗.

(ii) Conversely, assume that M is a monoid, S is a generating subfamily of M , and nf is a

geodesi
 normal form on (M,S). Put Se = S ∐ {e} and write ev

e
for the 
anoni
al proje
tion

of S∗
onto M extended to (Se)∗ by ev

e(e) = 1. Then we obtain an epinormalisation (Se,Φ, e)
for M by putting

(2.2.9) Φ(w) = nf(eve(w))|em, with m = ‖w‖ − ‖nf(eve(w))‖.

(iii) The 
orresponden
es of (i) and (ii) are inverses of one another.

Proof. (i) Let w,w′
be two representatives of g in S∗

. Then one 
an be obtained from the other

by applying relations v = v′ with either v = u1|Φ(u2)|u3 and v′ = u1|u2|u3, or v = u1|e|u2 and

v′ = u1|u2. In the �rst 
ase, (2.1.4) gives Φ(v) = Φ(v′). In the se
ond 
ase, Lemma 2.2.4 (ii)

gives Φ(v) = Φ(v′)|e. Thus we have πe(Φ(w)) = πe(Φ(w
′)) and nfe(g) is well de�ned.

Now, let M e
be the monoid presented by (2.1.5), π : M e ։ M and eve : S∗

e ։ M be

the 
anoni
al proje
tions. For g in M and w be a representative of g in S∗
, the relation

π ◦
ev = eve ◦ πe and (2.1.9) imply

eve(nf(g)) = eve(πe(Φ(w)) = π(ev(Φ(w))) = π(ev(w)) = g,

so nf is a normal form on (M,Se). Moreover, we have ‖πe(Φ(w))‖ 6 ‖Φ(w)‖ = ‖w‖, so nf is

geodesi
.

(ii) Sin
e nf is geodesi
, we have ‖nf(eve(w))‖ 6 ‖w‖ for every Se
-word w. So (2.2.9)

makes sense and Φ is length-preserving. Next, for s ∈ Se
, we have either s ∈ S and Φ(s) =

nf(s) = s, or s = e and Φ(e) = nf(1)|e = e. Then, sin
e nf is a se
tion of ev, (2.2.9) gives

ev

e(Φ(w)) = ev(nf(eve(w)) = ev

e(w), yielding nf(eve(u|Φ(w)|v)) = nf(eve(u|w|v)) and,

sin
e Φ is length-preserving, Φ(u|Φ(w)|v) = Φ(u|w|v). Thus (Se,Φ) is a normalisation.

Now, let w be an Se
-word, with m = ‖w‖ − ‖nf(eve(w))‖. Then we have ev

e(w|e) =
ev

e(e|w) = ev

e(w), when
e Φ(w|e) = nf(eve(w))|em+1 = Φ(w)|e, and, similarly, Φ(e|w) =
Φ(w)|e, so e is Φ-neutral. Finally, by Lemma 2.2.4(i), the monoid M admits the presen-

tation 〈(Se)e | {w = πe(Φ(w)) | w ∈ (Se)∗e}〉
+
. Owing to the equalities (Se)e = S and

πe(Φ(w)) = πe(nf(ev
e(w))|em) = nf(ev(w)), the monoid M also admits the presentation

〈S | {w = nf(ev(w)) | w ∈ S∗}〉+.
(iii) Starting from (i), let (Se,Φ′, e) be the epinormalisation derived from nf using (ii).

Then we have (Se)
e = S and Φ′(w) = nf(ev(w))|em = πe(Φ(w))|e

m
, when
e Φ′(w) = Φ(w)

by Lemma 2.2.4 (iii). Conversely, starting from (ii), let nf

′
be the normal form derived from Φ
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using (i). Then we have nf

′(g) = πe(Φ(w)) = πe(nf(ev
e(w))|em) = nf(g) for every g in M

with representative S-word w. �

Remark. If a monoidM is graded with respe
t to a generating family S and nf is a normal form

on (M,S), then two normalisations 
ome asso
iated with M and S: the one (S,Φ) provided by

Proposition 2.1.12 (ii), and the one (Se,Φe) provided by Proposition 2.2.7 (ii). The 
onne
tion

between these systems is given, for every Se
-word w, by the equality πe(Φ

e(w)) = Φ(πe(w)).

3. Quadrati
 normalisations and their 
lass

We now restri
t our study to parti
ular normalisations that are, in a 
onvenient sense,

generated by transformations of length-two words. After basi
 de�nitions and examples (Sub-

se
tion 3.1), we relate those normalisations with rewriting systems (Subse
tion 3.2). Then we

introdu
e the 
lass of su
h a normalisation as a pair of elements of N∪{∞} that gives an upper

bound on the 
omplexity of normalisation for length-three words (Subse
tion 3.3). Finally, we


onsider the p-
lass, an analogue involving length-p words (Subse
tion 3.4).

3.1. Quadrati
 normalisations.

Notation 3.1.1. (i) If S is a set and φ is a map from the set S[p]
of length-p S-words to itself,

then, for i > 1, we denote by φi the (partial) map of S∗
to itself that 
onsists in applying φ to

the entries in position i, ... , i+ p− 1. If u = i1| ··· |in is a �nite sequen
e of positive integers, we

write φu for the 
omposite map φin
◦ ··· ◦ φi1 .

(ii) If (S,Φ) is a normalisation, we denote by Φ the restri
tion of Φ to S[2]
.

Here is the main notion investigated in this paper:

De�nition 3.1.2. A normalisation (S,Φ) is 
alled quadrati
 if the following 
onditions hold:

An S-word w is Φ-normal if, and only if, every length-two fa
tor of w is.(3.1.3)

For every S-word w, there exists a �nite sequen
e u of positions, depending on w,
su
h that Φ(w) is equal to Φu(w).

(3.1.4)

So, a normalisation (S,Φ) is quadrati
 if Φ-normality only depends on length-two fa
tors

and if one 
an go from an S-word w to the S-word Φ(w) in �nitely many steps, ea
h of whi
h


onsists in applying Φ to some length-two fa
tor. Note that, provided S is �nite, (i) implies

that the language of all Φ-normal S-words is regular.

Example 3.1.5. The normalisation (S,Φ) of Example 2.1.6 is quadrati
. Indeed, an S-word is

Φ-normal if, and only if, all its length-two subfa
tors are of the form s|t with s 6 t, so (3.1.3) is
satis�ed. Moreover, (3.1.4) holds, sin
e every S-word w 
an be transformed into the equivalent

Φ-normal S-word Φ(w) by swit
hing adja
ent letters that are not in the expe
ted order: for

instan
e, if a < b < c, one has Φ(cbba) = abbc = Φ31213(cbba). Note that the sequen
e of

length-two normalisations is not unique, and depends on the initial word.

De�nition 3.1.2 gathers two lo
ality 
onditions, whi
h, taken separately, do not seem to have

interesting 
onsequen
es in our approa
h: (3.1.3) is a stati
 
hara
terisation of normal words,

whereas (3.1.4) is dynami
al in that it involves transformations into normal words. As (3.1.4)

implies that a length-two word is Φ-normal if, and only if, it is Φ-invariant, it indu
es the

right-to-left impli
ation in (3.1.3). The next two 
ounterexamples show that this is the only

general 
onne
tion between (3.1.3) and (3.1.4).

Example 3.1.6. Let S = {a, b, c} and Φ : S∗ → S∗
be de�ned by Φ(ab) = Φ(ac), Φ(ca) = ba,

Φ(w) = w for every other w of length at most 2, and Φ(w) = a‖w‖
for ‖w‖ > 3. Then (S,Φ) is

a normalisation, it satis�es (3.1.3), but not (3.1.4): we have Φ(aba) = a3 and Φ(aca) = a3 so

aba and aca are not Φ-normal, but the only S-words that 
an be obtained from aba and aca

using Φ1 and Φ2 are aba and aca themselves. Hen
e (3.1.3) does not imply (3.1.4).
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Example 3.1.7. Let S = {a, b} and Φ : S∗ → S∗
be de�ned by Φ(w) = w for ‖w‖ 6 1, and

Φ(w) = a‖w‖−1b for ‖w‖ > 2. Then (S,Φ) is a normalisation for the monoid 〈S | ab = ba =
b2 = a2〉+. Now (3.1.3) fails, sin
e aab, whi
h is Φ-normal, 
ontains the non Φ-normal fa
tor aa.

But (3.1.4) is satis�ed, sin
e a straightforward indu
tion gives Φ(w) = Φ1| ··· |p−1(w) for w of

length p > 2. Hen
e (3.1.4) does not imply (3.1.3).

When a normalisation (S,Φ) is quadrati
, the restri
tion Φ of Φ to S[2]
is 
ru
ial. Here are

�rst general properties.

Proposition 3.1.8. (i) If (S,Φ) is a quadrati
 normalisation for a monoid M , then Φ is

idempotent and M admits the presentation

(3.1.9) 〈S | {s|t = Φ(s|t) | s, t ∈ S}〉+;

(ii) If (S,Φ) is a quadrati
 normalisation, then an element e of S is Φ-neutral if, and only

if, it satis�es

(3.1.10) Φ(e|s) = Φ(s|e) = s|e for every s in S.

(iii) If (S,Φ, e) is a quadrati
 epinormalisation for a monoid M , then M admits the presen-

tation

(3.1.11) 〈Se | {s|t = πe(Φ(s|t)) | s, t ∈ Se}〉
+.

Proof. (i) By (2.1.4), Φ is idempotent, hen
e so is its restri
tion Φ. The monoid M admits

the presentation (3.1.9) be
ause it admits the presentation (2.1.5) with the same generators,

be
ause the relations (3.1.9) are 
ontained into the ones of (2.1.5), and be
ause (3.1.4) implies

that every relation of (2.1.5) is a 
onsequen
e of �nitely many relations of (3.1.4).

(ii) The relations (3.1.10) are parti
ular instan
es of (2.2.2), so they hold if e is Φ-neutral.
Conversely, assume (3.1.10) and let w be an S-word.

We �rst prove Φ(w|e) = Φ(w)|e. We have Φ(w|e) = Φ(Φ(w)|e) by (2.1.4). Moreover, every

length-two fa
tor of Φ(w)|e is Φ-normal. Indeed, for ‖w‖ > 1, writing Φ(w) = w′|s with w′ ∈ S∗

and s ∈ S, the length-two fa
tors of Φ(w)|e are those of Φ(w), whi
h are Φ-normal by (3.1.3),

and s|e, whi
h is Φ-normal by (3.1.10). Hen
e Φ(w)|e is Φ-normal by (3.1.3), whi
h implies

Φ(w|e) = Φ(w)|e.
Now, we prove Φ(e|w) = Φ(w|e) by indu
tion on ‖w‖. The result is immediate for ‖w‖ =

0. Otherwise, write w = s|w′
, with s in S and w′

satisfying Φ(e|w′) = Φ(w′|e). Us-

ing (2.1.4), (3.1.10) and the indu
tion hypothesis on w′
, we �nd Φ(e|s|w′) = Φ(Φ(e|s)|w′) =

Φ(s|e|w′) = Φ(s|Φ(e|w′)) = Φ(s|Φ(w′|e)) = Φ(s|w′|e), so e is Φ-neutral.
(iii) By (i), M is presented by 〈S | {s|t = Φ(s|t) | s, t ∈ S} ∪ {e = 1}〉+. Applying the Tietze

transformation that 
ollapses e onto 1, we obtain the presentation 〈Se | {πe(s|t) = πe(Φ(s|t)) |
s, t ∈ S}〉+ for M . If at least one of s or t is e, then by (3.1.10), the 
orresponding relation boils

down to s = s, t = t or 1 = 1, so that we 
an remove it. Otherwise, we have πe(s|t) = s|t,
yielding (3.1.11). �

3.2. Quadrati
 normalisations and rewriting. We re
all that a (word) rewriting system is

a pair (S,R) 
onsisting of a set S and a binary relation R on S∗
whose elements (w,w′) are

written w → w′
and 
alled rewriting rules.

Assume that (S,R) is a rewriting system. We denote by →R the 
losure of R with respe
t to

the produ
t of S∗
and by →∗

R the re�exive-transitive 
losure of →R. An S-word w is R-normal

if w →∗
R w′

implies w′ = w. If w,w′
are S-words, w′

is an R-normal form of w if w →∗
R w′

and w′
is R-normal. One says that (S,R) is quadrati
 if w → w′ ∈ R implies ‖w‖ = ‖w′‖ = 2;

redu
ed if w → w′ ∈ R implies that w′
is R-normal and w is R \ {w → w′}-normal; normalising

if every S-word admits at least an R-normal form; and 
on�uent if the 
onjun
tion of w →∗
R w1

and w →∗
R w2 implies w1 →∗

R w′
and w2 →∗

R w′
for some w′

. As a rewriting rule is a pair of

words, there is no ambiguity in speaking of the monoid presented by (S,R).
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Proposition 3.2.1. (i) If (S,Φ) is a quadrati
 normalisation for a monoid M , then we obtain

a quadrati
, redu
ed, normalising and 
on�uent rewriting system (S,R) presenting M by putting

(3.2.2) R = {s|t → Φ(s|t) | s, t ∈ S, s|t 6= Φ(s|t)}.

(ii) Conversely, if (S,R) is a quadrati
, redu
ed, normalising and 
on�uent rewriting system

presenting a monoid M , we obtain a quadrati
 normalisation (S,Φ) for M by putting

(3.2.3) Φ(w) = w′
where w′

is the R-normal form of w.

(iii) The 
orresponden
es of (i) and (ii) are inverses of one another.

Proof. (i) By de�nition, (S,R) is quadrati
 and redu
ed, and, for all S-words w and w′
, we have

w →∗
R w′

if, and only if, w′ = Φu(w) holds for some sequen
e u of positions. Thus, by (3.1.4), R
is normalising. Moreover, the 
onjun
tion of w →∗

R w1 and w →∗
R w2 implies Φ(w1) = Φ(w2),

hen
e (S,R) is 
on�uent by (3.1.4). Finally, (S,R) is a presentation of M by (3.1.9).

(ii) Sin
e (S,R) is normalising and 
on�uent, every S-word admits exa
tly one R-normal

form, so (3.2.3) makes sense and implies that M admits the presentation (2.1.5). Next, sin
e R
is quadrati
, Φ is length-preserving and preserves generators. Moreover, the R-normal forms of

u|w|v and of u|Φ(w)|v are equal, when
e Φ(u|w|v) = Φ(u|Φ(w)|v). So (S,Φ) is a normalisation

for M . Moreover, the de�nition of Φ implies that it satis�es both (3.1.3) and (3.1.4).

(iii) The proof is straightforward. �

Note that the rewriting system asso
iated to a quadrati
 normalisation does not always

terminate, meaning that there may exist in�nite rewriting sequen
es w0 →R w1 →R w2 →R ··· ,
as shown in Se
tion 5.

Example 3.2.4. If (S,Φ) is the quadrati
 normalisation for the free 
ommutative monoid N
(S)

of Example 2.1.6, the asso
iated quadrati
 rewriting system (S,R) 
ontains one rule ts → st
for all s, t in S with t > s. By Proposition 3.2.1 (i), this rewriting system is normalising and


on�uent.

Proposition 3.2.1(i) 
an be de
lined to a

ount for a neutral element and the termination

properties of the 
orresponding rewriting systems are related.

Proposition 3.2.5. (i) If (S,Φ, e) is an epinormalisation for a monoid M , then we obtain a

redu
ed, normalising and 
on�uent rewriting system (Se, Re) presenting M by putting

(3.2.6) Re = {s|t → πe(Φ(s|t)) | s, t ∈ Se, s|t 6= Φ(s|t)}.

(ii) If the rewriting system (S,R) of (3.2.2) terminates, then so does (Se, Re).

Proof. (i) Similar to Proposition 3.2.1(i).

(ii) If w →Re
w′

holds for Se-words w,w′
, then, by de�nition, there exists a position i

satisfying w′ = πe(Φi(w)). Thus, there exists a sequen
e of positions u = i1| ··· |ip satisfying

Φu(Φi(w)) = w′|em for some m, and where ea
h Φij a
ts a

ording to a rule e|s → s|e. Hen
e,
ea
h sequen
e w0 →Re

w1 →Re
··· →Re

wℓ in S∗
e lifts to a sequen
e

w0 →R w′
0 →∗

R w1 |e
m1 →R w′

1 |e
m1 →∗

R w2 |e
m1+m2 →∗

R ··· →∗
R wℓ|e

m1+ ···+mℓ

in S∗
. So, if (Se, Re) does not terminate, neither does (S,R). �

3.3. The 
lass of a quadrati
 normalisation. By de�nition, if (S,Φ) is a quadrati
 normal-

isation and w is an S-word, then Φ(w) is obtained by su

essively applying the restri
tion Φ
of Φ to various length-two fa
tors. We shall now investigate the possibilities and introdu
e a

parameter, 
alled the 
lass, evaluating the 
omplexity of the pro
edure for length-three S-words.
For su
h a w, there must exist a �nite sequen
e u of positions 1 and 2, su
h that, with the


onvention of Notation 3.1.1, Φ(w) is equal to Φu(w). As Φ is idempotent, repeating 1 or 2 in

the sequen
e u is useless, and it is enough to 
onsider alternating words u of the form 121...
or 212..., omitting the separators to make reading easier. For m > 0, we write 121...[m] for
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the alternating word 121... of length m, and similarly for 212...[m]. So, for instan
e, Φ212...[4]

will stand for Φ2121, that is, for the 
omposition of Φ2, Φ1, Φ2, and Φ1 with Φ2 applied �rst.

A

ording to the above dis
ussion, if (S,Φ) is a quadrati
 normalisation, then, for every length-

three S-word w, there exists m su
h that Φ(w) is Φ121...[m](w) or Φ212...[m](w).

De�nition 3.3.1. For c a natural number, we say that a quadrati
 normalisation (S,Φ) is of
left-
lass c if Φ(w) = Φ121...[c](w) holds for every w in S[3]

. Symmetri
ally, we say that (S,Φ)

is of right-
lass c if Φ(w) = Φ212...[c](w) holds for every w in S[3]
. We say that (S,Φ) is of


lass (c, c′) if it is of left-
lass c and right-
lass c′.

Example 3.3.2. Let (S,Φ) be the lexi
ographi
 normalisation for N
S
of Example 2.1.6. For

#S = 1, there is only one length-three S-word, whi
h is Φ-normal, so (S,Φ) is of 
lass (0, 0).
Assume now #S > 2. Then, one 
he
ks that, for all r, s, t in S, the words Φ121(r|s|t) and

Φ212(r|s|t) are Φ-normal (and equal), so (S,Φ) is of 
lass (3, 3). On the other hand, assuming

a < b, we �nd Φ12(bba) = bab and Φ21(baa) = aba, so (S,Φ) is neither of left-
lass 2 nor of

right-
lass 2.
To give another example, 
onsider S = {a, b} and Φ de�ned by Φ(w) = a‖w‖

if w has even

length, and Φ(w) = a‖w‖−1b otherwise. One 
he
ks that (S,Φ) is a quadrati
 normalisation for

the monoid 〈a, b | ab = ba, a2 = b2〉+. Then, a 
ase-by-
ase 
he
king on S[3]
shows that (S,Φ)

is of 
lass (2, 3), but neither of left-
lass 1 nor of right-
lass 2, as shows the worst-
ase example

baa (
Φ2−→ baa )

Φ1−→ aba
Φ2−→ aab.

The following observation, already impli
it in the above example, will be 
ru
ial.

Lemma 3.3.3. Assume that (S,Φ) is a quadrati
 normalisation.

(i) If w is in S[3]
, then Φ(w) = Φ121...[c](w) implies Φ(w) = Φ121...[c+1](w).

(ii) If (S,Φ) is of left-
lass c, then it is of left-
lass c′ for every c′ with c′ > c, and of

right-
lass c′′ for every c′′ with c′′ > c+ 1.

Proof. (i) Assume Φ(w) = Φ121...[c](w). By (3.1.3), Φ(w) is invariant both under Φ1 and Φ2,

sin
e it is Φ-normal. Hen
e we have Φ121...[c+1](w) = Φ121...[c](w).
(ii) Assume that (S,Φ) is of left-
lass c. Then (i) implies Φ(w) = Φ121...[c+1](w) for every w

in S[3]
, so (S,Φ) is of left-
lass c+1 as well and, from there, it is of left-
lass c′ for every c′ > c.

For w in S[3]
, the assumption and (2.1.4) give Φ(w) = Φ121...[c](Φ2(w)) = Φ212...[c+1](w). Hen
e

(S,Φ) is of right-
lass c+ 1 and, from there, of right-
lass c′′ for every c′′ with c′′ > c+ 1. �

De�ne the minimal left-
lass of a quadrati
 normalisation (S,Φ) to be the smallest integer c
su
h that (S,Φ) is of left-
lass c, if su
h an integer exists, and ∞ otherwise. We introdu
e the

symmetri
 notion of minimal right-
lass, and de�ne the minimal 
lass to be the pair made of

the minimal left-
lass and the minimal right-
lass.

Lemma 3.3.4. The minimal 
lass of a quadrati
 normalisation (S,Φ) is either of the form (c, c′)
with |c′ − c| 6 1, or (∞,∞). If S is �nite, the value (∞,∞) is ex
luded.

Proof. If the minimal left-
lass of (S,Φ) is a �nite number c, then Lemma 3.3.3 implies that

(S,Φ) is of right-
lass c+1; hen
e the minimal right-
lass c′ satis�es c′ 6 c+1 and, for symmetri


reasons, we have c 6 c′ + 1, when
e |c′ − c| 6 1.
The assumption that (S,Φ) is quadrati
 implies, for every w in S[3]

, the existen
e of a

smallest �nite number cw satisfying Φ(w) = Φ121...[cw](w). If S is �nite, the supremum of all

numbers cw for w in S[3]
is �nite, and Lemma 3.3.3 (i) implies that c is the minimal left-
lass

of (S,Φ). �

The 
lass of a normalisation (S,Φ) 
an be 
hara
terised in terms of algebrai
 relations ex-


lusively involving the map Φ.
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Proposition 3.3.5. A quadrati
 normalisation (S,Φ) is of left-
lass c if, and only if, Φ satis�es

(3.3.6) Φ121...[c] = Φ121...[c+1] = Φ212...[c+1],

and of 
lass (c, c) if, and only if, Φ satis�es

(3.3.7) Φ121...[c] = Φ212...[c].

Proof. Assume that (S,Φ) is of left-
lass c. For every w in S[3]
, Lemma 3.3.3 gives Φ(w) =

Φ121...[c](w) = Φ121...[c+1](w) = Φ212...[c+1](w), when
e (3.3.6). Conversely, assume (3.3.6) and

let w belong to S[3]
. If c is odd, we obtain

Φ1(Φ121...[c](w)) = Φ1(Φ1(Φ121...[c−1](w))) = Φ121...[c](w),

sin
e Φ is idempotent, and, by (3.3.6),

Φ2(Φ121...[c](w)) = Φ121...[c+1](w) = Φ121...[c](w).

If c is even, a symmetri
 argument gives the same values. So, in all 
ases, the S-wordΦ121...[c](w)

is invariant both under Φ1 and Φ2, hen
e it is Φ-normal. As this holds for every w in S[3]
, we


on
lude that (S,Φ) is of left-
lass c.
Assume that (S,Φ) is of 
lass (c, c). By (i), we have Φ121...[c] = Φ121...[c+1] = Φ212...[c+1] and,

by the symmetri
 
ounterpart of (i), we have Φ212...[c] = Φ212...[c+1] = Φ121...[c+1], when
e (3.3.7)

by merging the values. Conversely, assume (3.3.7) and let w belong to S[3]
. Applying (3.3.7)

to Φ1(w) gives Φ121...[c](Φ1(w)) = Φ212...[c](Φ1(w)), redu
ing to Φ121...[c](w) = Φ121...[c+1](w),
sin
e Φ1 is idempotent. Similarly, applying (3.3.7) to Φ2(w) leads to Φ212...[c+1](w) = Φ212...[c](w).
Merging the results and applying (3.3.7) to w, we dedu
e

Φ121...[c+1](w) = Φ121...[c](w) = Φ212...[c](w) = Φ212...[c+1](w).

As this holds for every w in S[3]
, (3.3.6) is satis�ed, so, by (i), (S,Φ) is of left-
lass c. A

symmetri
 argument implies that (S,Φ) is of right-
lass c. �

The following example shows that the minimal left-
lass of a quadrati
 normalisation 
an be

an arbitrarily high integer.

Example 3.3.8. For n > 2, let Sn = {a, b1, ... , bn} and Rn 
onsist of the rules abi → abi+1

for i < n odd and bia → bi+1a for i < n even. Then the rewriting system (Sn, Rn) is 
onvergent:
termination is given by 
omparison of the number of b1, then of b2, then of b3, et
.; 
on�uen
e

is obtained by observing that, for every minimal overlapping appli
ation of rules biabj →Rn

bi+1abj and biabj →Rn
biabj+1, we have bi+1abj →Rn

bi+1abj+1 and biabj →Rn
bi+1abj+1.

Let (Sn,Φn) be the asso
iated quadrati
 normalisation as de�ned in Proposition 3.2.1. For

n > 3, the minimal 
lass of (Sn,Φn) is (n − 1, n): length-three words that do not begin and

�nish with a are Rn-normal or be
ome Rn-normal in one step, and the redu
tion of ab1a looks

like

ab1a (
Φ2−→ ab1a )

Φ1−→ ab2a
Φ2−→ ab3a

Φ1−→ ···
Φ−
−→ abna,

implying that the minimal left-
lass is n− 1, and the minimal right-
lass is n.

The next example shows that the minimal left-
lass 
an be ∞. (Putting n = ∞ in Exam-

ple 3.3.8 provides a non-normalising system: ab1a has no normal form.)

Example 3.3.9. For n > 2, let Sn = {a0, ... , an} and Rn 
onsist of the rules

aiaj → a
⌊
i+j
2 ⌋

a
⌈
i+j
2 ⌉

for i > j.

The rewriting system (Sn, Rn) is 
onvergent. Let (Sn,Φn) be the asso
iated quadrati
 normali-

sation. As in Example 2.1.6, the Φn-normal words are the lexi
ographi
ally non-de
reasing ones

with respe
t to a1 < ··· < an. Then the minimal 
lass of (Sn,Φn) is (3+⌊log2 n⌋, 3+⌊log2 n⌋).
Indeed, for 2p 6 n < 2p+1

, the worst 
ase for the left-
lass is attained by a2pa2pa0: putting
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i = ⌊2p+1/3⌋, the latter Sn-word redu
es to aiaiai+1 (even p) or aiai+1ai+1 (odd p) in p + 3
steps. Moreover, if we de�ne S∞ to be the in�nite set {a0, a1, ...} and Φ∞ asso
iated as above,

(S∞,Φ∞) is a quadrati
 normalisation with minimal 
lass (∞,∞) as, for every p, the redu
tion
of a2pa2pa0 requires p+ 3 steps.

3.4. The p-
lass. We now 
onsider the normalisation of length-p words for p > 4. If (S,Φ) is
a quadrati
 normalisation, then, by de�nition, one 
an transform a length-p word w into Φ(w)
by applying a �nite number of elementary maps Φi with 1 6 i < p. Contrary to the 
ase p = 3,
there may exist many ways of 
omposing these maps for p > 4: for instan
e, one 
an 
onsider

the left strategy 
onsisting in always normalising the leftmost unredu
ed length-two fa
tor of

the 
urrent word, but this 
hoi
e is arbitrary. Writing Φ[p]
for the restri
tion of Φ to S-words

of length p, more 
anoni
al de
ompositions arise when one expresses Φ[4]
in terms of Φ[3]

and,

more generally, Φ[p]
in terms of Φ[p−1]

. Then the situation is similar to 3 vs. 2, and a natural

notion of p-
lass appears.

De�nition 3.4.1. For p > 3, we say that a quadrati
 normalisation (S,Φ) is of left-p-
lass c

if, for every w in S[p]
, we have Φ(w) = Φ

[p−1]
121...[c]. Symmetri
ally, we say that (S,Φ) is of right-

p-
lass c if, for every w in S[p]
, we have Φ(w) = Φ

[p−1]
212...[c]. We say that (S,Φ) is of p-
lass (c, c′)

if it is of left-p-
lass c and right-p-
lass c′.

Thus the left-
lass of Subse
tion 3.3 is the left-3-
lass, and similarly for the right-
lass and

the 
lass.

Example 3.4.2. Consider (S,Φ) as in Example 3.3.2. We saw that, for #S > 2, the minimal

(3)-
lass is (3, 3). An easy indu
tion shows that, for every p > 4 and for every w in S[p]
,

the words Φ
[p−1]
212 (w) and Φ

[p−1]
121 (w) are lexi
ographi
ally nonde
reasing, hen
e Φ-normal. Thus

(S,Φ) is of p-
lass (3, 3). Then, assuming #S > 2 and a < b, we �nd Φ
[p−1]
212 (bp−1a) = babp−2

and Φ
[p−1]
21 (bap−1) = ap−2ba, whi
h are not Φ-normal. So (S,Φ) is neither of left-p-
lass 2 nor

of right-p-
lass 2.

The Φ-normality of S-words 
an be 
hara
terised in terms of Φ-normality of their length-p
fa
tors, with a straightforward proof:

Lemma 3.4.3. If (S,Φ) is a quadrati
 normalisation, then, for p > 2, an S-word w with

‖w‖ > p is Φ-normal if, and only if, every length-p fa
tor of w is.

All properties of the 3-
lass extend to the p-
lass for p > 3. In parti
ular, when it is

not (∞,∞), the minimal p-
lass must be a pair of the form (c, c′) with |c− c′| 6 1, and we have

the following 
ounterpart of Proposition 3.3.5, with a similar proof:

Proposition 3.4.4. A quadrati
 normalisation (S,Φ) is of left-p-
lass c if, and only if, the

map Φ[p−1]
satis�es Φ

[p−1]
121...[c] = Φ

[p−1]
121...[c+1] = Φ

[p−1]
212...[c+1], and of p-
lass (c, c) if, and only if, the

map Φ[p−1]
satis�es Φ

[p−1]
121...[c] = Φ

[p−1]
212...[c].

The following examples show that the behaviour of the 4-
lass is independent from that of

the 3-
lass: the 4-
lass may be larger, equal, or smaller.

Example 3.4.5. The normalisation (Sn,Φn) of Example 3.3.8 has minimal 3-
lass is (n, n).
However, for p > 4, its minimal p-
lass is (2, 2).

Example 3.4.6. Let Sn = {a, b1, ... , bn} and Φn be given by the rules abi→abi+1 for i odd
and bia→bi+1a for i even (as in Example 3.3.8), 
ompleted with bi+1bi → bi+1bi+1 for i odd
and bibi+1→bi+1bi+1 for i even. For p > 3, the minimal p-
lass of (Sn,Φn) is (n − 1, n), with

the worst 
ase realised for ab
p−2
1 a.
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Example 3.4.7. Let Sn = {a, b1, ... , bn, c1, ... , cn} and Φn be given by the rules abi→abi+1

and bi+1ci→bi+1ci+1 for i odd, and cia→ci+1a and bici+1→bi+1ci+1 for i even. Here it turns
out that the minimal 3-
lass is (5, 5), whereas the minimal 4-
lass is (n − 1, n). For instan
e,

for n = 10, the worst 
ases are realised by Φ12121(b4c2a) = b5c5a, and Φ
[3]
2121212121(ab1c1a) =

ab10c10a. One also observes that the minimal p-
lass for p > 5 is (2, 2) for every n > 5.

4. Quadrati
 normalisations of 
lass (4, 3)

Example 3.4.7 shows that having left-
lass or right-
lass c does not say mu
h about normal-

isation of words of length four and higher: an upper bound on the 
omplexity of normalisation

for length-three words implies no upper bound on the 
omplexity of normalisation for longer

words. We observe below that su
h a phenomenon is impossible when the 
lass is small, namely

when the 
lass is (3, 4) or (4, 3). Our proof is based on an argument borrowed from [10℄, involv-

ing a diagrammati
 approa
h 
alled the domino rule. The results for 
lasses (3, 4) and (4, 3) are
entirely similar; the latter is 
hosen here in view of the 
onne
tion with Garside normalisation

in Se
tion 6.

The se
tion 
omprises three parts. First, the domino rule is introdu
ed in Subse
tion 4.1.

Next, we establish a general formula for normalisation of long words when some domino rule is

valid in Subse
tion 4.2. Finally, we show in Subse
tion 4.3 how standard braid arguments 
an

be used to provide a 
omplete axiomatisation of 
lass (4, 3) normalisation.

4.1. The domino rule. By Proposition 3.3.5, if a quadrati
 normalisation (S,Φ) has 
lass (4, 3),
the map Φ satis�es (3.3.6), whi
h, in the 
urrent 
ase, is

(4.1.1) Φ212 = Φ2121 = Φ1212.

We shall now translate these 
onditions into a diagrammati
 rule.

De�nition 4.1.2. Assume that S is a set and φ is a map from S[2]
to itself. We say that the

domino rule is valid for φ if, if, for all s1, s2, s
′
1, s

′
2, t0, t1, t2 in S satisfying s′1|t1 = φ(t0, s1) and

s′2|t2 = φ(t1 |s2), the assumption that s1|s2 is φ-invariant implies that s′1|s
′
2 is φ-invariant as

well.

The domino rule of De�nition 4.1.2 be
omes more understandable when illustrated in a

diagram. To this end, we asso
iate with every element s of the 
onsidered set S an s-labeled
arrow, and use 
on
atenation of arrows for the 
on
atenation of elements (note that this amounts

to viewing S∗
as a 
ategory).

Let us indi
ate that a word s|t of S[2]
is φ-invariant�hen
e Φ-normal when φ

is the map Φ asso
iated with a normalisation (S,Φ)�with a small ar
, as in

s t
. Then, in the situation when s′|t′ = φ(s|t) holds, we draw

a square diagram as on the right.

s

t

s′

t′

With su
h 
onventions, the domino rule for φ 
orresponds to

the diagram on the right: whenever the two squares are 
ommu-

tative and the three pairs of edges 
onne
ted with small ar
s are

φ-invariant, then so is the fourth pair indi
ated with a dotted ar
. s1 s2

s′1 s′2

t0 t1 t2

Lemma 4.1.3. A quadrati
 normalisation (S,Φ) is of 
lass (4, 3) if, and only if, the domino

rule is valid for Φ.

Proof. Assume that (S,Φ) is of right-
lass 3, and let s1, ... , t2 be elements of S satisfying

the assumptions of the domino rule. By de�nition of the right-
lass, we have Φ(t0|s1|s2) =
Φ212(t0|s1|s2). As, by assumption, s1|s2 is Φ-normal, we obtain Φ(t0|s1|s2) = Φ12(t0|s1|s2) =
Φ2(s

′
1|t1|s2) = s′1|s

′
2|t2. So s′1|s

′
2|t2 is Φ-normal, hen
e so is s′1|s

′
2, and the domino rule is valid

for Φ.
Conversely, assume that the domino rule is valid for Φ. Let t0|r1 |r2 be an arbitrary word

in S[3]
. Put s1|s2 = Φ(r1|r2), s

′
1|t1 = Φ(t0|s1), and s′2|t2 = Φ(t1 |s2). Then s′2|t2 is Φ-normal
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by 
onstru
tion, and s′1|s
′
2 is Φ-normal by the domino rule, so s′1|s

′
2|t2 is Φ-normal. Hen
e we

have Φ(w) = Φ212(w) for every w in S[3]
, and (S,Φ) is of right-
lass 3. �

4.2. Normalising long words. We shall now show that, is (S,Φ) is a normalisation map of


lass (4, 3), there exists a simple formula for the normalisation of arbitrarily long words.

Notation 4.2.1. Starting from δ1 = ε (the empty sequen
e) and using sh for the shift mapping

that in
reases every entry by 1, we indu
tively de�ne a �nite sequen
e of positive integers δp
by

(4.2.2) δp = sh(δp−1)|1|2| ··· |p− 2|p− 1 for p > 1.

Thus we �nd, omitting the separation symbol,

δ2 = 1, δ3 = 212, δ4 = 323123, δ5 = 4342341234, et
.

Proposition 4.2.3. Assume that (S,Φ) is a quadrati
 normalisation of 
lass (4, 3). Then, for
every p > 1 and every length-p word w, we have

(4.2.4) Φ(w) = Φδp(w).

So there is a universal re
ipe, pres
ribed by the sequen
e of positions δp, for normalising

every word of length p. We begin with a preparatory result.

Lemma 4.2.5. If (S,Φ) is a quadrati
 normalisation and the domino rule is valid for Φ, then,
for every t in S and every Φ-normal S-word s1| ··· |sq, we have

(4.2.6) Φ(t|s1| ··· |sq) = Φ12 ···(q−1)q(t|s1| ··· |sq).

Proof. For q = 1, (4.2.6) redu
es to Φ(t|s1) = Φ(t|s1). Assume q > 2. Put t0 = t and

indu
tively de�ne s′i and ti by s′i|ti = Φ(ti−1 |si) for i = 1, ... , q (see Figure 1). Then, by

de�nition, we have

s′1| ··· |s
′
q |tq = Φ12 ···(q−1)q(t|s1| ··· |sq),

so, in order to establish (4.2.6), it su�
es to show that the word s′1| ··· |s
′
q |tq is Φ-normal. Now,

for i = 1, ... , q− 1, the assumption that si|si+1 is Φ-normal and the validity of the domino rule

imply that s′i|s
′
i+1 is Φ-normal as well. Finally, s′q |tq is Φ-normal by 
onstru
tion. Hen
e, every

length-two fa
tor of s′1| ··· |s
′
q |tq is Φ-normal and, therefore, the latter is Φ-normal. �

s1 s2 sq

s′1 s′2 s′q tq

t = t0 t1 t2 tq−1 tq

Figure 1. Left-multiplying a normal word by an element S: the domino rule guarantees

that the upper row is normal whenever the lower row is. The diagram shows, in parti
ular,

that the monoid presented by (S,Φ) satis�es the 2-Fellow Traveler Property with respe
t

to left-multipli
ation [17℄.

Proof of Proposition 4.2.3. By Lemma 4.1.3, the domino rule is valid for Φ, hen
e Lemma 4.2.5

applies. We prove (4.2.4) using indu
tion on p. For p 6 2 , the result is immediate. Assume

p > 3 and let w = s1| ··· |sp belong to S[p]
. Put

(4.2.7) s′2| ··· |s
′
p := Φδp−1

(s2| ··· |sp)

(see Figure 2). By indu
tion hypothesis, the word s′2| ··· |s
′
p is Φ-normal. On the other hand, by

de�nition of position shifting, (4.2.7) implies

(4.2.8) s1|s
′
2| ··· |s

′
p = Φsh(δp−1)(s1|s2| ··· |sp).
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Then, as s′2| ··· |s
′
p−1 is Φ-normal and s1 belongs to S, Lemma 4.2.5 implies

Φ(s1|s
′
2| ··· |s

′
p) = Φ12 ···(p−1)(s1|s

′
2| ··· |s

′
p),

when
e, owing to the indu
tive de�nition of δp,

(4.2.9) Φ(s1|s
′
2| ··· |s

′
p) = Φ12 ···(p−1) ◦ Φsh(δp−1)(s1|s2| ··· |sp) = Φδp(s1|s2| ··· |sp).

Owing to (2.1.4), (4.2.8) implies that Φ(s1|s2| ··· |sp) and Φ(s1|s
′
2| ··· |s

′
p) are equal. Merging

with (4.2.9), we dedu
e Φ(s1|s2| ··· |sp) = Φδp(s1|s2| ··· |sp). �

The indu
tive normalisation pro
ess des
ribed in Proposition 4.2.3 and Figure 2 amounts to

using the map Φ to 
onstru
t a triangular grid as shown in Figure 3.

s1 s2 sp

s1 s′2 s′p

s1

s′′1 s′′p−1 s′′p

indu
tion

hypothesis

Lemma 4.2.5

Figure 2. Indu
tive normalisation pro
ess of a length-p word s1| ··· |sp based on the

domino rule: �rst normalise s2| ··· |sp into s′2| ··· |s
′

p, and then normalise s1|s
′

2| ··· |s
′

p into

s′′1 | ··· |s
′′

p , whi
h is Φ-normal by Lemma 4.2.5.

s′1 s′2 s′3 s′4

s1

s2

s3

s4

step 1:

Φ3

step 2:

Φ2

step 3:

Φ3

step 4:

Φ1

step 5:

Φ2

step 6:

Φ3

Figure 3. Normalising a length-p word in p(p−1)/2 steps, here with p = 4: a

ording

to (4.2.4), the six steps 
orrespond to applying Φδ4 , that is, Φ323123 .

An important 
onsequen
e of Proposition 4.2.3 is that, 
ontrary to the situation of Exam-

ple 3.4.7, it is impossible to have a large 4-
lass in 
lass (4, 3).

Corollary 4.2.10. If (S,Φ) is a quadrati
 normalisation of 
lass (4, 3), then (S,Φ) is of p-

lass (4, 3) for every p > 3.

Proof. Assume p > 3, and let w = s1| ··· |sp lie in S[p]
. We shall show that Φ(w) is equal to

Φ
[p−1]
212 (w) by 
he
king that su

essively applying Φ

[p−1]
2 , Φ

[p−1]
1 , and Φ

[p−1]
2 to w leads to a

Φ-normal word. First, let s′2| ··· |s
′
p = Φ(s2| ··· |sp). We have

(4.2.11) Φ
[p−1]
2 (w) = s1|s

′
2| ··· |s

′
p.

As s′2| ··· |s
′
p is Φ-normal, Lemma 4.2.5 implies Φ(w) = Φ12 ···(p−1)(s1|s

′
2| ··· |s

′
p). Now, put

t0 = s1 and, indu
tively, s′′i |ti = Φ(ti−1 |s
′
i+1) for i = 1, ... , p − 1. As s′2| ··· |s

′
p−1 is Φ-

normal, Lemma 4.2.5 implies that s′′1 | ··· |s
′′
p−2|tp−1 is Φ-normal, so we have Φ(s1 |s

′
2| ··· |s

′
p−1) =

s′′1 | ··· |s
′′
p−2|tp−1, when
e

(4.2.12) Φ
[p−1]
1 (s1|s

′
2| ··· |s

′
p) = s′′1 | ··· |s

′′
p−2|tp−1|s

′
p.



16 PATRICK DEHORNOY AND YVES GUIRAUD

By the same argument, s′′1 | ··· |s
′′
p−1|tp is Φ-normal, hen
e so is a fortiori s′′2 | ··· |s

′′
p−1|tp. By 
on-

stru
tion, we have s′′2 | ··· |s
′′
p−1|tp = Φp−1(s

′′
2 | ··· |s

′′
p−2|tp−1|s

′
p), when
e Φ(s′′2 | ··· |s

′′
p−2|tp−1|s

′
p) =

s′′2 | ··· |s
′′
p−1|tp, and, from there,

(4.2.13) Φ
[p−1]
2 (s′′1 | ··· |s

′′
p−2|tp−1|s

′
p) = s′′1 | ··· |s

′′
p−1|tp.

As s′′1 | ··· |s
′′
p−1|tp is Φ-normal, it is Φ(w), so merging (4.2.11), (4.2.12), and (4.2.13) gives Φ(w) =

Φ
[p−1]
212 (w), witnessing that (S,Φ) is of right-p-
lass 3. �

4.3. Axiomatisation. By Proposition 3.3.5, if a quadrati
 normalisation (S,Φ) is not of min-

imal left-
lass ∞, the restri
tion Φ of Φ to S[2]
satis�es (3.3.6) and its symmetri
 
ounterpart

for c large enough. In parti
ular, if (S,Φ) has 
lass (4, 3), then Φ satis�es (4.1.1), that is,

Φ212 = Φ2121 = Φ1212. We now go in the other dire
tion, and prove that any idempotent

map φ on S[2]
satisfying the above relation ne
essarily stems from a quadrati
 normalisation of


lass (4, 3), thus 
ompleting a proof of Theorem A.

Proposition 4.3.1. If S is a set and φ is a map from S[2]
to itself satisfying

(4.3.2) φ212 = φ2121 = φ1212,

there exists a quadrati
 normalisation (S,Φ) of 
lass (4, 3) satisfying φ = Φ.

The problem is to extend φ into a map φ∗
on S∗

su
h that (S, φ∗) is a quadrati
 normalisation

of 
lass (4, 3). Proposition 4.2.3 leads us into introdu
ing the following extension of φ.

De�nition 4.3.3. For φ a map from S[2]
to itself, we write φ∗

for the extension of φ to S∗

de�ned by φ∗(s) = s for s in S and φ∗(w) = φδp(w) for w in S[p]
.

We will prove that, when (4.3.2) is satis�ed, (S, φ∗) is a quadrati
 normalisation of 
lass (4, 3).
We begin with preparatory formulas of the form φu = φv when u and v are sequen
es of positions

onne
ted by a spe
i�
 equivalen
e relation.

De�nition 4.3.4. We denote by ≡ the 
ongruen
e on the free monoid (N \ {0})∗ of all �nite

sequen
es of positive integers generated by all shifted 
opies of

1|1 ≡ 1, 1|2|1|2 ≡ 2|1|2 ≡ 2|1|2, 1|i ≡ i|1 for i > 3.

Note that the 
orresponding quotient monoid is a variant with in�nitely many generators

of the monoid Mn of [18℄. Lemmas 4.3.6 and 4.3.10 below are essentially equivalent to [18,

Proposition 67℄ but we in
lude a short self-
ontained proof as our framework and notation are

di�erent.

Lemma 4.3.5. If φ∗
satis�es the 
onditions of Proposition 4.3.1(ii), then, for all ≡-equivalent

sequen
es u and v, we have φu = φv.

Proof. As φ∗
is idempotent, φi| i 
oin
ides with φi. For |i − j| > 2, φi and φj a
t on disjoint

fa
tors, so they 
ommute. Finally, the relations for 2|1|2 and their shifted 
opies dire
tly

re�e
t (4.3.2). �

Lemma 4.3.6. The following relations are valid for every p > 2:

δp ≡ p− 1| ··· |2|1|sh(δp−1),(4.3.7)

p| ··· |2|1|p| ··· |2|1 ≡ p| ··· |2|1|p| ··· |3|2,(4.3.8)

1|2| ··· |p|1|2| ··· |p ≡ 2|3| ···p|1|2| ··· |p.(4.3.9)

Proof. We use indu
tion on p > 2. For p = 2, (4.3.7) reads 1 ≡ 1|sh(ε), whi
h is valid. Assume

p > 3. Then we �nd

δp = sh(δp−1)|1|2| ··· |p− 1 by de�nition of δp,

≡ sh(p− 2| ··· |2|1|sh(δp−2))|1|2| ··· |p− 1 by indu
tion hypothesis,



QUADRATIC NORMALISATION IN MONOIDS 17

= p− 1| ··· |3|2|sh2(δp−2))|1|2| ··· |p− 1

≡ p− 1| ··· |3|2|1|sh2(δp−2))|2| ··· |p− 1 by i|1 ≡ 1|i for i = sh2(j),

= p− 1| ··· |3|2|1|sh(sh(δp−2))|1| ··· |p− 2)

= p− 1| ··· |3|2|1|sh(δp−1 by de�nition of δp−1.

Next, for p = 2, (4.3.8) reads 2|1|2|1 ≡ 2|1|2, whi
h is valid. For p > 3, we �nd

p| ··· |2|1|p| ··· |2|1 ≡ p| ··· |2|p| ··· |3|1|2|1 by 1|i ≡ i|1 for i > 3,

= sh(p− 1| ··· |1|p− 1| ··· |2)|1|2|1

≡ sh(p− 1| ··· |1|p− 1| ··· |2|1)|1|2|1 by indu
tion hypothesis,

= p| ··· |2|p| ··· |3|2|1|2|1

≡ p| ··· |2|p| ··· |3|2|1|2 by de�nition of ≡,

= sh(p− 1| ··· |1|p− 1| ··· |2|1)|1|2

≡ sh(p− 1| ··· |1|p− 1| ··· |2)|1|2 by indu
tion hypothesis,

= p| ··· |2|p| ··· |3|1|2

≡ p| ··· |2|1|p| ··· |3|2 by i|1 ≡ 1|i for i > 3.

The argument for (4.3.9) is symmetri
. �

Lemma 4.3.10. The following relations are valid for every p > 2 and 1 6 i < p:

(4.3.11) δp ≡ δp |i ≡ i|δp.

Proof. We use indu
tion on p > 2. For p = 2, the only 
ase to 
onsider is i = 1, and (4.3.11)

then redu
es to 1 ≡ 1|1, whi
h is true by de�nition. Assume p = 3. For i = 1, (4.3.11) redu
es
to 2|1|2 ≡ 2|1|2|1 ≡ 1|2|1|2 and, for i = 2, to 2|1|2 ≡ 2|1|2|2 and 2|1|2 ≡ 2|2|1|2, whi
h are

true by the de�nition of ≡.
Assume now p > 4. For i = 1, we �nd

δp |1 ≡ p− 1| ··· |2|1|p− 1| ··· |2|sh2(δp−2)|1 by (4.3.7) twi
e,

≡ p− 1| ··· |2|1|p− 1| ··· |2|1|sh2(δp−2) by i|1 ≡ 1|i for i > 3,

≡ p− 1| ··· |2|1|p− 1| ··· |2|sh2(δp−2) by (4.3.8),

≡ p− 1| ··· |2|1|sh(δp−1) ≡ δp by (4.3.7) twi
e,

and, for 2 6 i < p, using (4.3.7) and the indu
tion hypothesis, we �nd

δp |i ≡ p− 1| ··· |1|sh(δp−1)|i = p− 1| ··· |1|sh(δp−1 |i− 1) ≡ p− 1| ··· |1|sh(δp−1) ≡ δp.

The argument for i|δp ≡ δp is symmetri
, with the de�nition of δp and (4.3.9) repla
ing (4.3.7)

and (4.3.8). �

Proof of Proposition 4.3.1. Assume that φ is idempotent and satis�es (4.3.2). Lemmas 4.3.5

and 4.3.11 imply, for all p > 3 and every w in S[p]
, the equalities

(4.3.12) φ∗(φi(w)) = φ∗(w) and φi(φ
∗(w)) = φ∗(w) for i with 1 6 i < p.

Let u, v, w be S-words with respe
tive lengths m,n, p. Then we �nd

φ∗(u|φ∗(w)|v) = φδm+n+p
(u|φδp(w)|v) = φδm+n+p

(φshm(δp)(u|w|v)).

The map φshm(δp) is a 
omposite of maps φi with m + 1 6 i 6 m + p − 1, so Lemma 4.3.10

implies

φ∗(u|φ∗(w)|v) = φδm+n+p
(u|w|v) = φ∗(u|w|v),

and we dedu
e that (S, φ∗) satis�es (2.1.4). As it also satis�es (2.1.2) and (2.1.3) by the

de�nition of φ∗
, it is a normalisation. �
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The following example shows that the axiomatisation of 
lass (4, 3) normalisations provided

by Proposition 4.3.1 does not extend to higher 
lasses.

Example 4.3.13. Let us 
onsider the rewriting system of Example 3.4.7 with n = ∞, that

is, S∞ = {a, b1, b2, ..., c1, c2, ...} with the rules abi→abi+1 and bi+1ci→bi+1ci+1 for i odd and

cia→ci+1a and bici+1→bi+1ci+1 for i even. The asso
iated map φ on S
[2]
∞ satis�es the relation

φ12121 = φ21212, but no quadrati
 normalisation (S∞,Φ) satis�es φ = Φ. Indeed, no S∞-word

that 
an be rea
hed from ab1c1a by su

essive appli
ations of φ on length-two fa
tors is normal.

5. Class and termination

By Proposition 3.2.1, a quadrati
 normalisation (S,Φ) yields a redu
ed quadrati
 rewriting

system (S,R) that is normalising and 
on�uent. This however does not rule out the possible

existen
e of in�nite rewriting sequen
es, whi
h we investigate here.

The se
tion 
omprises three parts. We �rst 
onsider the 
ase of 
lass (3, 3) and prove an easy


onvergen
e result (Subse
tion 5.1). Next, the 
ase of 
lasses (3, 4) and (4, 3) is investigated in

Subse
tion 5.2, where the not-so-easy 
onvergen
e result stated as Theorem B is established.

Finally, we show in Subse
tion 5.3 that the previous result is optimal by 
onstru
ting a non-


onvergent example in 
lass (4, 4).

5.1. Termination in 
lass (3, 3). We �rst 
onsider the 
ase of quadrati
 normalisations of


lass (3, 3), and we use an argument of �niteness on symmetri
 groups to prove:

Proposition 5.1.1. If (S,Φ) is a quadrati
 normalisation of 
lass (3, 3), then the asso
iated

rewriting system (S,R) is 
onvergent, and so is (Se, Re) if e is a Φ-neutral element of S. More

pre
isely, every rewriting sequen
e from a length-p word has length at most p(p− 1)/2.

Proof. Assume that w0, ... , wℓ are S-words satisfying wk →R wk+1 for 0 6 k < ℓ. Let p be the


ommon length of the S-words wk. By assumption, for every k > 1, we have wk = Φik(wk−1)
for some 1 6 ik < p, with wk 6= wk−1.

Let us observe, by indu
tion on k, that u = i1| ··· |ik is redu
ed in the sense of Coxeter

theory, that is, it is a minimal-length representative of the asso
iated element of the symmetri


group Sp. For k = 0, the result is true as the empty word is redu
ed. Assume k > 1,
and write u = u′|i. By indu
tion hypothesis, u′

is redu
ed. If u′|i is not redu
ed, then, by the

ex
hange lemma for Sp, see [2℄, there exists a sequen
e of positions u
′′
su
h that u′

is equivalent

to u′′|i modulo the braid relations. Now, by Proposition 3.3.5, the assumption that (S,Φ) is of

lass (3, 3) implies Φ121 = Φ212 and, from there, the equivalen
e of u′

and u′′|i modulo the braid

relations implies Φu′ = Φu′′ |i. Putting w′ = Φu′′(w0), we obtain wk−1 = Φi(w
′) and, sin
e Φ is

idempotent, wk = Φi(Φi(w
′)) = Φi(w

′) = wk−1, whi
h 
ontradi
ts wk−1 →R wk. So u must be

redu
ed.

Now, it is well-known that the length ℓ of a redu
ed word representing an element of Sp

is bounded above by p(p − 1)/2, for instan
e be
ause ℓ is the number of inversions of the

permutation represented by u. So (S,R) terminates and, by Proposition 3.2.5, so does (Se, Re)
if e is a Φ-neutral element in S. �

Remark. The bound p(p − 1)/2 in Proposition 5.1.1 is sharp, sin
e, for the lexi
ographi


normalisation (S,Φ) of Example 2.1.6, normalising ap| ··· |a1 with a1 < ··· < ap a
tually requires

p(p− 1)/2 steps.

Proposition 5.1.1 applies to the example of pla
ti
 monoids, des
ribed thereafter. Those

monoids have known normalisations that �t into our setting of quadrati
 normalisations, and

were among the original motivations for extending the framework of Garside normalisation to

the 
urrent one.

Example 5.1.2. If X is a totally ordered �nite set, the pla
ti
 monoid over X is the monoid PX

generated by X and subje
t to xzy = zxy, for x 6 y < z, and yxz = yzx, for x < y 6 z. We
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refer to [4℄ for a re
ent referen
e on the following fa
ts. The monoid PX is also generated by

the family S of 
olumns over X (the stri
tly de
reasing produ
ts of elements of X). A pair c|c′

of 
olumns is normal if ‖c‖ > ‖c′‖ holds and, for every 1 6 k 6 ‖c′‖, the kth element of c is at
most the one of c′. Every equivalen
e 
lass of X-words 
ontains a unique tableau (a produ
t

c1 ···cn of 
olumns su
h that ea
h ci|ci+1 is normal), with minimal length in terms of 
olumns:

thus, mapping a S-word to the unique 
orresponding tableau de�nes a geodesi
 normal form nf

on (PX , Se), where e denotes the empty 
olumn.

We 
onsider the normalisation (Se,Φ) asso
iated to nf, whi
h satis�es (3.1.3) by the de�-

nition of tableaux. Moreover, for every S-word w, the tableau nf(w) 
an be 
omputed from

any S-word w by S
hensted's insertion algorithm, progressively repla
ing ea
h pair c|c′ of

subsequent 
olumns of w by nf(c|c′), whi
h is a tableau with one or two 
olumns. So, the

normalisation (Se,Φ) also satis�es (3.1.4), so that it is quadrati
, and, when X 
ontains at

least two elements, it is of minimal 
lass (3, 3) as testi�ed by the 
omputations of [3, ��4.2�

4.4℄. By Proposition 5.1.1, we re
over [4, Theorem 3.4℄: the rewriting system (S,R) with

R = {c|c′ → nf(c|c′) | c, c′ ∈ S} is �nite, 
onvergent and it presents PX . A similar argu-

ment leads to a (non�nite) 
onvergent quadrati
 presentation of PX in terms of rows, whi
h

are nonde
reasing produ
ts of elements of X . The proof that the 
lass is (3, 3) is given in [3,

��3.2�3.4℄.

5.2. Termination in 
lass (4, 3). We now 
onsider the 
ase of 
lass (4, 3) and establish the

general termination result stated as Theorem B:

Proposition 5.2.1. If (S,Φ) is a quadrati
 normalisation of 
lass (4, 3), then the asso
iated

rewriting system (S,R) is 
onvergent, and so is (Se, Re) if e is a Φ-neutral element of S. More

pre
isely, every rewriting sequen
e from a length-p word has length at most 2p − p− 1.

Proposition 5.2.1 subsumes Proposition 5.1.1. But its proof resorts to di�erent arguments,

sin
e Krammer's monoid Mp, see [18℄, whi
h is an analogue of the braid monoid B+

p where

121 = 212 is repla
ed with 121 = 2121, is in�nite. Instead, we analyse Φ-normalisation dire
tly

to show that no in�nite rewriting sequen
e may exist be
ause one inevitably pro
eeds to the

normal form.

Proof. Let F (p) denote the maximal length of sequen
es w0 →R w1 →R ··· →R wℓ of S-words
of length p, possibly ∞. We prove the inequality F (p) 6 2p − p− 1 using indu
tion on p > 2.
For p = 2, the inequality F (p) 6 1 holds, sin
e Φ is idempotent. We now assume p > 3 and


onsider a sequen
e

−→w = (w0, ... , wℓ) of length-p words satisfying wk →R wk+1 for 0 6 k < ℓ.
We shall distinguish several types of rewriting steps in the sequen
e

−→w , in 
onne
tion with

Proposition 4.2.3 and the triangular grid diagram of Figure 3. The latter 
orresponds to an

optimal strategy, whi
h needs not be the 
ase for

−→w , but we shall explain how to enri
h ea
h

word wk into a word ŵk by atta
hing with ea
h letter of w a dire
tion, either horizontal or

verti
al. We de�ne Ŝ as S∐S, where S is a 
opy of S with an element s for ea
h s in S, and we

take the 
onvention that s means �verti
al s� and s means �horizontal s�: this asso
iates with
every Ŝ-word ŵ a path in a triangular grid by starting from the top-left 
orner and atta
hing

to the su

essive letters of ŵ horizontal left-to-right edges and verti
al top-to-down edges.

We 
onstru
t the Ŝ-words ŵk indu
tively, in su
h a way that

(5.2.2) for every length-two fa
tor s|t or s|t of ŵk, the S-word s|t is Φ-normal.

First, for w0 = s1| ··· |sp, we put ŵ0 = s1| ··· |sp−1|sp. Then ŵ0 satis�es (5.2.2) by default, and

(the path asso
iated with) ŵ0 
onsists of w0 drawn verti
ally, ex
ept the last letter, whi
h is

drawn horizontally.

Assume that ŵk−1 has been de�ned, it satis�es (5.2.2), and wk = Φi(wk−1) holds. Let s
and t be the letters of wk−1 in positions i and i+1, and s′|t′ = Φ(s|t). We look at the dire
tions

of the letters of ŵk−1 in positions i and i + 1. The assumption wk−1 →R wk implies that s|t
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is not Φ-normal. By (5.2.2), this ex
ludes the dire
tions s|t and s|t. So only two 
ases are

possible.

In the 
ase of a VH-step, meaning a verti
al letter followed by a horizontal one, we de�ne

ŵk to be obtained from ŵk−1 by repla
ing, at position i, the fa
tor s|t with s′|t′ when t is not

the last letter of wk−1, and by s′|t′ otherwise, whi
h 
orresponds to repla
ing

s
t with

s′ t′

or

s′ t′
respe
tively. In both 
ases, the length-two fa
tor of wk starting at position i is

thus Φ-normal, so (5.2.2) is satis�ed at this position. The only other position where (5.2.2)

might fail is i − 1, when the 
orresponding letter of ŵk is horizontal, sin
e, otherwise, (5.2.2)

requires nothing on the fa
tor. Now, going from ŵk−1 to ŵk repla
es with .

But, by 
onstru
tion, the pattern ne
essarily 
omes from an earlier diagram ,

in whi
h the pairs indi
ated with small ar
s are Φ-normal by indu
tion hypothesis. Hen
e,

going to wk means going to and the domino rule pre
isely implies that the top two

horizontal edges form a Φ-normal word. So ŵk satis�es (5.2.2).

In the 
ase of a VV-step (two verti
al letters), we de�ne ŵk to be obtained from ŵk−1 by

repla
ing, at position i, the fa
tor s|t with s′|t′. As the shape of ŵk is the same as the one

of ŵk−1, we only have to 
he
k (5.2.2) for the length-two fa
tor at position i−1, and only when

its �rst letter is horizontal, that is, one goes from

r s

t
to

r s′

t′
. But, by 
onstru
tion, the

original pattern in ŵk−1 arises from an earlier pattern

r s

t
, so that, when s|t is repla
ed by

s′|t′, the domino rule implies that r|s′ is Φ-normal, as the diagram

r

s

t

s′

t′
witnesses.

The 
onstru
tion of ŵ0, ... , ŵℓ is 
omplete, and we now 
ount how many VH-steps and VV-

steps 
an o

ur in

−→w . First, ea
h Ŝ-word ŵk is asso
iated with a path in the triangular grid

diagram of Figure 3 and ea
h VH-step 
auses this path to 
ross one square in the grid. As the

latter 
ontains p(p− 1)/2 squares, we dedu
e that there are at most p(p− 1)/2 VH-steps in −→w .

We turn to VV-steps, partitioning them into several subtypes a

ording to where they o

ur:

we say that a VV-step is a VVj-step if it is lo
ated on the jth 
olumn, that is, it repla
es a

verti
al fa
tor s|t of ŵk that is pre
eded by j−1 horizontal letters. Now we �x j with 1 6 j < p
and 
ount the VVj-steps that 
an o

ur in

−→w . For 1 6 i 6 p − j, let si,k be the letter that

verti
ally o

urs at the ith position in the jth 
olumn in ŵk, if it exists. For a given value

of i, de�ne si,+ to be si,k where k is minimal su
h that si,k exists (if any) and, symmetri
ally,

let si,− be si,k where k is maximal su
h that si,k exists (if any). For ea
h k, if si,+ is de�ned

for a 6 i, if si,k is de�ned for b 6 i 6 c, and if si,− is de�ned for i 6 d, we put

vk = sa,+| ··· |sb−1,+|sb,k | ··· |sc,k|sc+1,−| ··· |sd,−.

So vk is the fa
tor of wk forming the jth 
olumn of ŵk, pre
eded by the letters that are the �rst

to appear in positions a, ..., b− 1 in 
olumn j in ŵk+1, ... , ŵℓ, and followed by the last letters to

appear in positions c+1, ... , d in 
olumn j in ŵ0, ... , ŵk−1. If one goes from wk−1 to wk by a VH-

step or a VVj′ -step with j′ 6= j, then we have vk = vk−1: indeed, either the jth 
olumns of ŵk−1

and ŵk are equal, or a VH-step normalises the last letter sc,k−1 of the jth 
olumn of ŵk−1 with

the subsequent horizontal letter, or the �rst letter sb,k−1 of the jth 
olumn of ŵk−1 with the

previous horizontal letter; and, in the 
ase of the last letter (the other one being symmetri
),
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vk is vk−1 with sc,k repla
ed by sc,−, hen
e un
hanged by de�nition of sc,−. Otherwise, if one
goes from wk−1 to wk by a VVj-step, then vk−1 →R vk holds. As, by 
onstru
tion, the length

of the S-word vk is at most p− j, we 
on
lude that the number of VVj-steps in
−→w is at most

F (p− j). Summing up, we dedu
e

(5.2.3) F (p) 6
p(p− 1)

2
+ F (p− 1) + ··· + F (3) + F (2),

whi
h solves into F (p) 6 2p + p− 1 owing to F (q) 6 2q − q − 1 that holds for every 2 6 q < p
by indu
tion hypothesis.

Finally, as in the 
ase of 
lass (3, 3), Proposition 3.2.5 implies that, if (S,R) terminates and e
is a Φ-neutral element in S, then so does (Se, Re). �

Φ1

VV1

Φ2

VV1

Φ1

VV1

Φ2

VV1

Φ3

VH

Φ2

VH

···

Φ1

VH

Φ2

VV2

Φ3

VH

Φ2

VH

Φ3

VH

Figure 4. Types of the su

essive steps in the 
omputation of Φ12123212323(w) for w
of length 4: in addition to the six VH-steps, whi
h inexorably approa
h Φ(w), we �nd four

VV1-steps and one VV2-steps; this turns out to be the only possible length-11 sequen
e

for length-4 words.

Remark. In the previous proof, one 
an observe that the number of VV-steps between two

VH-steps is bounded above by F (p− 1), sin
e 
olumns in the grid have length at most p − 1,
and dedu
e F (p) 6 p(p − 1)/2 + (p(p − 1)/2 + 1)F (p − 1), whi
h is 
oarser than (5.2.3) but

su�
ient to indu
tively prove termination.

The following result, formulated purely in terms of rewriting systems, is an immediate 
on-

sequen
e of Proposition 5.2.1.

Corollary 5.2.4. Assume that (S,R) is a redu
ed quadrati
 rewriting system. De�ne φ : S[2] →
S[2]

by φ(w) = w′
for w → w′

in R and φ(w) = w otherwise.

(i) If, for all r, s, t in S su
h that r|s is not R-normal and s|t is R-normal, the S-word
φ12(r|s|t) is R-normal, then (S,R) is 
onvergent.

(ii) If S 
ontains a Φ-neutral element e and the 
ondition of (i) is satis�ed for all r, s, t in Se,

then (S,R) and (Se, Re) are 
onvergent, where Re 
onsists of one rule w → πe(w
′) for ea
h

w → w′
in R.

5.3. Termination in higher 
lasses. We show that Proposition 5.2.1 is optimal: from 
lass (4, 4)
onwards, no general termination result 
an be established, sin
e both nonterminating and ter-

minating rewriting systems may arise.

Proposition 5.3.1. There exists a quadrati
 normalisation of 
lass (4, 4) su
h that the asso-


iated rewriting system is not 
onvergent.

Proof. Let S = {a, b, b′, b′′, c, c′, c′′, d} and let R 
onsist of the �ve rules ab → ab′, b′c′ → bc,

bc′ → b′′c′′, b′c → b′′c′′, and cd → c′d. We 
laim that the rewriting system (S,R), whi
h is

quadrati
 by de�nition, is normalising and 
on�uent. However (S,R) is not terminating, as it

admits the length-3 
y
le

abcd → ab′cd → ab′c′d → abcd.

We prove that (S,R) is normalising using an exhaustive des
ription of the rewriting sequen
es

starting from an arbitrary S-word. Let f be the a

ent-forgetting map a 7→ a; b, b′, b′′ 7→ b;

c, c′, c′′ 7→ c; d 7→ d. For u a nonempty fa
tor of abcd, we say that an S-word w is spe
ial of
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type u if f(w) = u holds. For w in S∗
, indu
tively de�ne a de
omposition D(w) by D(ε) = ε

and, if D(w) = w1 | ··· |wm and s ∈ S hold, D(ws) = w1 | ··· |wms if wms is spe
ial, and D(ws) =
w1 | ··· |wm|s otherwise: D(w) is obtained by grouping the spe
ial fa
tors of w as mu
h as

possible. For instan
e, we �nd D(ab′db′′cdb′ab′) = ab′|d|b′′cd|b′|ab′. Now, we observe that π
is 
ompatible with all rules of R and, moreover, every rule a
ts inside a spe
ial fa
tor. Hen
e,

if we have D(w) = w1| ··· |wm, then the words w′
for whi
h w →R w′

holds are those words w′

satisfying D(w′) = w′
1 | ··· |w

′
m with wi →R w′

i for ea
h i. Consequently, in order to prove that

(S,R) is normalising and 
on�uent, it su�
es to prove it for the fa
tors of the D-de
omposition,

that is, for spe
ial words. We review the ten types. First, an S-word w of type a, b, c, d, ab,

bc, or cd is R-normal form, or we have w →R w′
for some R-normal S-word w′

. Next, there are

nine S-words of type abc, and the 
orresponding restri
tion of →R is (where framed S-words
are the R-normal ones)

abc′ ab′c′ abc ab′c ab′′c′′

abc′′ ab′c′′ ab′′c ab′′c′

The graph for bcd is entirely similar. Finally, for the type abcd, we �nd:

abcd

ab′cd

abc′d

ab′′c′′d ab′c′d

ab′′cd ab′′c′d

abc′′d ab′c′′d

Thus, for ea
h type, the 
orresponding 
onne
ted 
omponent of the relation→R 
ontains exa
tly

one R-normal S-word, whi
h is rea
hable from any other S-word of the 
omponent. It follows

that (S,R) is normalising and 
on�uent. Moreover, the inspe
tion of the normalisation of

length-three S-words shows that the normalisation (S,Φ) asso
iated with R is of minimal


lass (4, 4). �

By 
ontrast, the following example shows that terminating rewriting systems may also arise

when the minimal 
lass is at least (4, 4).

Example 5.3.2. For a totally ordered �nite setX , the Chinese monoid over X is the monoid CX

generated by X and submitted to the relations zyx = zxy = yzx, for x 6 y 6 z [6℄. Assume

that X has three elements and denote by S the eight-element set obtained from X by adjoin-

ing the empty word e, the three words yx for x < y, and yy if y is the middle element of X
(neither the minimal one nor the maximal one). The following twelve rules are derivable from

the de�ning relations of CX : the nine rules y|x → yx, y|yx → yx|y, yx|x → x|yx for x < y; the

two rules y|zx → zx|y and z|yx → zx|y for x < y < z; and y|y → y if y is the middle element

of X . This redu
ed rewriting system terminates (using the weighted right-lexi
ographi
 order

generated by x < yx for x 6 y and zx < y for x < y) and, after appli
ation of Knuth-Bendix


ompletion, it yields a 
onvergent rewriting system (Se, Re) with 22 rules presenting CX . Af-

ter homogenisation, we obtain a redu
ed, quadrati
 and 
onvergent rewriting system (S,R),
whose 
orresponding quadrati
 normalisation is of 
lass (4, 4), the worst 
ase being rea
hed on

z|yy|y if y is the middle element and z > y holds. Similar 
onvergent quadrati
 presentations

also exist when X has four or �ve elements (to be 
ompared with the nonquadrati
 ones of [5,

Theorem 3.3℄), the 
lass being (5, 4) in both 
ases.

6. Garside normalisation

In this last se
tion, we investigate the 
onne
tion between our 
urrent general framework and

Garside families. It turns out that the latter provide natural examples of quadrati
 normalisa-

tions of 
lass (4, 3) and that, 
onversely, a normalisation of 
lass (4, 3) 
omes from a Garside

family if, and only if, it satis�es some expli
it additional 
ondition 
alled left-weightedness.
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The se
tion is organised as follows. In Subse
tion 6.1, we brie�y re
all the basi
 de�nitions

involving Garside families and the asso
iated normal forms. In Subse
tion 6.2, we introdu
e

the notion of a left-weighted normalisation and establish the above mentioned 
onne
tion,

whi
h is Theorem C of the introdu
tion. Finally, in Subse
tion 6.3, we mention a few further


onsequen
es.

6.1. Greedy de
ompositions. Hereafter, if M is a left-
an
ellative monoid, we denote by 4

the asso
iated left-divisibility relation, de�ned by f 4 g if fg′ = g holds in M for some g′. The
starting point is the notion of an S-normal word.

De�nition 6.1.1 ([10, De�nition III.1.1℄). If M is a left-
an
ellative monoid and S is in
luded

in M , an S-word s1|s2 is 
alled S-normal if the following 
ondition holds:

(6.1.2) ∀s∈S, ∀f∈M, (s 4 fs1s2 ⇒ s 4 fs1).

An S-word s1| ··· |sp is 
alled S-normal if si|si+1 is S-normal for every i.

The intuition underlying 
ondition (6.1.2) is that s1 already 
ontains as mu
h of S as it 
an,

a greediness 
ondition; note that we do not only 
onsider the left-divisors of s1s2 that lie in S,
but, more generally, all elements of S that left-divide fs1s2.

Then the notion of a Garside family arises naturally. Here we state the de�nition in a

restri
ted 
ase �tting our 
urrent framework (see [10℄ for the general 
ase):

De�nition 6.1.3. Assume that M is a monoid with no nontrivial invertible elements and S is

a subset of M that 
ontains 1. We say that S is a Garside family in M if every element g of M
has an S-normal de
omposition, that is, there exists an S-normal S-word s1| ··· |sp satisfying

s1 ···sp = g.

Example 6.1.4. The seminal example of a Garside family is the family of all simple braids.

Let Bn be Artin's n-strand braid group and B+

n be the submonoid of Bn 
onsisting of all braids

that 
an be represented by a diagram in whi
h all 
rossings have a positive orientation (see for

instan
e [13℄ or [10, Se
tion I.1℄). Then the subfamily Sn of B+

n 
onsisting of those positive

braids that 
an be represented by a diagram in whi
h any two strands 
ross at most on
e is a

Garside family in B+

n .

More generally, if M is an Artin�Tits monoid, that is, a monoid de�ned by relations of the

form stst... = tsts... where both terms have the same length, and if W is the Coxeter group

obtained by adding the torsion relations s2 = 1 to the above relations, then M admits a Garside

family that is a 
opy of W [9℄. When W is �nite, this Garside family (whi
h 
onsists of the

divisors of some element ∆ 
onne
ted with the longest element of W ) is minimal. When W is

in�nite, it is not minimal, but there exists in every 
ase a �nite Garside family [9℄. For instan
e,

if M is the Artin�Tits monoid of (a�ne) type Ã2, that is, M admits a presentation with three

generators σ1, σ2, σ3 and three relations σiσjσi = σjσiσj , then the asso
iated Coxeter group is

in�nite, but M admits a �nite Garside family S 
onsisting of the sixteen right-divisors of the

elements σ1σ2σ3σ2, σ2σ3σ1σ3, and σ3σ1σ3σ1.

It turns out that a large number of monoids admit interesting Garside families, and many

results involving su
h families, in
luding various pra
ti
al 
hara
terisations, and the derived

normalisations are now known [10℄.

For our 
urrent approa
h, what 
ounts is that Garside normalisation enters the framework

of Se
tions 2 to 4. First, a mild dis
ussion is in order, be
ause the S-normal form as introdu
ed

in De�nition 6.1.3 is not readily unique.

Lemma 6.1.5. Assume that M is a left-
an
ellative monoid with no nontrivial invertible ele-

ments and S is a Garside family in M .

(i) [10, Proposition III.1.25℄ Call two S-words ≃-equivalent if they only di�er by appending

�nal entries 1. Then every sequen
e that is ≃-equivalent to an S-normal sequen
e is S-normal;


onversely, any two S-normal de
ompositions of the same element of M are ≃-equivalent.
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(ii) [10, Proposition III.1.30℄ Every element of M with a representative in S[p]
admits an

S-normal de
omposition of length at most p.

Building on Lemma 6.1.5, we immediately obtain

Proposition 6.1.6. Assume that M is a left-
an
ellative monoid with no nontrivial invertible

elements and S is a Garside family of M . Then every element g of M admits a unique S-
normal de
omposition of minimal length, and the 
orresponding map is a geodesi
 normal form

on (M,S \ {1}).

We 
an then apply Proposition 2.2.7, and asso
iate with the Garside family S a normalisa-

tion (S,Φ). The latter involves the generating set S \1 enri
hed with one letter representing the

unit, and it is then natural to use 1 for that letter so that we simply re
over S. We shall then

say that (S,Φ) is derived from the Garside family S. In this 
ase, 1 is a Φ-neutral element in S
by Proposition 2.2.7, and M admits the presentation (2.2.3). Here is the main observation:

Proposition 6.1.7. Assume that M is a left-
an
ellative monoid with no nontrivial invertible

elements and S is a Garside family of M . Then the normalisation (S,Φ) derived from S is

quadrati
 of 
lass (4, 3).

Proof. That Φ satis�es (3.1.3) dire
tly follows from De�nition 6.1.1, sin
e S-greedy words are

de�ned by a 
ondition that only involves length-two fa
tors. For (3.1.4) and the more pre
ise

result about the 
lass, it follows from [10, Proposition III.1.45℄ whi
h states that the domino

rule is valid for Φ. As the 
urrent statement is di�erent from [10, Proposition III.1.45℄, we re
all

the argument.

So assume that s1, s2, s
′
1, s

′
2, t0, t1, t2 lie in S, that s1|s2 is S-

normal, and that we have s′1|t1 = Φ(s1|s2) and s′2|t2 = Φ(t1|s2).
Assume s ∈ S and s 4 fs′1s

′
2. A fortiori we have s 4 fs′1s

′
2t2, hen
e

s 4 ft0s1s2, sin
e the diagram on the right is 
ommutative. As s1|s2
is S-normal, we dedu
e s 4 ft0s1, when
e s 4 fs′1t1. As s′1|t1 is

S-normal, we dedu
e s 4 fs′1. This shows that s
′
1|s

′
2 is S-normal. � s1 s2

s′1 s′2

s

f

t0 t1 t2

The result of Proposition 6.1.7 is optimal: as the example below shows, (4, 3) is in general

the minimal 
lass. Let us mention that there is a parti
ular 
lass of Garside families, 
alled

bounded [10, 
hapter VI℄, for whi
h the 
lass drops to (3, 3) or less. Garside monoids [7℄ are

typi
al examples of the latter situation.

Example 6.1.8. The normalisation derived from the �nite Garside family mentioned in Ex-

ample 6.1.4 for the Artin�Tits monoid of type Ã2 is not of 
lass (3, 3): for instan
e, one �nds
Φ121(σ1|σ1 |σ2σ1σ3σ2) = σ1σ2σ1|σ2|σ3σ1, in whi
h σ2|σ3σ1 is not normal.

6.2. Left-weighted normalisation. De�nition 6.1.1 is highly non-symmetri
, so we 
an ex-

pe
t that the normalisations derived from Garside families satisfy some relations 
apturing the

spe
i�
 role of the left-hand side.

De�nition 6.2.1. Assume that (S,Φ) is a (quadrati
) normalisation for a monoid M . We say

that (S,Φ) is left-weighted if, for all s, t, s′, t′ in S, the equality s′|t′ = Φ(s|t) implies s 4 s′

in M .

In other words, a normalisation (S,Φ) is left-weighted if, for every s in S, the �rst entry of any
length-two S-word Φ(s|t) is always a right-multiple of s the asso
iated monoid: normalising s|t
amounts to adding something in the left entry.

Lemma 6.2.2. The normalisation derived from a Garside family in a left-
an
ellative monoid

with no nontrivial invertible element is left-weighted.

Proof. Assume that (S,Φ) derives from a Garside family S. If s′|t′ = Φ(s|t) holds, s is an

element of S, and we have st = s′t′, when
e s 4 s′t′. By assumption, s′|t′ is S-normal,

so (6.1.2) implies s 4 s′. Thus Φ is left-weighted. �
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We shall now establish that left-weightedness 
hara
terises Garside normalisation, as stated

in Theorem C:

Proposition 6.2.3. Assume that (S,Φ, 1) is a quadrati
 epinormalisation for a monoid M
that is left-
an
ellative and 
ontains no nontrivial invertible element. Then the following are

equivalent:

(i) The family S is a Garside family in M and (S,Φ) derives from it.

(ii) The normalisation (S,Φ) is of 
lass (4, 3) and is left-weighted.

A

ording to Proposition 6.1.7 and Lemma 6.2.2, the impli
ation (i)⇒(ii) holds and we are

left with the 
onverse dire
tion. So, until the end of the subse
tion, we assume that (S,Φ, 1) is
a left-weighted quadrati
 epinormalisation of 
lass (4, 3) for a monoid M that is left-
an
ellative

and 
ontains no nontrivial invertible element. Our aim is to show that S is a Garside family

in M and that Φ derives from it. We de
ompose the argument into several steps.

Lemma 6.2.4. The family S is 
losed under right-divisor in M .

Proof. Assume s ∈ S. An element g of M is a right-divisor of s if there exists f in M satisfying

s = fg. We prove g ∈ S by indu
tion on the minimal length ‖f‖ of the S-words representing f .
For ‖f‖ = 0, we have s = g, when
e g ∈ S.

Assume ‖f‖ > 1. Then we 
an write f = f ′t for some f ′
satisfying ‖f ′‖ = ‖f‖ − 1 and

some t in S. Then we have s = f ′tg, so the indu
tion hypothesis implies tg ∈ S and, therefore,

the S-normal de
ompositions of tg are the S-words tg|1| ··· |1. Let s1| ··· |sp be a Φ-normal

de
omposition of g. For p = 1, we have g = s1 ∈ S. So assume p > 2. By Proposition 4.2.3,

as Φ is quadrati
 of 
lass (4, 3), the domino rule is valid for Φ and, therefore, a Φ-normal

de
omposition of tg is s′1| ··· |s
′
p|tp where we put t0 = t and s′i|ti = Φ(ti−1|si) for i = 1, ... , p.

By ≃-uniqueness of the Φ-normal form, we have s′1 = tg and s′2 = ··· = s′p = tp = 1. Now, we
prove using indu
tion on k de
reasing from p to 2 that tk−1 and sk equal 1. For k = p, we have
s′p = tp = 1; by 
onstru
tion, we have tp−1sp = s′ptp, when
e tp−1sp = 1, and tp−1 = sp = 1,
sin
e M 
ontains no nontrivial invertible element. For 2 6 k < p, we have s′k = 1 by assumption

and tk = 1 by indu
tion hypothesis, so that the same argument gives tk−1 = sk = 1. Thus g
admits a Φ-normal de
omposition of the form s1|1| ··· |1 and, therefore, it belongs to S. �

Lemma 6.2.5. For g in M , de�ne H(g) to be 1 for g = 1, and to be the �rst entry in the

Φ-normal de
omposition of g otherwise. Then H(g) is an element of S that left-divides g, and
every element of S that left-divides g in M left-divides H(g).

Proof. By de�nition, H(g) belongs to S, and it left-divides g inM , sin
e we have g = H(g)ev(w)
if H(g)|w is the Φ-normal de
omposition of g.

Now assume that t is an element of S that left-divides g, say g = th. Let s1| ··· |sp be the

Φ-normal de
omposition of h. As Φ is quadrati
 of 
lass (4, 3), the domino rule is valid for Φ, so
the Φ-normal de
omposition of g is s′1| ··· |s

′
p|tp with t0 = t and s′i|ti = Φ(ti−1|si) for i = 1, ... , p.

By uniqueness of the Φ-normal form, we must have H(g) = s′1. But the fa
t that (S,Φ) is

left-weighted implies that t0 left-divides the �rst entry in Φ(t0|s1), whi
h is s′1|t1, so t 4 H(g)
holds. �

Lemma 6.2.6. The family S is a Garside family in the monoid M .

Proof. By assumption, S 
ontains 1 and, by Lemma 6.2.4, it is 
losed under right-divisor. So S
is what is 
alled solid in [10, Se
tion IV.2℄. Moreover, by de�nition, S is a generating family

in M . Then, by [10, Proposition IV.2.7℄, we know that a solid generating family is a Garside

family in M if, and only if, for every element g of M , there exists an element H(g) of S with the

properties of Lemma 6.2.5. Thus the latter lemma implies that S is a Garside family in M . �

We 
an now 
omplete the argument.
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Proof of Proposition 6.2.3. Owing to the previous results, it only remains to show that, in the

impli
ation (ii)⇒(i), the given normalisation (S,Φ) 
oin
ides with the one, say (S,Φ′), derived
from the Garside family S. As both normalisations are quadrati
, it is su�
ient to prove

Φ(s1 |s2) = Φ′(s1|s2) for all s1, s2 ∈ S, and, to this end, it is su�
ient to prove that Φ(s1|s2)
is S-normal (in the sense of De�nition 6.1.1). Now assume s′1|s

′
2 = Φ(s1 |s2). Sin
e S is a

Garside family in M , we 
an appeal to [10, Corollary IV.1.31℄ whi
h says that s′1|s
′
2 is S-greedy

if, and only if, every element of S that left-divides s′1s
′
2 left-divides s′1: we 
an skip the term f

in (6.1.2). Now assume s ∈ S and s 4 s′1s
′
2 = s1s2. By Lemma 6.2.5, we have t 4 H(s1s2) = s′1

and, therefore, s′1|s
′
2 is S-greedy. �

Remark. In Proposition 6.2.3, we take as an assumption that the monoid M asso
iated

with (S,Φ, e) is left-
an
ellative and has no nontrivial invertible element. It is natural to wonder

whether expli
it 
onditions involving (S,Φ, e) imply these assumptions. For invertible elements,

requiring that s|t 6= e|e implies Φ(s|t) 6= e|e is su
h a 
ondition but, for left-
an
ellativity, we

leave it as an open question.

6.3. Two further results. By Proposition 3.1.8, if (S,Φ) is a quadrati
 normalisation for a

monoid M , then M admits a presentation 
onsisting of all quadrati
 relations s|t = Φ(s|t). In
fa
t, in the left-weighted 
ase, this presentation 
an be repla
ed with a smaller one involving

triangular relations of the form r|s = t.

Proposition 6.3.1. Assume that (S,Φ, e) is a left-weighted quadrati
 epinormalisation system

of 
lass (4, 3) for a left-
an
ellative monoid M . Then M admits the presentation (Se, T ) where T

onsists of all relations s|t = st with s, t in Se satisfying st ∈ S.

Proof. By Proposition 3.1.8 (i), we know that M admits a presentation in terms of S by the

relations s|t = πe(Φ(s|t)) with s, t ∈ Se. First, if s, t in Se satisfy st ∈ Se, then we must have

Φ(s|t) = st|e, and, if they satisty st = 1, then we must have Φ(s|t) = e|e, so that πe(Φ(s|t)) = st
holds in both 
ases. Thus, T is in
luded in the presentation of Proposition 3.1.8 (i). Conversely,

let us show that ea
h relation s|t = πe(Φ(s|t)) with s, t in Se follows from a �nite number of

relations of T . So assume that s and t lie in Se and let s′|t′ = Φ(s|t). If t′ = e holds, we

have s′ = st in M , so the result is true. Otherwise, the assumption that (S,Φ) is left-weighted
implies that there exists r in M satisfying sr = s′. By 
onstru
tion, r is a right-divisor of s′

in M so, by Lemma 6.2.4, r must lie in S. Then, in M , we have s′ = sr, when
e st = srt′.
The assumption that M is left-
an
ellative implies t = rt′. Hen
e the relation s|t = s′|t′ is the

onsequen
e of s|r = s′ and rt′ = t. �

Note that the existen
e of the presentation of Proposition 6.3.1 is only possible in a non-

graded 
ontext, ex
ept for the free monoid S∗
with its presentation 〈S | 〉+.

Example 6.3.2. Consider the braid monoid B+

3 , that is, the monoid presented by 〈a, b | aba =
bab〉+. Then B+

3 has a Garside family 
onsisting of the six elements 1, a, b, ab, ba, and aba.

Proposition 6.3.1 provides a presentation of B+

3 whose generators are the �ve nontrivial elements

of the Garside family, and with the six relations a|b = ab, b|a = ba, and a|ba = b|ab = ab|a =
ba|b = aba. This presentation is mu
h smaller than the one provided by (3.1.11), that has the

same �ve generators and 52 = 25 relations, su
h as ab|ab = aba|b or a|a = a|a.

Another subsequent development is that Garside families give rise to 
onvergent rewriting

system. Indeed, Propositions 5.2.1 and 6.2.3 dire
tly imply

Proposition 6.3.3. Assume that M is a left-
an
ellative monoid with no nontrivial invertible

elements and S is a Garside family in M . Let R 
onsist of all rules s|t → w with s, t in S \ {1}
and w the minimal length S-normal de
omposition of s|t. Then the rewriting system (S\{1}, R)
is 
onvergent.
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As mentioned in Example 6.1.4, every �nitely generated Artin�Tits monoid admits a �nite

Garside family. Being also left-
an
ellative with no nontrivial invertible element, Artin�Tits

monoids are thus eligible to Proposition 6.3.3.

Corollary 6.3.4. Every Artin�Tits monoid admits a �nite quadrati
 
onvergent presentation.

Example 6.3.5. In the 
ase of a spheri
al Artin�Tits monoid, the elements of the 
orre-

sponding Coxeter group form a �nite Garside family, and Corollary 6.3.4 
orresponds to [14,

Theorem 3.1.3, Prop. 3.2.1℄. In the nonspheri
al 
ase, Corollary 6.3.4 is an improvement of the

latter results, whi
h only give an in�nite 
onvergent presentation. For instan
e, in type Ã2,

the 16-element Garside family des
ribed in Example 6.1.4 yields a 
onvergent rewriting system

for Ã2 with 15 generators and 87 relations.
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