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Abstrat. In the general ontext of presentations of monoids, we study normalisation pro-

esses that are determined by their restrition to length-two words. Garside's greedy normal

forms and quadrati onvergent rewriting systems, in partiular those assoiated with the

plati monoids, are typial examples. Having introdued a parameter alled the lass mea-

suring the omplexity of the normalisation of length-three words, we analyse the normali-

sation of longer words and desribe a number of possible behaviours. We fully axiomatise

normalisations of lass (4, 3), show the onvergene of the assoiated rewriting systems, and

haraterise those deriving from a Garside family.

1. Introdution

A normal form for a monoid M , with a spei�ed generating subfamily S, is a map that

assigns to eah element of M a distinguished representative word over S. Our aim in this

paper is to investigate a ertain type of suh normal forms and, more preisely, the assoiated

normalisation proesses, that is, the syntati transformations that lead from an arbitrary word

to a normal word. Here we restrit to geodesi normal forms, whih selet representatives of

minimal length, and investigate the quadrati ase, that is, when some loality onditions are

satis�ed: that a word is normal if, and only if, eah of its length-two fators are normal, and

that one an always transform a word into a normal word by a �nite sequene of steps, eah of

whih onsists in normalising a length-two fator.

This general framework inludes two well-known lasses of normalisation proesses: those

assoiated with Garside families as investigated in [8℄ and [10℄, building on the seminal example

of the greedy normal form in Artin's braid monoids [1, 11, 12℄, and those assoiated with

quadrati rewriting systems as investigated for instane in [14℄ for Artin monoids and in [3, 4℄

for plati monoids. So our urrent development an be seen as an e�ort to unify various

approahes and understand their ommon features. This program is made natural by the

observation that, in spite of their unrelated de�nitions, the normalisation proesses arising in

the above mentioned situations share ommon mehanisms: for instane, in eah ase, a length-

three word an be normalised in three steps, suessively normalising the length-two fators in

position 2-3, then in position 1-2, and in position 2-3 again.

D.Krammer's ideas had a seminal in�uene in our approah, in partiular for the onnetion

between normalisation and the monoid underlying Subsetion 4.3, whih he investigated in [18℄.

A similar onnetion was independently disovered by A.Hess and V.Ozornova in [15, 19, 16℄,

partly building on unpublished work by M.Rodenhausen. Our urrent approah is lose to

theirs in the ase of graded monoids. In this ase, beyond minor terminology disrepanies, the

fatorability strutures of [16℄ orrespond to what we all normalisations of lass (4, 3). But, in
the general ase, the two viewpoints are not diretly omparable beause of divergent treatment

of units and invertible elements: in both approahes a �dummy� element is used, but with

di�erent assumptions, resulting in di�erent notions of omplexity and di�erent onlusions. It

seems that every fatorability struture yields a normalisation of lass (4, 5) but understanding
whih normalisations of lass (4, 5) arise in this way remains open.

1991 Mathematis Subjet Classi�ation. 20M05, 68Q42, 20F10, 20F36, 18B40.

Key words and phrases. normal form; normalisation; rewriting system; termination; onvergene; plati

monoid; Chinese monoid; Artin�Tits monoid; Garside family.

1



2 PATRICK DEHORNOY AND YVES GUIRAUD

Let us present our main results. The entral tehnial notion is that of a normalisation,

whih is a pair (S,Φ) made of a set S and an idempotent length-preserving map Φ from the

free monoid S∗
to itself: the intuition is that Φ(w) is the result of normalising w, that is, Φ(w)

is the distinguished element in the equivalene lass of w. The normalisation automatially

determines the assoiated monoid via the de�ning relations w = Φ(w), and we take it as our

basi objet of investigation. We all quadrati a normalisation (S,Φ) suh that a word w
is Φ-normal (meaning Φ(w) = w) if, and only if, eah length-two fator of w is Φ-normal,

and suh that one an go from w to Φ(w) by applying a �nite sequene of shifted opies

of the restrition Φ of Φ to the set S[2]
of length-two words. We then introdue, for every

quadrati normalisation, a lass, whih is a pair of positive integers desribing the omplexity

of normalisation for length-three words: by de�nition, if w is a length-three word, Φ(w) is equal
to Φ212...[m](w) or Φ121...[m](w), meaning a length-m sequene of alternate appliations of Φ in

positions 1-2 and 2-3, and we say that the lass is (c, c′) if one always reahes the normal form

after at most c steps when starting from the left, and c′ steps from the right. We observe that

the lass, if not in�nite, has the form (c, c′) with |c′ − c| 6 1 and that a system of lass (c, c′)
is of lass (d, d′) for all d > c and d′ > c′. We give a number of examples witnessing possible

behaviours for the lass and its analogue for the normalisation of longer words. However, most

of our general results involve quadrati normalisations of lass (4, 3) or (3, 4).
The �rst main result is an axiomatisation of normalisations of lass (4, 3) in terms of the

restrition of the normalisation map to length-two words:

Theorem A. If (S,Φ) is a quadrati normalisation of lass (4, 3), then the restrition Φ of Φ
to S[2]

is idempotent and satis�es Φ212 = Φ2121 = Φ1212. Conversely, if φ is an idempotent

map on S[2]
that satis�es φ212 = φ2121 = φ1212, there exists a quadrati normalisation (S,Φ) of

lass (4, 3) satisfying φ = Φ.

The diret impliation is easy and extends to all lasses. But the onverse diretion is more

deliate and does not extend: a map on length-two words normalising length-three words needs

not normalise words of greater length. The proof of Theorem A involves the monoidMp studied

in [18℄ and [16℄, whih is an asymmetri version of Artin's braid monoids where the relation

σ2σ1σ2 = σ1σ2σ1 is replaed with σ2σ1σ2 = σ1σ2σ1σ2 = σ2σ1σ2σ1. Let us mention that [16,

Theorem 3.4℄ is an analogue of Theorem A for fatorability strutures but, beause of di�erent

treatment of units, it seems di�ult to further ompare both results.

The seond main result involves termination. Every quadrati normalisation (S,Φ) gives rise
to a quadrati rewriting system, namely the one with rules w → Φ(w) for w a length-two word.

By de�nition, this rewriting system is on�uent and normalising, meaning that, for every initial

word, there exists a �nite sequene of rewriting steps leading to a unique Φ-normal word, but

its onvergene, meaning that any sequene of rewriting steps is �nite, is a di�erent question.

We prove

Theorem B. If (S,Φ) is a quadrati normalisation of lass (3, 4) or (4, 3), then the assoiated

rewriting system is onvergent. More preisely, every rewriting sequene starting from a length-p
word has length at most 2p − p− 1.

The result an be ompared with the easier result that, in lass (3, 3), every rewriting se-

quene starting from a length-p word has length at most p(p − 1)/2, and it is optimal as we

exhibit a nononvergent rewriting system of lass (4, 4). The proof of Theorem B is deliate and

relies on a diagrammati tool alled the domino rule. Theorem B exhibits a strong di�erene

between the fatorability strutures of [16℄ and normalisations of lass (4, 3), sine the former

an indue nonterminating rewriting systems, as witnessed by the ounter-example of [16, Ap-

pendix, Prop. 7℄. However, there is a onnetion between Theorem B and [16, Theorem 7.3℄,

whih states termination in the ase of a fatorability struture that obeys the domino rule,

hene, as a normalisation, is of lass (4, 3). The arguments are di�erent, and it is not lear how

restritive it is for a normalisation of lass (4, 3) to be assoiated with a fatorability struture.
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As mentioned above, Garside normalisation [10℄ integrates into quadrati normalisations,

more preisely normalisations of lass (3, 3) in the ase of a bounded Garside family, and of

lass (4, 3) in the general ase. It is natural to to ask for a haraterisation of Garside systems

inside the family of all normalisations of lass (4, 3). This is the last one of our main results:

Theorem C. Call a normalisation (S,Φ) left-weighted if, for all s, t in S, the element s left-

divides the �rst entry of Φ(s|t) in the assoiated monoid. Then, for every normalisation (S,Φ)
suh that the assoiated monoid M is left-anellative and ontains no nontrivial invertible

element, the family S is a Garside family in M and (S,Φ) is the derived normalisation if, and

only if, (S,Φ) is of lass (4, 3) and is left-weighted.

The proof relies on nontrivial properties of Garside families and, again, on the domino rule

available in lass (4, 3). A onsequene of Theorems B and C is that the rewriting system

derived from a Garside family is always onvergent, whih generalises the ase of Artin�Tits

monoids with the elements of the orresponding Coxeter group as generators [14, Theorem 3.1.3,

Prop. 3.2.1℄.

The paper is organised in �ve setions after this one. Setion 2 ontains basi de�nitions

about normal forms and normalisations in the general ase. We explain how the adjuntion

of a dummy generator with spei� properties extends the use of length-preserving normali-

sations to non-graded monoids. In Setion 3, we introdue quadrati normalisations as those

whose map is determined by its restrition to length-two words, and we establish a bijetive

orrespondene between the latter and a generalisation of onvergent rewriting systems (with

termination relaxed into normalisation). We also introdue the lass, and its generalisation

the p-lass, as omplexity measures and establish their basi properties. In partiular, we give

ounterexamples showing the independene of the 3-lass and of the p-lass for p > 4. Setion 4

is devoted to the spei� ase of quadrati normalisations of lass (4, 3). Suh systems provide

well-behaved normalisation proesses; we establish in partiular an expliit universal formula

for the normalisation of length-p words and, as an appliation, we show that being of lass (4, 3)
implies being of p-lass (4, 3) for every p. The setion ends with Theorem A. In Setion 5, we

study the relationship between the lass of a quadrati normalisation and the termination of

the assoiated rewriting system, proving in partiular Theorem B. Finally, Setion 6 is devoted

to the onnetion with Garside families and the assoiated greedy normal forms, establishing

Theorem C.

Note that almost all observations in this paper extend from the ontext of monoids to that

of ategories, seen as monoids with a partially de�ned produt.

2. Normalisations and geodesi normal forms

In this introdutory setion, we de�ne normalisations and onnet them with geodesi normal

forms of monoids (Subsetion 2.1). We explain how to add a �dummy� generator to make the

restrition to length-preserving maps innouous (Subsetion 2.2).

2.1. Normalisations. If S is a set, we denote by S∗
the free monoid over S and all its

elements S-words, or simply words. We write ‖w‖ for the length of an S-word w, and w|w′
, or

simply ww′
, for the produt of two S-words w and w′

.

Our aim is to investigate normal forms of a monoid M with respet to a generating family S,
that is, maps from M to S∗

that hoose, for every element g of M , a distinguished expression

of g by an S-word, or, equivalently, maps from S∗
to itself that hoose a distinguished element

in eah equivalene lass. We shall privilege the latter approah, in whih the primary objet

is the word map and the monoid is then derived from it.

De�nition 2.1.1. A normalisation is pair (S,Φ), where S is a set and Φ is a map from S∗
to

itself satisfying, for all S-words u, v, w,

‖Φ(w)‖ = ‖w‖,(2.1.2)
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‖w‖ = 1 implies Φ(w) = w,(2.1.3)

Φ(u|Φ(w)|v) = Φ(u|w|v).(2.1.4)

An S-word w satisfying Φ(w) = w is alled Φ-normal. If M is a monoid, we say that (S,Φ) is
a normalisation for M if M admits the presentation

(2.1.5) 〈S | {w = Φ(w) | w ∈ S∗}〉+.

Note that (2.1.4) implies that Φ is idempotent. The homogeneity ondition (2.1.2) is dis-

ussed (and partly skirted around) in Subsetion 2.2.

Example 2.1.6. Assume that S is a set and < is a linear order on S. For w in S∗
, de�ne Φ(w)

to be the <∗
-minimal word obtained by permuting letters in w, where <∗

is the lexiographi

extension of < to S∗
. So, for instane, assuming a, b, c ∈ S and a < b < c, we �nd Φ(bcabac) =

aabbcc. Then (S,Φ) is a normalisation for the free ommutative monoid N
(S)

over S.

The following fat is a diret onsequene of the de�nition:

Lemma 2.1.7. If (S,Φ) is a normalisation for a monoid M , then M admits a graduation suh

that all elements of S have degree one, that is, there exists a morphism d : M → (N,+) suh
that s ∈ S implies d(s) = 1.

Proof. For g in M , all the S-words representing g must have the same length by (2.1.2): de�ne

d(g) to be this ommon length. �

The following result onnets De�nition 2.1.1 with the alternative approah in whih the

monoid is given �rst. If a monoid M is generated by a set S, we denote by ev the anonial

projetion from S∗
to M .

Lemma 2.1.8. Assume that M is a monoid and S is a generating subfamily of M . If Φ is a

length-preserving map from S∗
to itself, then (S,Φ) is a normalisation for M if, and only if,

for all S-words w,w′
, the following onditions hold:

ev(Φ(w)) = ev(w),(2.1.9)

ev(w) = ev(w′) implies Φ(w) = Φ(w′).(2.1.10)

Proof. Assume that (S,Φ) is a normalisation for M . As (2.1.5) is a presentation of M , eah

relation Φ(w) = w is valid in M and, therefore, (2.1.9) holds. Next, assume that w,w′
are

S-words satisfying ev(w) = ev(w′). As (2.1.5) is a presentation of M , (2.1.10) follows from

Φ(u|w|v) = Φ(u|Φ(w)|v), whih is (2.1.4).

Conversely, assume that (2.1.9) and (2.1.10) are satis�ed. By assumption on Φ, (2.1.2) is sat-
is�ed and, for s in S, we have Φ(s) ∈ S, so that S ⊆ M implies ev(s) = s and ev(Φ(s)) = Φ(s),
whene (2.1.3) by (2.1.9). Then, for S-words u, v, w, we have ev(u|Φ(w)|v) = ev(u|w|v)
by (2.1.9), whene (2.1.4) by (2.1.10). So (S,Φ) is a normalisation. Finally, (2.1.5) is a presen-

tation of M beause, on the one hand, all relations Φ(w) = w are valid in M by (2.1.9) and,

on the other hand, ev(w) = ev(w′) implies Φ(w) = Φ(w′) by (2.1.10), hene (2.1.9) implies

that w and w′
are equivalent to Φ(w) modulo the relations of (2.1.5). �

We now onnet normalisations with the usual notion of a normal form.

De�nition 2.1.11. If M is a monoid and S is a generating subfamily of M , a normal form

on (M,S) is a (set-theoreti) setion of the anonial projetion ev of S∗
onto M . A normal

form nf on (M,S) is alled geodesi if, for every g in M , we have ‖nf(g)‖ 6 ‖w‖ for every

S-word w representing g.

For graded monoids, normalisations are equivalent to normal forms:
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Proposition 2.1.12. (i) If (S,Φ) is a normalisation for a monoid M , we obtain a normal

form on (M,S) by putting

(2.1.13) nf(g) = Φ(w), where w is any representative of g.

(ii) Conversely, assume that M is a graded monoid, S is a generating subfamily of M whose

elements have degree 1, and nf is normal form on (M,S). Then we obtain a normalisa-

tion (S,Φ) for M by putting

(2.1.14) Φ(w) = nf(ev(w)).

(iii) The orrespondenes of (i) and (ii) are inverses of one another.

Proof. (i) First the de�nition makes sense, sine, if w,w′
are two representatives of g, then (2.1.10)

implies Φ(w) = Φ(w′). Next, assuming ev(w) = g, we obtain ev(nf(g)) = ev(Φ(w)) =
ev(w) = g using (2.1.9), so nf is a setion of ev.

(ii) The assumption that M is graded implies ‖Φ(w)‖ = ‖w‖ for every S-word w. Then,

(2.1.14) implies ev(Φ(w)) = ev(nf(ev(w))) = ev(w) beause nf is a setion of ev, so (2.1.9)

holds. Finally, ev(w) = ev(w′) implies nf(ev(w)) = nf(ev(w′)), whene (2.1.10). So, by

Lemma 2.1.8, (S,Φ) is a normalisation for M .

(iii) If (S,Φ) is a normalisation for M , and nf is de�ned by (2.1.13) and Φ′
by (2.1.14), then

Φ′(w) = nf(ev(w)) = Φ(w) holds, sine w is a representative of ev(w). Conversely, if nf is

a normal form on (M,S), and Φ is de�ned by (2.1.14) and nf

′
by (2.1.13), then ev(w) = g

implies nf

′(g) = Φ(w) = nf(g). Hene the orrespondenes of (i) and (ii) are inverses of one

another. �

2.2. The non-graded ase. So far, aording to Lemma 2.1.7, only graded monoids are eli-

gible. We explain how to adapt our approah to arbitrary monoids.

De�nition 2.2.1. We say that (S,Φ, e) is an epinormalisation if (S,Φ) is a normalisation and

e is a Φ-neutral element of S, meaning that

(2.2.2) Φ(w|e) = Φ(e|w) = Φ(w)|e

hold for every S-word w. If M is a monoid, we say that (S,Φ, e) is an epinormalisation for M
if M admits the presentation

(2.2.3) 〈S | {w = Φ(w) | w ∈ S∗} ∪ {e = 1}〉+,

and we then write eve for the anonial projetion of S∗
e onto M .

If (S,Φ) is a normalisation for a monoid M , (2.2.2) implies that there exists at most one

Φ-neutral element in S and, if e is suh an element, that (S,Φ, e) is an epinormalisation for the

monoid obtained by ollapsing e in M .

Lemma 2.2.4. Assume that (S,Φ, e) is an epinormalisation for a monoid M . Put Se = S\{e}
and let πe be the anonial projetion from S∗

onto S∗
e .

(i) The monoid M admits the presentation

(2.2.5) 〈Se | {w = πe(Φ(w)) | w ∈ S∗
e}〉

+.

(ii) For all S-words w0, ... , wℓ, we have

(2.2.6) Φ(w0|e|w1| ··· |wℓ−1|e|wℓ) = Φ(w0| ··· |wℓ)|e
ℓ.

(iii) For every S-word w, we have Φ(w) = w′|eℓ, where w′
is an Se-word and ℓ is an upper

bound of the number of ourrenes of e in w.

Proof. (i) By de�nition, M is generated by S, hene by Se. Next, for every Se-word w, the
relation w = πe(Φ(w)) is valid in M owing to πe(w) = w. As M admits the presentation (2.2.3),

it remains to hek that all relations of (2.2.3) an be derived from those of (2.2.5) plus e = 1:
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this is beause the S-word Φ(w) is obtained from πe(Φ(w)) by inserting opies of e thanks to

the relation e = 1.
(ii) Use indution on ℓ > 0. For ℓ = 0, the result is immediate. For ℓ > 1, we �nd

Φ(w0 |e|w1| ··· |wℓ−1|e|wℓ) = Φ(w0 |e|w1| ··· |wℓ−1|Φ(e|wℓ)) by (2.1.4)

= Φ(w0 |e|w1| ··· |wℓ−1|wℓ|e) by (2.2.2)

= Φ(w0 |e|w1| ··· |wℓ−1|wℓ)|e by (2.2.2)

= Φ(w0 | ··· |wℓ−1|wℓ)|e
ℓ

by indution hypothesis.

(iii) By (ii), we have Φ(w) = v|ep, where v is Φ(πe(w)) and p is the number of ourrenes

of e in w. By the same argument, we �nd that Φ(v) is w′|eq, where w′
is Φ(πe(v)) and q is the

number of ourrenes of e in v. Sine Φ is idempotent, we have v = Φ(v) = w′|eq. We dedue

that w′
ontains no e and that Φ(w) = w′|ep+q

holds. �

The following variation of Proposition 2.1.12 requires no graduation assumption: the solution

is to add a dummy generator to preserve word length.

Proposition 2.2.7. (i) If (S,Φ, e) is an epinormalisation for a monoid M , we obtain a geodesi

normal form on (M,Se) by putting

(2.2.8) nf(g) = πe(Φ(w)), where w is any representative of g in S∗.

(ii) Conversely, assume that M is a monoid, S is a generating subfamily of M , and nf is a

geodesi normal form on (M,S). Put Se = S ∐ {e} and write ev

e
for the anonial projetion

of S∗
onto M extended to (Se)∗ by ev

e(e) = 1. Then we obtain an epinormalisation (Se,Φ, e)
for M by putting

(2.2.9) Φ(w) = nf(eve(w))|em, with m = ‖w‖ − ‖nf(eve(w))‖.

(iii) The orrespondenes of (i) and (ii) are inverses of one another.

Proof. (i) Let w,w′
be two representatives of g in S∗

. Then one an be obtained from the other

by applying relations v = v′ with either v = u1|Φ(u2)|u3 and v′ = u1|u2|u3, or v = u1|e|u2 and

v′ = u1|u2. In the �rst ase, (2.1.4) gives Φ(v) = Φ(v′). In the seond ase, Lemma 2.2.4 (ii)

gives Φ(v) = Φ(v′)|e. Thus we have πe(Φ(w)) = πe(Φ(w
′)) and nfe(g) is well de�ned.

Now, let M e
be the monoid presented by (2.1.5), π : M e ։ M and eve : S∗

e ։ M be

the anonial projetions. For g in M and w be a representative of g in S∗
, the relation

π ◦
ev = eve ◦ πe and (2.1.9) imply

eve(nf(g)) = eve(πe(Φ(w)) = π(ev(Φ(w))) = π(ev(w)) = g,

so nf is a normal form on (M,Se). Moreover, we have ‖πe(Φ(w))‖ 6 ‖Φ(w)‖ = ‖w‖, so nf is

geodesi.

(ii) Sine nf is geodesi, we have ‖nf(eve(w))‖ 6 ‖w‖ for every Se
-word w. So (2.2.9)

makes sense and Φ is length-preserving. Next, for s ∈ Se
, we have either s ∈ S and Φ(s) =

nf(s) = s, or s = e and Φ(e) = nf(1)|e = e. Then, sine nf is a setion of ev, (2.2.9) gives

ev

e(Φ(w)) = ev(nf(eve(w)) = ev

e(w), yielding nf(eve(u|Φ(w)|v)) = nf(eve(u|w|v)) and,

sine Φ is length-preserving, Φ(u|Φ(w)|v) = Φ(u|w|v). Thus (Se,Φ) is a normalisation.

Now, let w be an Se
-word, with m = ‖w‖ − ‖nf(eve(w))‖. Then we have ev

e(w|e) =
ev

e(e|w) = ev

e(w), whene Φ(w|e) = nf(eve(w))|em+1 = Φ(w)|e, and, similarly, Φ(e|w) =
Φ(w)|e, so e is Φ-neutral. Finally, by Lemma 2.2.4(i), the monoid M admits the presen-

tation 〈(Se)e | {w = πe(Φ(w)) | w ∈ (Se)∗e}〉
+
. Owing to the equalities (Se)e = S and

πe(Φ(w)) = πe(nf(ev
e(w))|em) = nf(ev(w)), the monoid M also admits the presentation

〈S | {w = nf(ev(w)) | w ∈ S∗}〉+.
(iii) Starting from (i), let (Se,Φ′, e) be the epinormalisation derived from nf using (ii).

Then we have (Se)
e = S and Φ′(w) = nf(ev(w))|em = πe(Φ(w))|e

m
, whene Φ′(w) = Φ(w)

by Lemma 2.2.4 (iii). Conversely, starting from (ii), let nf

′
be the normal form derived from Φ
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using (i). Then we have nf

′(g) = πe(Φ(w)) = πe(nf(ev
e(w))|em) = nf(g) for every g in M

with representative S-word w. �

Remark. If a monoidM is graded with respet to a generating family S and nf is a normal form

on (M,S), then two normalisations ome assoiated with M and S: the one (S,Φ) provided by

Proposition 2.1.12 (ii), and the one (Se,Φe) provided by Proposition 2.2.7 (ii). The onnetion

between these systems is given, for every Se
-word w, by the equality πe(Φ

e(w)) = Φ(πe(w)).

3. Quadrati normalisations and their lass

We now restrit our study to partiular normalisations that are, in a onvenient sense,

generated by transformations of length-two words. After basi de�nitions and examples (Sub-

setion 3.1), we relate those normalisations with rewriting systems (Subsetion 3.2). Then we

introdue the lass of suh a normalisation as a pair of elements of N∪{∞} that gives an upper

bound on the omplexity of normalisation for length-three words (Subsetion 3.3). Finally, we

onsider the p-lass, an analogue involving length-p words (Subsetion 3.4).

3.1. Quadrati normalisations.

Notation 3.1.1. (i) If S is a set and φ is a map from the set S[p]
of length-p S-words to itself,

then, for i > 1, we denote by φi the (partial) map of S∗
to itself that onsists in applying φ to

the entries in position i, ... , i+ p− 1. If u = i1| ··· |in is a �nite sequene of positive integers, we

write φu for the omposite map φin
◦ ··· ◦ φi1 .

(ii) If (S,Φ) is a normalisation, we denote by Φ the restrition of Φ to S[2]
.

Here is the main notion investigated in this paper:

De�nition 3.1.2. A normalisation (S,Φ) is alled quadrati if the following onditions hold:

An S-word w is Φ-normal if, and only if, every length-two fator of w is.(3.1.3)

For every S-word w, there exists a �nite sequene u of positions, depending on w,
suh that Φ(w) is equal to Φu(w).

(3.1.4)

So, a normalisation (S,Φ) is quadrati if Φ-normality only depends on length-two fators

and if one an go from an S-word w to the S-word Φ(w) in �nitely many steps, eah of whih

onsists in applying Φ to some length-two fator. Note that, provided S is �nite, (i) implies

that the language of all Φ-normal S-words is regular.

Example 3.1.5. The normalisation (S,Φ) of Example 2.1.6 is quadrati. Indeed, an S-word is

Φ-normal if, and only if, all its length-two subfators are of the form s|t with s 6 t, so (3.1.3) is
satis�ed. Moreover, (3.1.4) holds, sine every S-word w an be transformed into the equivalent

Φ-normal S-word Φ(w) by swithing adjaent letters that are not in the expeted order: for

instane, if a < b < c, one has Φ(cbba) = abbc = Φ31213(cbba). Note that the sequene of

length-two normalisations is not unique, and depends on the initial word.

De�nition 3.1.2 gathers two loality onditions, whih, taken separately, do not seem to have

interesting onsequenes in our approah: (3.1.3) is a stati haraterisation of normal words,

whereas (3.1.4) is dynamial in that it involves transformations into normal words. As (3.1.4)

implies that a length-two word is Φ-normal if, and only if, it is Φ-invariant, it indues the

right-to-left impliation in (3.1.3). The next two ounterexamples show that this is the only

general onnetion between (3.1.3) and (3.1.4).

Example 3.1.6. Let S = {a, b, c} and Φ : S∗ → S∗
be de�ned by Φ(ab) = Φ(ac), Φ(ca) = ba,

Φ(w) = w for every other w of length at most 2, and Φ(w) = a‖w‖
for ‖w‖ > 3. Then (S,Φ) is

a normalisation, it satis�es (3.1.3), but not (3.1.4): we have Φ(aba) = a3 and Φ(aca) = a3 so

aba and aca are not Φ-normal, but the only S-words that an be obtained from aba and aca

using Φ1 and Φ2 are aba and aca themselves. Hene (3.1.3) does not imply (3.1.4).
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Example 3.1.7. Let S = {a, b} and Φ : S∗ → S∗
be de�ned by Φ(w) = w for ‖w‖ 6 1, and

Φ(w) = a‖w‖−1b for ‖w‖ > 2. Then (S,Φ) is a normalisation for the monoid 〈S | ab = ba =
b2 = a2〉+. Now (3.1.3) fails, sine aab, whih is Φ-normal, ontains the non Φ-normal fator aa.

But (3.1.4) is satis�ed, sine a straightforward indution gives Φ(w) = Φ1| ··· |p−1(w) for w of

length p > 2. Hene (3.1.4) does not imply (3.1.3).

When a normalisation (S,Φ) is quadrati, the restrition Φ of Φ to S[2]
is ruial. Here are

�rst general properties.

Proposition 3.1.8. (i) If (S,Φ) is a quadrati normalisation for a monoid M , then Φ is

idempotent and M admits the presentation

(3.1.9) 〈S | {s|t = Φ(s|t) | s, t ∈ S}〉+;

(ii) If (S,Φ) is a quadrati normalisation, then an element e of S is Φ-neutral if, and only

if, it satis�es

(3.1.10) Φ(e|s) = Φ(s|e) = s|e for every s in S.

(iii) If (S,Φ, e) is a quadrati epinormalisation for a monoid M , then M admits the presen-

tation

(3.1.11) 〈Se | {s|t = πe(Φ(s|t)) | s, t ∈ Se}〉
+.

Proof. (i) By (2.1.4), Φ is idempotent, hene so is its restrition Φ. The monoid M admits

the presentation (3.1.9) beause it admits the presentation (2.1.5) with the same generators,

beause the relations (3.1.9) are ontained into the ones of (2.1.5), and beause (3.1.4) implies

that every relation of (2.1.5) is a onsequene of �nitely many relations of (3.1.4).

(ii) The relations (3.1.10) are partiular instanes of (2.2.2), so they hold if e is Φ-neutral.
Conversely, assume (3.1.10) and let w be an S-word.

We �rst prove Φ(w|e) = Φ(w)|e. We have Φ(w|e) = Φ(Φ(w)|e) by (2.1.4). Moreover, every

length-two fator of Φ(w)|e is Φ-normal. Indeed, for ‖w‖ > 1, writing Φ(w) = w′|s with w′ ∈ S∗

and s ∈ S, the length-two fators of Φ(w)|e are those of Φ(w), whih are Φ-normal by (3.1.3),

and s|e, whih is Φ-normal by (3.1.10). Hene Φ(w)|e is Φ-normal by (3.1.3), whih implies

Φ(w|e) = Φ(w)|e.
Now, we prove Φ(e|w) = Φ(w|e) by indution on ‖w‖. The result is immediate for ‖w‖ =

0. Otherwise, write w = s|w′
, with s in S and w′

satisfying Φ(e|w′) = Φ(w′|e). Us-

ing (2.1.4), (3.1.10) and the indution hypothesis on w′
, we �nd Φ(e|s|w′) = Φ(Φ(e|s)|w′) =

Φ(s|e|w′) = Φ(s|Φ(e|w′)) = Φ(s|Φ(w′|e)) = Φ(s|w′|e), so e is Φ-neutral.
(iii) By (i), M is presented by 〈S | {s|t = Φ(s|t) | s, t ∈ S} ∪ {e = 1}〉+. Applying the Tietze

transformation that ollapses e onto 1, we obtain the presentation 〈Se | {πe(s|t) = πe(Φ(s|t)) |
s, t ∈ S}〉+ for M . If at least one of s or t is e, then by (3.1.10), the orresponding relation boils

down to s = s, t = t or 1 = 1, so that we an remove it. Otherwise, we have πe(s|t) = s|t,
yielding (3.1.11). �

3.2. Quadrati normalisations and rewriting. We reall that a (word) rewriting system is

a pair (S,R) onsisting of a set S and a binary relation R on S∗
whose elements (w,w′) are

written w → w′
and alled rewriting rules.

Assume that (S,R) is a rewriting system. We denote by →R the losure of R with respet to

the produt of S∗
and by →∗

R the re�exive-transitive losure of →R. An S-word w is R-normal

if w →∗
R w′

implies w′ = w. If w,w′
are S-words, w′

is an R-normal form of w if w →∗
R w′

and w′
is R-normal. One says that (S,R) is quadrati if w → w′ ∈ R implies ‖w‖ = ‖w′‖ = 2;

redued if w → w′ ∈ R implies that w′
is R-normal and w is R \ {w → w′}-normal; normalising

if every S-word admits at least an R-normal form; and on�uent if the onjuntion of w →∗
R w1

and w →∗
R w2 implies w1 →∗

R w′
and w2 →∗

R w′
for some w′

. As a rewriting rule is a pair of

words, there is no ambiguity in speaking of the monoid presented by (S,R).
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Proposition 3.2.1. (i) If (S,Φ) is a quadrati normalisation for a monoid M , then we obtain

a quadrati, redued, normalising and on�uent rewriting system (S,R) presenting M by putting

(3.2.2) R = {s|t → Φ(s|t) | s, t ∈ S, s|t 6= Φ(s|t)}.

(ii) Conversely, if (S,R) is a quadrati, redued, normalising and on�uent rewriting system

presenting a monoid M , we obtain a quadrati normalisation (S,Φ) for M by putting

(3.2.3) Φ(w) = w′
where w′

is the R-normal form of w.

(iii) The orrespondenes of (i) and (ii) are inverses of one another.

Proof. (i) By de�nition, (S,R) is quadrati and redued, and, for all S-words w and w′
, we have

w →∗
R w′

if, and only if, w′ = Φu(w) holds for some sequene u of positions. Thus, by (3.1.4), R
is normalising. Moreover, the onjuntion of w →∗

R w1 and w →∗
R w2 implies Φ(w1) = Φ(w2),

hene (S,R) is on�uent by (3.1.4). Finally, (S,R) is a presentation of M by (3.1.9).

(ii) Sine (S,R) is normalising and on�uent, every S-word admits exatly one R-normal

form, so (3.2.3) makes sense and implies that M admits the presentation (2.1.5). Next, sine R
is quadrati, Φ is length-preserving and preserves generators. Moreover, the R-normal forms of

u|w|v and of u|Φ(w)|v are equal, whene Φ(u|w|v) = Φ(u|Φ(w)|v). So (S,Φ) is a normalisation

for M . Moreover, the de�nition of Φ implies that it satis�es both (3.1.3) and (3.1.4).

(iii) The proof is straightforward. �

Note that the rewriting system assoiated to a quadrati normalisation does not always

terminate, meaning that there may exist in�nite rewriting sequenes w0 →R w1 →R w2 →R ··· ,
as shown in Setion 5.

Example 3.2.4. If (S,Φ) is the quadrati normalisation for the free ommutative monoid N
(S)

of Example 2.1.6, the assoiated quadrati rewriting system (S,R) ontains one rule ts → st
for all s, t in S with t > s. By Proposition 3.2.1 (i), this rewriting system is normalising and

on�uent.

Proposition 3.2.1(i) an be delined to aount for a neutral element and the termination

properties of the orresponding rewriting systems are related.

Proposition 3.2.5. (i) If (S,Φ, e) is an epinormalisation for a monoid M , then we obtain a

redued, normalising and on�uent rewriting system (Se, Re) presenting M by putting

(3.2.6) Re = {s|t → πe(Φ(s|t)) | s, t ∈ Se, s|t 6= Φ(s|t)}.

(ii) If the rewriting system (S,R) of (3.2.2) terminates, then so does (Se, Re).

Proof. (i) Similar to Proposition 3.2.1(i).

(ii) If w →Re
w′

holds for Se-words w,w′
, then, by de�nition, there exists a position i

satisfying w′ = πe(Φi(w)). Thus, there exists a sequene of positions u = i1| ··· |ip satisfying

Φu(Φi(w)) = w′|em for some m, and where eah Φij ats aording to a rule e|s → s|e. Hene,
eah sequene w0 →Re

w1 →Re
··· →Re

wℓ in S∗
e lifts to a sequene

w0 →R w′
0 →∗

R w1 |e
m1 →R w′

1 |e
m1 →∗

R w2 |e
m1+m2 →∗

R ··· →∗
R wℓ|e

m1+ ···+mℓ

in S∗
. So, if (Se, Re) does not terminate, neither does (S,R). �

3.3. The lass of a quadrati normalisation. By de�nition, if (S,Φ) is a quadrati normal-

isation and w is an S-word, then Φ(w) is obtained by suessively applying the restrition Φ
of Φ to various length-two fators. We shall now investigate the possibilities and introdue a

parameter, alled the lass, evaluating the omplexity of the proedure for length-three S-words.
For suh a w, there must exist a �nite sequene u of positions 1 and 2, suh that, with the

onvention of Notation 3.1.1, Φ(w) is equal to Φu(w). As Φ is idempotent, repeating 1 or 2 in

the sequene u is useless, and it is enough to onsider alternating words u of the form 121...
or 212..., omitting the separators to make reading easier. For m > 0, we write 121...[m] for
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the alternating word 121... of length m, and similarly for 212...[m]. So, for instane, Φ212...[4]

will stand for Φ2121, that is, for the omposition of Φ2, Φ1, Φ2, and Φ1 with Φ2 applied �rst.

Aording to the above disussion, if (S,Φ) is a quadrati normalisation, then, for every length-

three S-word w, there exists m suh that Φ(w) is Φ121...[m](w) or Φ212...[m](w).

De�nition 3.3.1. For c a natural number, we say that a quadrati normalisation (S,Φ) is of
left-lass c if Φ(w) = Φ121...[c](w) holds for every w in S[3]

. Symmetrially, we say that (S,Φ)

is of right-lass c if Φ(w) = Φ212...[c](w) holds for every w in S[3]
. We say that (S,Φ) is of

lass (c, c′) if it is of left-lass c and right-lass c′.

Example 3.3.2. Let (S,Φ) be the lexiographi normalisation for N
S
of Example 2.1.6. For

#S = 1, there is only one length-three S-word, whih is Φ-normal, so (S,Φ) is of lass (0, 0).
Assume now #S > 2. Then, one heks that, for all r, s, t in S, the words Φ121(r|s|t) and

Φ212(r|s|t) are Φ-normal (and equal), so (S,Φ) is of lass (3, 3). On the other hand, assuming

a < b, we �nd Φ12(bba) = bab and Φ21(baa) = aba, so (S,Φ) is neither of left-lass 2 nor of

right-lass 2.
To give another example, onsider S = {a, b} and Φ de�ned by Φ(w) = a‖w‖

if w has even

length, and Φ(w) = a‖w‖−1b otherwise. One heks that (S,Φ) is a quadrati normalisation for

the monoid 〈a, b | ab = ba, a2 = b2〉+. Then, a ase-by-ase heking on S[3]
shows that (S,Φ)

is of lass (2, 3), but neither of left-lass 1 nor of right-lass 2, as shows the worst-ase example

baa (
Φ2−→ baa )

Φ1−→ aba
Φ2−→ aab.

The following observation, already impliit in the above example, will be ruial.

Lemma 3.3.3. Assume that (S,Φ) is a quadrati normalisation.

(i) If w is in S[3]
, then Φ(w) = Φ121...[c](w) implies Φ(w) = Φ121...[c+1](w).

(ii) If (S,Φ) is of left-lass c, then it is of left-lass c′ for every c′ with c′ > c, and of

right-lass c′′ for every c′′ with c′′ > c+ 1.

Proof. (i) Assume Φ(w) = Φ121...[c](w). By (3.1.3), Φ(w) is invariant both under Φ1 and Φ2,

sine it is Φ-normal. Hene we have Φ121...[c+1](w) = Φ121...[c](w).
(ii) Assume that (S,Φ) is of left-lass c. Then (i) implies Φ(w) = Φ121...[c+1](w) for every w

in S[3]
, so (S,Φ) is of left-lass c+1 as well and, from there, it is of left-lass c′ for every c′ > c.

For w in S[3]
, the assumption and (2.1.4) give Φ(w) = Φ121...[c](Φ2(w)) = Φ212...[c+1](w). Hene

(S,Φ) is of right-lass c+ 1 and, from there, of right-lass c′′ for every c′′ with c′′ > c+ 1. �

De�ne the minimal left-lass of a quadrati normalisation (S,Φ) to be the smallest integer c
suh that (S,Φ) is of left-lass c, if suh an integer exists, and ∞ otherwise. We introdue the

symmetri notion of minimal right-lass, and de�ne the minimal lass to be the pair made of

the minimal left-lass and the minimal right-lass.

Lemma 3.3.4. The minimal lass of a quadrati normalisation (S,Φ) is either of the form (c, c′)
with |c′ − c| 6 1, or (∞,∞). If S is �nite, the value (∞,∞) is exluded.

Proof. If the minimal left-lass of (S,Φ) is a �nite number c, then Lemma 3.3.3 implies that

(S,Φ) is of right-lass c+1; hene the minimal right-lass c′ satis�es c′ 6 c+1 and, for symmetri

reasons, we have c 6 c′ + 1, whene |c′ − c| 6 1.
The assumption that (S,Φ) is quadrati implies, for every w in S[3]

, the existene of a

smallest �nite number cw satisfying Φ(w) = Φ121...[cw](w). If S is �nite, the supremum of all

numbers cw for w in S[3]
is �nite, and Lemma 3.3.3 (i) implies that c is the minimal left-lass

of (S,Φ). �

The lass of a normalisation (S,Φ) an be haraterised in terms of algebrai relations ex-

lusively involving the map Φ.
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Proposition 3.3.5. A quadrati normalisation (S,Φ) is of left-lass c if, and only if, Φ satis�es

(3.3.6) Φ121...[c] = Φ121...[c+1] = Φ212...[c+1],

and of lass (c, c) if, and only if, Φ satis�es

(3.3.7) Φ121...[c] = Φ212...[c].

Proof. Assume that (S,Φ) is of left-lass c. For every w in S[3]
, Lemma 3.3.3 gives Φ(w) =

Φ121...[c](w) = Φ121...[c+1](w) = Φ212...[c+1](w), whene (3.3.6). Conversely, assume (3.3.6) and

let w belong to S[3]
. If c is odd, we obtain

Φ1(Φ121...[c](w)) = Φ1(Φ1(Φ121...[c−1](w))) = Φ121...[c](w),

sine Φ is idempotent, and, by (3.3.6),

Φ2(Φ121...[c](w)) = Φ121...[c+1](w) = Φ121...[c](w).

If c is even, a symmetri argument gives the same values. So, in all ases, the S-wordΦ121...[c](w)

is invariant both under Φ1 and Φ2, hene it is Φ-normal. As this holds for every w in S[3]
, we

onlude that (S,Φ) is of left-lass c.
Assume that (S,Φ) is of lass (c, c). By (i), we have Φ121...[c] = Φ121...[c+1] = Φ212...[c+1] and,

by the symmetri ounterpart of (i), we have Φ212...[c] = Φ212...[c+1] = Φ121...[c+1], whene (3.3.7)

by merging the values. Conversely, assume (3.3.7) and let w belong to S[3]
. Applying (3.3.7)

to Φ1(w) gives Φ121...[c](Φ1(w)) = Φ212...[c](Φ1(w)), reduing to Φ121...[c](w) = Φ121...[c+1](w),
sine Φ1 is idempotent. Similarly, applying (3.3.7) to Φ2(w) leads to Φ212...[c+1](w) = Φ212...[c](w).
Merging the results and applying (3.3.7) to w, we dedue

Φ121...[c+1](w) = Φ121...[c](w) = Φ212...[c](w) = Φ212...[c+1](w).

As this holds for every w in S[3]
, (3.3.6) is satis�ed, so, by (i), (S,Φ) is of left-lass c. A

symmetri argument implies that (S,Φ) is of right-lass c. �

The following example shows that the minimal left-lass of a quadrati normalisation an be

an arbitrarily high integer.

Example 3.3.8. For n > 2, let Sn = {a, b1, ... , bn} and Rn onsist of the rules abi → abi+1

for i < n odd and bia → bi+1a for i < n even. Then the rewriting system (Sn, Rn) is onvergent:
termination is given by omparison of the number of b1, then of b2, then of b3, et.; on�uene

is obtained by observing that, for every minimal overlapping appliation of rules biabj →Rn

bi+1abj and biabj →Rn
biabj+1, we have bi+1abj →Rn

bi+1abj+1 and biabj →Rn
bi+1abj+1.

Let (Sn,Φn) be the assoiated quadrati normalisation as de�ned in Proposition 3.2.1. For

n > 3, the minimal lass of (Sn,Φn) is (n − 1, n): length-three words that do not begin and

�nish with a are Rn-normal or beome Rn-normal in one step, and the redution of ab1a looks

like

ab1a (
Φ2−→ ab1a )

Φ1−→ ab2a
Φ2−→ ab3a

Φ1−→ ···
Φ−
−→ abna,

implying that the minimal left-lass is n− 1, and the minimal right-lass is n.

The next example shows that the minimal left-lass an be ∞. (Putting n = ∞ in Exam-

ple 3.3.8 provides a non-normalising system: ab1a has no normal form.)

Example 3.3.9. For n > 2, let Sn = {a0, ... , an} and Rn onsist of the rules

aiaj → a
⌊
i+j
2 ⌋

a
⌈
i+j
2 ⌉

for i > j.

The rewriting system (Sn, Rn) is onvergent. Let (Sn,Φn) be the assoiated quadrati normali-

sation. As in Example 2.1.6, the Φn-normal words are the lexiographially non-dereasing ones

with respet to a1 < ··· < an. Then the minimal lass of (Sn,Φn) is (3+⌊log2 n⌋, 3+⌊log2 n⌋).
Indeed, for 2p 6 n < 2p+1

, the worst ase for the left-lass is attained by a2pa2pa0: putting
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i = ⌊2p+1/3⌋, the latter Sn-word redues to aiaiai+1 (even p) or aiai+1ai+1 (odd p) in p + 3
steps. Moreover, if we de�ne S∞ to be the in�nite set {a0, a1, ...} and Φ∞ assoiated as above,

(S∞,Φ∞) is a quadrati normalisation with minimal lass (∞,∞) as, for every p, the redution
of a2pa2pa0 requires p+ 3 steps.

3.4. The p-lass. We now onsider the normalisation of length-p words for p > 4. If (S,Φ) is
a quadrati normalisation, then, by de�nition, one an transform a length-p word w into Φ(w)
by applying a �nite number of elementary maps Φi with 1 6 i < p. Contrary to the ase p = 3,
there may exist many ways of omposing these maps for p > 4: for instane, one an onsider

the left strategy onsisting in always normalising the leftmost unredued length-two fator of

the urrent word, but this hoie is arbitrary. Writing Φ[p]
for the restrition of Φ to S-words

of length p, more anonial deompositions arise when one expresses Φ[4]
in terms of Φ[3]

and,

more generally, Φ[p]
in terms of Φ[p−1]

. Then the situation is similar to 3 vs. 2, and a natural

notion of p-lass appears.

De�nition 3.4.1. For p > 3, we say that a quadrati normalisation (S,Φ) is of left-p-lass c

if, for every w in S[p]
, we have Φ(w) = Φ

[p−1]
121...[c]. Symmetrially, we say that (S,Φ) is of right-

p-lass c if, for every w in S[p]
, we have Φ(w) = Φ

[p−1]
212...[c]. We say that (S,Φ) is of p-lass (c, c′)

if it is of left-p-lass c and right-p-lass c′.

Thus the left-lass of Subsetion 3.3 is the left-3-lass, and similarly for the right-lass and

the lass.

Example 3.4.2. Consider (S,Φ) as in Example 3.3.2. We saw that, for #S > 2, the minimal

(3)-lass is (3, 3). An easy indution shows that, for every p > 4 and for every w in S[p]
,

the words Φ
[p−1]
212 (w) and Φ

[p−1]
121 (w) are lexiographially nondereasing, hene Φ-normal. Thus

(S,Φ) is of p-lass (3, 3). Then, assuming #S > 2 and a < b, we �nd Φ
[p−1]
212 (bp−1a) = babp−2

and Φ
[p−1]
21 (bap−1) = ap−2ba, whih are not Φ-normal. So (S,Φ) is neither of left-p-lass 2 nor

of right-p-lass 2.

The Φ-normality of S-words an be haraterised in terms of Φ-normality of their length-p
fators, with a straightforward proof:

Lemma 3.4.3. If (S,Φ) is a quadrati normalisation, then, for p > 2, an S-word w with

‖w‖ > p is Φ-normal if, and only if, every length-p fator of w is.

All properties of the 3-lass extend to the p-lass for p > 3. In partiular, when it is

not (∞,∞), the minimal p-lass must be a pair of the form (c, c′) with |c− c′| 6 1, and we have

the following ounterpart of Proposition 3.3.5, with a similar proof:

Proposition 3.4.4. A quadrati normalisation (S,Φ) is of left-p-lass c if, and only if, the

map Φ[p−1]
satis�es Φ

[p−1]
121...[c] = Φ

[p−1]
121...[c+1] = Φ

[p−1]
212...[c+1], and of p-lass (c, c) if, and only if, the

map Φ[p−1]
satis�es Φ

[p−1]
121...[c] = Φ

[p−1]
212...[c].

The following examples show that the behaviour of the 4-lass is independent from that of

the 3-lass: the 4-lass may be larger, equal, or smaller.

Example 3.4.5. The normalisation (Sn,Φn) of Example 3.3.8 has minimal 3-lass is (n, n).
However, for p > 4, its minimal p-lass is (2, 2).

Example 3.4.6. Let Sn = {a, b1, ... , bn} and Φn be given by the rules abi→abi+1 for i odd
and bia→bi+1a for i even (as in Example 3.3.8), ompleted with bi+1bi → bi+1bi+1 for i odd
and bibi+1→bi+1bi+1 for i even. For p > 3, the minimal p-lass of (Sn,Φn) is (n − 1, n), with

the worst ase realised for ab
p−2
1 a.
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Example 3.4.7. Let Sn = {a, b1, ... , bn, c1, ... , cn} and Φn be given by the rules abi→abi+1

and bi+1ci→bi+1ci+1 for i odd, and cia→ci+1a and bici+1→bi+1ci+1 for i even. Here it turns
out that the minimal 3-lass is (5, 5), whereas the minimal 4-lass is (n − 1, n). For instane,

for n = 10, the worst ases are realised by Φ12121(b4c2a) = b5c5a, and Φ
[3]
2121212121(ab1c1a) =

ab10c10a. One also observes that the minimal p-lass for p > 5 is (2, 2) for every n > 5.

4. Quadrati normalisations of lass (4, 3)

Example 3.4.7 shows that having left-lass or right-lass c does not say muh about normal-

isation of words of length four and higher: an upper bound on the omplexity of normalisation

for length-three words implies no upper bound on the omplexity of normalisation for longer

words. We observe below that suh a phenomenon is impossible when the lass is small, namely

when the lass is (3, 4) or (4, 3). Our proof is based on an argument borrowed from [10℄, involv-

ing a diagrammati approah alled the domino rule. The results for lasses (3, 4) and (4, 3) are
entirely similar; the latter is hosen here in view of the onnetion with Garside normalisation

in Setion 6.

The setion omprises three parts. First, the domino rule is introdued in Subsetion 4.1.

Next, we establish a general formula for normalisation of long words when some domino rule is

valid in Subsetion 4.2. Finally, we show in Subsetion 4.3 how standard braid arguments an

be used to provide a omplete axiomatisation of lass (4, 3) normalisation.

4.1. The domino rule. By Proposition 3.3.5, if a quadrati normalisation (S,Φ) has lass (4, 3),
the map Φ satis�es (3.3.6), whih, in the urrent ase, is

(4.1.1) Φ212 = Φ2121 = Φ1212.

We shall now translate these onditions into a diagrammati rule.

De�nition 4.1.2. Assume that S is a set and φ is a map from S[2]
to itself. We say that the

domino rule is valid for φ if, if, for all s1, s2, s
′
1, s

′
2, t0, t1, t2 in S satisfying s′1|t1 = φ(t0, s1) and

s′2|t2 = φ(t1 |s2), the assumption that s1|s2 is φ-invariant implies that s′1|s
′
2 is φ-invariant as

well.

The domino rule of De�nition 4.1.2 beomes more understandable when illustrated in a

diagram. To this end, we assoiate with every element s of the onsidered set S an s-labeled
arrow, and use onatenation of arrows for the onatenation of elements (note that this amounts

to viewing S∗
as a ategory).

Let us indiate that a word s|t of S[2]
is φ-invariant�hene Φ-normal when φ

is the map Φ assoiated with a normalisation (S,Φ)�with a small ar, as in

s t
. Then, in the situation when s′|t′ = φ(s|t) holds, we draw

a square diagram as on the right.

s

t

s′

t′

With suh onventions, the domino rule for φ orresponds to

the diagram on the right: whenever the two squares are ommu-

tative and the three pairs of edges onneted with small ars are

φ-invariant, then so is the fourth pair indiated with a dotted ar. s1 s2

s′1 s′2

t0 t1 t2

Lemma 4.1.3. A quadrati normalisation (S,Φ) is of lass (4, 3) if, and only if, the domino

rule is valid for Φ.

Proof. Assume that (S,Φ) is of right-lass 3, and let s1, ... , t2 be elements of S satisfying

the assumptions of the domino rule. By de�nition of the right-lass, we have Φ(t0|s1|s2) =
Φ212(t0|s1|s2). As, by assumption, s1|s2 is Φ-normal, we obtain Φ(t0|s1|s2) = Φ12(t0|s1|s2) =
Φ2(s

′
1|t1|s2) = s′1|s

′
2|t2. So s′1|s

′
2|t2 is Φ-normal, hene so is s′1|s

′
2, and the domino rule is valid

for Φ.
Conversely, assume that the domino rule is valid for Φ. Let t0|r1 |r2 be an arbitrary word

in S[3]
. Put s1|s2 = Φ(r1|r2), s

′
1|t1 = Φ(t0|s1), and s′2|t2 = Φ(t1 |s2). Then s′2|t2 is Φ-normal
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by onstrution, and s′1|s
′
2 is Φ-normal by the domino rule, so s′1|s

′
2|t2 is Φ-normal. Hene we

have Φ(w) = Φ212(w) for every w in S[3]
, and (S,Φ) is of right-lass 3. �

4.2. Normalising long words. We shall now show that, is (S,Φ) is a normalisation map of

lass (4, 3), there exists a simple formula for the normalisation of arbitrarily long words.

Notation 4.2.1. Starting from δ1 = ε (the empty sequene) and using sh for the shift mapping

that inreases every entry by 1, we indutively de�ne a �nite sequene of positive integers δp
by

(4.2.2) δp = sh(δp−1)|1|2| ··· |p− 2|p− 1 for p > 1.

Thus we �nd, omitting the separation symbol,

δ2 = 1, δ3 = 212, δ4 = 323123, δ5 = 4342341234, et.

Proposition 4.2.3. Assume that (S,Φ) is a quadrati normalisation of lass (4, 3). Then, for
every p > 1 and every length-p word w, we have

(4.2.4) Φ(w) = Φδp(w).

So there is a universal reipe, presribed by the sequene of positions δp, for normalising

every word of length p. We begin with a preparatory result.

Lemma 4.2.5. If (S,Φ) is a quadrati normalisation and the domino rule is valid for Φ, then,
for every t in S and every Φ-normal S-word s1| ··· |sq, we have

(4.2.6) Φ(t|s1| ··· |sq) = Φ12 ···(q−1)q(t|s1| ··· |sq).

Proof. For q = 1, (4.2.6) redues to Φ(t|s1) = Φ(t|s1). Assume q > 2. Put t0 = t and

indutively de�ne s′i and ti by s′i|ti = Φ(ti−1 |si) for i = 1, ... , q (see Figure 1). Then, by

de�nition, we have

s′1| ··· |s
′
q |tq = Φ12 ···(q−1)q(t|s1| ··· |sq),

so, in order to establish (4.2.6), it su�es to show that the word s′1| ··· |s
′
q |tq is Φ-normal. Now,

for i = 1, ... , q− 1, the assumption that si|si+1 is Φ-normal and the validity of the domino rule

imply that s′i|s
′
i+1 is Φ-normal as well. Finally, s′q |tq is Φ-normal by onstrution. Hene, every

length-two fator of s′1| ··· |s
′
q |tq is Φ-normal and, therefore, the latter is Φ-normal. �

s1 s2 sq

s′1 s′2 s′q tq

t = t0 t1 t2 tq−1 tq

Figure 1. Left-multiplying a normal word by an element S: the domino rule guarantees

that the upper row is normal whenever the lower row is. The diagram shows, in partiular,

that the monoid presented by (S,Φ) satis�es the 2-Fellow Traveler Property with respet

to left-multipliation [17℄.

Proof of Proposition 4.2.3. By Lemma 4.1.3, the domino rule is valid for Φ, hene Lemma 4.2.5

applies. We prove (4.2.4) using indution on p. For p 6 2 , the result is immediate. Assume

p > 3 and let w = s1| ··· |sp belong to S[p]
. Put

(4.2.7) s′2| ··· |s
′
p := Φδp−1

(s2| ··· |sp)

(see Figure 2). By indution hypothesis, the word s′2| ··· |s
′
p is Φ-normal. On the other hand, by

de�nition of position shifting, (4.2.7) implies

(4.2.8) s1|s
′
2| ··· |s

′
p = Φsh(δp−1)(s1|s2| ··· |sp).
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Then, as s′2| ··· |s
′
p−1 is Φ-normal and s1 belongs to S, Lemma 4.2.5 implies

Φ(s1|s
′
2| ··· |s

′
p) = Φ12 ···(p−1)(s1|s

′
2| ··· |s

′
p),

whene, owing to the indutive de�nition of δp,

(4.2.9) Φ(s1|s
′
2| ··· |s

′
p) = Φ12 ···(p−1) ◦ Φsh(δp−1)(s1|s2| ··· |sp) = Φδp(s1|s2| ··· |sp).

Owing to (2.1.4), (4.2.8) implies that Φ(s1|s2| ··· |sp) and Φ(s1|s
′
2| ··· |s

′
p) are equal. Merging

with (4.2.9), we dedue Φ(s1|s2| ··· |sp) = Φδp(s1|s2| ··· |sp). �

The indutive normalisation proess desribed in Proposition 4.2.3 and Figure 2 amounts to

using the map Φ to onstrut a triangular grid as shown in Figure 3.

s1 s2 sp

s1 s′2 s′p

s1

s′′1 s′′p−1 s′′p

indution

hypothesis

Lemma 4.2.5

Figure 2. Indutive normalisation proess of a length-p word s1| ··· |sp based on the

domino rule: �rst normalise s2| ··· |sp into s′2| ··· |s
′

p, and then normalise s1|s
′

2| ··· |s
′

p into

s′′1 | ··· |s
′′

p , whih is Φ-normal by Lemma 4.2.5.

s′1 s′2 s′3 s′4

s1

s2

s3

s4

step 1:

Φ3

step 2:

Φ2

step 3:

Φ3

step 4:

Φ1

step 5:

Φ2

step 6:

Φ3

Figure 3. Normalising a length-p word in p(p−1)/2 steps, here with p = 4: aording

to (4.2.4), the six steps orrespond to applying Φδ4 , that is, Φ323123 .

An important onsequene of Proposition 4.2.3 is that, ontrary to the situation of Exam-

ple 3.4.7, it is impossible to have a large 4-lass in lass (4, 3).

Corollary 4.2.10. If (S,Φ) is a quadrati normalisation of lass (4, 3), then (S,Φ) is of p-
lass (4, 3) for every p > 3.

Proof. Assume p > 3, and let w = s1| ··· |sp lie in S[p]
. We shall show that Φ(w) is equal to

Φ
[p−1]
212 (w) by heking that suessively applying Φ

[p−1]
2 , Φ

[p−1]
1 , and Φ

[p−1]
2 to w leads to a

Φ-normal word. First, let s′2| ··· |s
′
p = Φ(s2| ··· |sp). We have

(4.2.11) Φ
[p−1]
2 (w) = s1|s

′
2| ··· |s

′
p.

As s′2| ··· |s
′
p is Φ-normal, Lemma 4.2.5 implies Φ(w) = Φ12 ···(p−1)(s1|s

′
2| ··· |s

′
p). Now, put

t0 = s1 and, indutively, s′′i |ti = Φ(ti−1 |s
′
i+1) for i = 1, ... , p − 1. As s′2| ··· |s

′
p−1 is Φ-

normal, Lemma 4.2.5 implies that s′′1 | ··· |s
′′
p−2|tp−1 is Φ-normal, so we have Φ(s1 |s

′
2| ··· |s

′
p−1) =

s′′1 | ··· |s
′′
p−2|tp−1, whene

(4.2.12) Φ
[p−1]
1 (s1|s

′
2| ··· |s

′
p) = s′′1 | ··· |s

′′
p−2|tp−1|s

′
p.
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By the same argument, s′′1 | ··· |s
′′
p−1|tp is Φ-normal, hene so is a fortiori s′′2 | ··· |s

′′
p−1|tp. By on-

strution, we have s′′2 | ··· |s
′′
p−1|tp = Φp−1(s

′′
2 | ··· |s

′′
p−2|tp−1|s

′
p), whene Φ(s′′2 | ··· |s

′′
p−2|tp−1|s

′
p) =

s′′2 | ··· |s
′′
p−1|tp, and, from there,

(4.2.13) Φ
[p−1]
2 (s′′1 | ··· |s

′′
p−2|tp−1|s

′
p) = s′′1 | ··· |s

′′
p−1|tp.

As s′′1 | ··· |s
′′
p−1|tp is Φ-normal, it is Φ(w), so merging (4.2.11), (4.2.12), and (4.2.13) gives Φ(w) =

Φ
[p−1]
212 (w), witnessing that (S,Φ) is of right-p-lass 3. �

4.3. Axiomatisation. By Proposition 3.3.5, if a quadrati normalisation (S,Φ) is not of min-

imal left-lass ∞, the restrition Φ of Φ to S[2]
satis�es (3.3.6) and its symmetri ounterpart

for c large enough. In partiular, if (S,Φ) has lass (4, 3), then Φ satis�es (4.1.1), that is,

Φ212 = Φ2121 = Φ1212. We now go in the other diretion, and prove that any idempotent

map φ on S[2]
satisfying the above relation neessarily stems from a quadrati normalisation of

lass (4, 3), thus ompleting a proof of Theorem A.

Proposition 4.3.1. If S is a set and φ is a map from S[2]
to itself satisfying

(4.3.2) φ212 = φ2121 = φ1212,

there exists a quadrati normalisation (S,Φ) of lass (4, 3) satisfying φ = Φ.

The problem is to extend φ into a map φ∗
on S∗

suh that (S, φ∗) is a quadrati normalisation

of lass (4, 3). Proposition 4.2.3 leads us into introduing the following extension of φ.

De�nition 4.3.3. For φ a map from S[2]
to itself, we write φ∗

for the extension of φ to S∗

de�ned by φ∗(s) = s for s in S and φ∗(w) = φδp(w) for w in S[p]
.

We will prove that, when (4.3.2) is satis�ed, (S, φ∗) is a quadrati normalisation of lass (4, 3).
We begin with preparatory formulas of the form φu = φv when u and v are sequenes of positions
onneted by a spei� equivalene relation.

De�nition 4.3.4. We denote by ≡ the ongruene on the free monoid (N \ {0})∗ of all �nite

sequenes of positive integers generated by all shifted opies of

1|1 ≡ 1, 1|2|1|2 ≡ 2|1|2 ≡ 2|1|2, 1|i ≡ i|1 for i > 3.

Note that the orresponding quotient monoid is a variant with in�nitely many generators

of the monoid Mn of [18℄. Lemmas 4.3.6 and 4.3.10 below are essentially equivalent to [18,

Proposition 67℄ but we inlude a short self-ontained proof as our framework and notation are

di�erent.

Lemma 4.3.5. If φ∗
satis�es the onditions of Proposition 4.3.1(ii), then, for all ≡-equivalent

sequenes u and v, we have φu = φv.

Proof. As φ∗
is idempotent, φi| i oinides with φi. For |i − j| > 2, φi and φj at on disjoint

fators, so they ommute. Finally, the relations for 2|1|2 and their shifted opies diretly

re�et (4.3.2). �

Lemma 4.3.6. The following relations are valid for every p > 2:

δp ≡ p− 1| ··· |2|1|sh(δp−1),(4.3.7)

p| ··· |2|1|p| ··· |2|1 ≡ p| ··· |2|1|p| ··· |3|2,(4.3.8)

1|2| ··· |p|1|2| ··· |p ≡ 2|3| ···p|1|2| ··· |p.(4.3.9)

Proof. We use indution on p > 2. For p = 2, (4.3.7) reads 1 ≡ 1|sh(ε), whih is valid. Assume

p > 3. Then we �nd

δp = sh(δp−1)|1|2| ··· |p− 1 by de�nition of δp,

≡ sh(p− 2| ··· |2|1|sh(δp−2))|1|2| ··· |p− 1 by indution hypothesis,
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= p− 1| ··· |3|2|sh2(δp−2))|1|2| ··· |p− 1

≡ p− 1| ··· |3|2|1|sh2(δp−2))|2| ··· |p− 1 by i|1 ≡ 1|i for i = sh2(j),

= p− 1| ··· |3|2|1|sh(sh(δp−2))|1| ··· |p− 2)

= p− 1| ··· |3|2|1|sh(δp−1 by de�nition of δp−1.

Next, for p = 2, (4.3.8) reads 2|1|2|1 ≡ 2|1|2, whih is valid. For p > 3, we �nd

p| ··· |2|1|p| ··· |2|1 ≡ p| ··· |2|p| ··· |3|1|2|1 by 1|i ≡ i|1 for i > 3,

= sh(p− 1| ··· |1|p− 1| ··· |2)|1|2|1

≡ sh(p− 1| ··· |1|p− 1| ··· |2|1)|1|2|1 by indution hypothesis,

= p| ··· |2|p| ··· |3|2|1|2|1

≡ p| ··· |2|p| ··· |3|2|1|2 by de�nition of ≡,

= sh(p− 1| ··· |1|p− 1| ··· |2|1)|1|2

≡ sh(p− 1| ··· |1|p− 1| ··· |2)|1|2 by indution hypothesis,

= p| ··· |2|p| ··· |3|1|2

≡ p| ··· |2|1|p| ··· |3|2 by i|1 ≡ 1|i for i > 3.

The argument for (4.3.9) is symmetri. �

Lemma 4.3.10. The following relations are valid for every p > 2 and 1 6 i < p:

(4.3.11) δp ≡ δp |i ≡ i|δp.

Proof. We use indution on p > 2. For p = 2, the only ase to onsider is i = 1, and (4.3.11)

then redues to 1 ≡ 1|1, whih is true by de�nition. Assume p = 3. For i = 1, (4.3.11) redues
to 2|1|2 ≡ 2|1|2|1 ≡ 1|2|1|2 and, for i = 2, to 2|1|2 ≡ 2|1|2|2 and 2|1|2 ≡ 2|2|1|2, whih are

true by the de�nition of ≡.
Assume now p > 4. For i = 1, we �nd

δp |1 ≡ p− 1| ··· |2|1|p− 1| ··· |2|sh2(δp−2)|1 by (4.3.7) twie,

≡ p− 1| ··· |2|1|p− 1| ··· |2|1|sh2(δp−2) by i|1 ≡ 1|i for i > 3,

≡ p− 1| ··· |2|1|p− 1| ··· |2|sh2(δp−2) by (4.3.8),

≡ p− 1| ··· |2|1|sh(δp−1) ≡ δp by (4.3.7) twie,

and, for 2 6 i < p, using (4.3.7) and the indution hypothesis, we �nd

δp |i ≡ p− 1| ··· |1|sh(δp−1)|i = p− 1| ··· |1|sh(δp−1 |i− 1) ≡ p− 1| ··· |1|sh(δp−1) ≡ δp.

The argument for i|δp ≡ δp is symmetri, with the de�nition of δp and (4.3.9) replaing (4.3.7)

and (4.3.8). �

Proof of Proposition 4.3.1. Assume that φ is idempotent and satis�es (4.3.2). Lemmas 4.3.5

and 4.3.11 imply, for all p > 3 and every w in S[p]
, the equalities

(4.3.12) φ∗(φi(w)) = φ∗(w) and φi(φ
∗(w)) = φ∗(w) for i with 1 6 i < p.

Let u, v, w be S-words with respetive lengths m,n, p. Then we �nd

φ∗(u|φ∗(w)|v) = φδm+n+p
(u|φδp(w)|v) = φδm+n+p

(φshm(δp)(u|w|v)).

The map φshm(δp) is a omposite of maps φi with m + 1 6 i 6 m + p − 1, so Lemma 4.3.10

implies

φ∗(u|φ∗(w)|v) = φδm+n+p
(u|w|v) = φ∗(u|w|v),

and we dedue that (S, φ∗) satis�es (2.1.4). As it also satis�es (2.1.2) and (2.1.3) by the

de�nition of φ∗
, it is a normalisation. �
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The following example shows that the axiomatisation of lass (4, 3) normalisations provided

by Proposition 4.3.1 does not extend to higher lasses.

Example 4.3.13. Let us onsider the rewriting system of Example 3.4.7 with n = ∞, that

is, S∞ = {a, b1, b2, ..., c1, c2, ...} with the rules abi→abi+1 and bi+1ci→bi+1ci+1 for i odd and

cia→ci+1a and bici+1→bi+1ci+1 for i even. The assoiated map φ on S
[2]
∞ satis�es the relation

φ12121 = φ21212, but no quadrati normalisation (S∞,Φ) satis�es φ = Φ. Indeed, no S∞-word

that an be reahed from ab1c1a by suessive appliations of φ on length-two fators is normal.

5. Class and termination

By Proposition 3.2.1, a quadrati normalisation (S,Φ) yields a redued quadrati rewriting

system (S,R) that is normalising and on�uent. This however does not rule out the possible

existene of in�nite rewriting sequenes, whih we investigate here.

The setion omprises three parts. We �rst onsider the ase of lass (3, 3) and prove an easy

onvergene result (Subsetion 5.1). Next, the ase of lasses (3, 4) and (4, 3) is investigated in

Subsetion 5.2, where the not-so-easy onvergene result stated as Theorem B is established.

Finally, we show in Subsetion 5.3 that the previous result is optimal by onstruting a non-

onvergent example in lass (4, 4).

5.1. Termination in lass (3, 3). We �rst onsider the ase of quadrati normalisations of

lass (3, 3), and we use an argument of �niteness on symmetri groups to prove:

Proposition 5.1.1. If (S,Φ) is a quadrati normalisation of lass (3, 3), then the assoiated

rewriting system (S,R) is onvergent, and so is (Se, Re) if e is a Φ-neutral element of S. More

preisely, every rewriting sequene from a length-p word has length at most p(p− 1)/2.

Proof. Assume that w0, ... , wℓ are S-words satisfying wk →R wk+1 for 0 6 k < ℓ. Let p be the

ommon length of the S-words wk. By assumption, for every k > 1, we have wk = Φik(wk−1)
for some 1 6 ik < p, with wk 6= wk−1.

Let us observe, by indution on k, that u = i1| ··· |ik is redued in the sense of Coxeter

theory, that is, it is a minimal-length representative of the assoiated element of the symmetri

group Sp. For k = 0, the result is true as the empty word is redued. Assume k > 1,
and write u = u′|i. By indution hypothesis, u′

is redued. If u′|i is not redued, then, by the

exhange lemma for Sp, see [2℄, there exists a sequene of positions u
′′
suh that u′

is equivalent

to u′′|i modulo the braid relations. Now, by Proposition 3.3.5, the assumption that (S,Φ) is of
lass (3, 3) implies Φ121 = Φ212 and, from there, the equivalene of u′

and u′′|i modulo the braid

relations implies Φu′ = Φu′′ |i. Putting w′ = Φu′′(w0), we obtain wk−1 = Φi(w
′) and, sine Φ is

idempotent, wk = Φi(Φi(w
′)) = Φi(w

′) = wk−1, whih ontradits wk−1 →R wk. So u must be

redued.

Now, it is well-known that the length ℓ of a redued word representing an element of Sp

is bounded above by p(p − 1)/2, for instane beause ℓ is the number of inversions of the

permutation represented by u. So (S,R) terminates and, by Proposition 3.2.5, so does (Se, Re)
if e is a Φ-neutral element in S. �

Remark. The bound p(p − 1)/2 in Proposition 5.1.1 is sharp, sine, for the lexiographi

normalisation (S,Φ) of Example 2.1.6, normalising ap| ··· |a1 with a1 < ··· < ap atually requires

p(p− 1)/2 steps.

Proposition 5.1.1 applies to the example of plati monoids, desribed thereafter. Those

monoids have known normalisations that �t into our setting of quadrati normalisations, and

were among the original motivations for extending the framework of Garside normalisation to

the urrent one.

Example 5.1.2. If X is a totally ordered �nite set, the plati monoid over X is the monoid PX

generated by X and subjet to xzy = zxy, for x 6 y < z, and yxz = yzx, for x < y 6 z. We
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refer to [4℄ for a reent referene on the following fats. The monoid PX is also generated by

the family S of olumns over X (the stritly dereasing produts of elements of X). A pair c|c′

of olumns is normal if ‖c‖ > ‖c′‖ holds and, for every 1 6 k 6 ‖c′‖, the kth element of c is at
most the one of c′. Every equivalene lass of X-words ontains a unique tableau (a produt

c1 ···cn of olumns suh that eah ci|ci+1 is normal), with minimal length in terms of olumns:

thus, mapping a S-word to the unique orresponding tableau de�nes a geodesi normal form nf

on (PX , Se), where e denotes the empty olumn.

We onsider the normalisation (Se,Φ) assoiated to nf, whih satis�es (3.1.3) by the de�-

nition of tableaux. Moreover, for every S-word w, the tableau nf(w) an be omputed from

any S-word w by Shensted's insertion algorithm, progressively replaing eah pair c|c′ of

subsequent olumns of w by nf(c|c′), whih is a tableau with one or two olumns. So, the

normalisation (Se,Φ) also satis�es (3.1.4), so that it is quadrati, and, when X ontains at

least two elements, it is of minimal lass (3, 3) as testi�ed by the omputations of [3, ��4.2�

4.4℄. By Proposition 5.1.1, we reover [4, Theorem 3.4℄: the rewriting system (S,R) with

R = {c|c′ → nf(c|c′) | c, c′ ∈ S} is �nite, onvergent and it presents PX . A similar argu-

ment leads to a (non�nite) onvergent quadrati presentation of PX in terms of rows, whih

are nondereasing produts of elements of X . The proof that the lass is (3, 3) is given in [3,

��3.2�3.4℄.

5.2. Termination in lass (4, 3). We now onsider the ase of lass (4, 3) and establish the

general termination result stated as Theorem B:

Proposition 5.2.1. If (S,Φ) is a quadrati normalisation of lass (4, 3), then the assoiated

rewriting system (S,R) is onvergent, and so is (Se, Re) if e is a Φ-neutral element of S. More

preisely, every rewriting sequene from a length-p word has length at most 2p − p− 1.

Proposition 5.2.1 subsumes Proposition 5.1.1. But its proof resorts to di�erent arguments,

sine Krammer's monoid Mp, see [18℄, whih is an analogue of the braid monoid B+

p where

121 = 212 is replaed with 121 = 2121, is in�nite. Instead, we analyse Φ-normalisation diretly

to show that no in�nite rewriting sequene may exist beause one inevitably proeeds to the

normal form.

Proof. Let F (p) denote the maximal length of sequenes w0 →R w1 →R ··· →R wℓ of S-words
of length p, possibly ∞. We prove the inequality F (p) 6 2p − p− 1 using indution on p > 2.
For p = 2, the inequality F (p) 6 1 holds, sine Φ is idempotent. We now assume p > 3 and

onsider a sequene

−→w = (w0, ... , wℓ) of length-p words satisfying wk →R wk+1 for 0 6 k < ℓ.
We shall distinguish several types of rewriting steps in the sequene

−→w , in onnetion with

Proposition 4.2.3 and the triangular grid diagram of Figure 3. The latter orresponds to an

optimal strategy, whih needs not be the ase for

−→w , but we shall explain how to enrih eah

word wk into a word ŵk by attahing with eah letter of w a diretion, either horizontal or

vertial. We de�ne Ŝ as S∐S, where S is a opy of S with an element s for eah s in S, and we

take the onvention that s means �vertial s� and s means �horizontal s�: this assoiates with
every Ŝ-word ŵ a path in a triangular grid by starting from the top-left orner and attahing

to the suessive letters of ŵ horizontal left-to-right edges and vertial top-to-down edges.

We onstrut the Ŝ-words ŵk indutively, in suh a way that

(5.2.2) for every length-two fator s|t or s|t of ŵk, the S-word s|t is Φ-normal.

First, for w0 = s1| ··· |sp, we put ŵ0 = s1| ··· |sp−1|sp. Then ŵ0 satis�es (5.2.2) by default, and

(the path assoiated with) ŵ0 onsists of w0 drawn vertially, exept the last letter, whih is

drawn horizontally.

Assume that ŵk−1 has been de�ned, it satis�es (5.2.2), and wk = Φi(wk−1) holds. Let s
and t be the letters of wk−1 in positions i and i+1, and s′|t′ = Φ(s|t). We look at the diretions

of the letters of ŵk−1 in positions i and i + 1. The assumption wk−1 →R wk implies that s|t
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is not Φ-normal. By (5.2.2), this exludes the diretions s|t and s|t. So only two ases are

possible.

In the ase of a VH-step, meaning a vertial letter followed by a horizontal one, we de�ne

ŵk to be obtained from ŵk−1 by replaing, at position i, the fator s|t with s′|t′ when t is not

the last letter of wk−1, and by s′|t′ otherwise, whih orresponds to replaing

s
t with

s′ t′

or

s′ t′
respetively. In both ases, the length-two fator of wk starting at position i is

thus Φ-normal, so (5.2.2) is satis�ed at this position. The only other position where (5.2.2)

might fail is i − 1, when the orresponding letter of ŵk is horizontal, sine, otherwise, (5.2.2)

requires nothing on the fator. Now, going from ŵk−1 to ŵk replaes with .

But, by onstrution, the pattern neessarily omes from an earlier diagram ,

in whih the pairs indiated with small ars are Φ-normal by indution hypothesis. Hene,

going to wk means going to and the domino rule preisely implies that the top two

horizontal edges form a Φ-normal word. So ŵk satis�es (5.2.2).

In the ase of a VV-step (two vertial letters), we de�ne ŵk to be obtained from ŵk−1 by

replaing, at position i, the fator s|t with s′|t′. As the shape of ŵk is the same as the one

of ŵk−1, we only have to hek (5.2.2) for the length-two fator at position i−1, and only when

its �rst letter is horizontal, that is, one goes from

r s

t
to

r s′

t′
. But, by onstrution, the

original pattern in ŵk−1 arises from an earlier pattern

r s

t
, so that, when s|t is replaed by

s′|t′, the domino rule implies that r|s′ is Φ-normal, as the diagram

r

s

t

s′

t′
witnesses.

The onstrution of ŵ0, ... , ŵℓ is omplete, and we now ount how many VH-steps and VV-

steps an our in

−→w . First, eah Ŝ-word ŵk is assoiated with a path in the triangular grid

diagram of Figure 3 and eah VH-step auses this path to ross one square in the grid. As the

latter ontains p(p− 1)/2 squares, we dedue that there are at most p(p− 1)/2 VH-steps in −→w .

We turn to VV-steps, partitioning them into several subtypes aording to where they our:

we say that a VV-step is a VVj-step if it is loated on the jth olumn, that is, it replaes a

vertial fator s|t of ŵk that is preeded by j−1 horizontal letters. Now we �x j with 1 6 j < p
and ount the VVj-steps that an our in

−→w . For 1 6 i 6 p − j, let si,k be the letter that

vertially ours at the ith position in the jth olumn in ŵk, if it exists. For a given value

of i, de�ne si,+ to be si,k where k is minimal suh that si,k exists (if any) and, symmetrially,

let si,− be si,k where k is maximal suh that si,k exists (if any). For eah k, if si,+ is de�ned

for a 6 i, if si,k is de�ned for b 6 i 6 c, and if si,− is de�ned for i 6 d, we put

vk = sa,+| ··· |sb−1,+|sb,k | ··· |sc,k|sc+1,−| ··· |sd,−.

So vk is the fator of wk forming the jth olumn of ŵk, preeded by the letters that are the �rst

to appear in positions a, ..., b− 1 in olumn j in ŵk+1, ... , ŵℓ, and followed by the last letters to

appear in positions c+1, ... , d in olumn j in ŵ0, ... , ŵk−1. If one goes from wk−1 to wk by a VH-

step or a VVj′ -step with j′ 6= j, then we have vk = vk−1: indeed, either the jth olumns of ŵk−1

and ŵk are equal, or a VH-step normalises the last letter sc,k−1 of the jth olumn of ŵk−1 with

the subsequent horizontal letter, or the �rst letter sb,k−1 of the jth olumn of ŵk−1 with the

previous horizontal letter; and, in the ase of the last letter (the other one being symmetri),
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vk is vk−1 with sc,k replaed by sc,−, hene unhanged by de�nition of sc,−. Otherwise, if one
goes from wk−1 to wk by a VVj-step, then vk−1 →R vk holds. As, by onstrution, the length

of the S-word vk is at most p− j, we onlude that the number of VVj-steps in
−→w is at most

F (p− j). Summing up, we dedue

(5.2.3) F (p) 6
p(p− 1)

2
+ F (p− 1) + ··· + F (3) + F (2),

whih solves into F (p) 6 2p + p− 1 owing to F (q) 6 2q − q − 1 that holds for every 2 6 q < p
by indution hypothesis.

Finally, as in the ase of lass (3, 3), Proposition 3.2.5 implies that, if (S,R) terminates and e
is a Φ-neutral element in S, then so does (Se, Re). �

Φ1

VV1

Φ2

VV1

Φ1

VV1

Φ2

VV1

Φ3

VH

Φ2

VH

···

Φ1

VH

Φ2

VV2

Φ3

VH

Φ2

VH

Φ3

VH

Figure 4. Types of the suessive steps in the omputation of Φ12123212323(w) for w
of length 4: in addition to the six VH-steps, whih inexorably approah Φ(w), we �nd four

VV1-steps and one VV2-steps; this turns out to be the only possible length-11 sequene

for length-4 words.

Remark. In the previous proof, one an observe that the number of VV-steps between two

VH-steps is bounded above by F (p− 1), sine olumns in the grid have length at most p − 1,
and dedue F (p) 6 p(p − 1)/2 + (p(p − 1)/2 + 1)F (p − 1), whih is oarser than (5.2.3) but

su�ient to indutively prove termination.

The following result, formulated purely in terms of rewriting systems, is an immediate on-

sequene of Proposition 5.2.1.

Corollary 5.2.4. Assume that (S,R) is a redued quadrati rewriting system. De�ne φ : S[2] →
S[2]

by φ(w) = w′
for w → w′

in R and φ(w) = w otherwise.

(i) If, for all r, s, t in S suh that r|s is not R-normal and s|t is R-normal, the S-word
φ12(r|s|t) is R-normal, then (S,R) is onvergent.

(ii) If S ontains a Φ-neutral element e and the ondition of (i) is satis�ed for all r, s, t in Se,

then (S,R) and (Se, Re) are onvergent, where Re onsists of one rule w → πe(w
′) for eah

w → w′
in R.

5.3. Termination in higher lasses. We show that Proposition 5.2.1 is optimal: from lass (4, 4)
onwards, no general termination result an be established, sine both nonterminating and ter-

minating rewriting systems may arise.

Proposition 5.3.1. There exists a quadrati normalisation of lass (4, 4) suh that the asso-

iated rewriting system is not onvergent.

Proof. Let S = {a, b, b′, b′′, c, c′, c′′, d} and let R onsist of the �ve rules ab → ab′, b′c′ → bc,

bc′ → b′′c′′, b′c → b′′c′′, and cd → c′d. We laim that the rewriting system (S,R), whih is

quadrati by de�nition, is normalising and on�uent. However (S,R) is not terminating, as it

admits the length-3 yle

abcd → ab′cd → ab′c′d → abcd.

We prove that (S,R) is normalising using an exhaustive desription of the rewriting sequenes

starting from an arbitrary S-word. Let f be the aent-forgetting map a 7→ a; b, b′, b′′ 7→ b;

c, c′, c′′ 7→ c; d 7→ d. For u a nonempty fator of abcd, we say that an S-word w is speial of
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type u if f(w) = u holds. For w in S∗
, indutively de�ne a deomposition D(w) by D(ε) = ε

and, if D(w) = w1 | ··· |wm and s ∈ S hold, D(ws) = w1 | ··· |wms if wms is speial, and D(ws) =
w1 | ··· |wm|s otherwise: D(w) is obtained by grouping the speial fators of w as muh as

possible. For instane, we �nd D(ab′db′′cdb′ab′) = ab′|d|b′′cd|b′|ab′. Now, we observe that π
is ompatible with all rules of R and, moreover, every rule ats inside a speial fator. Hene,

if we have D(w) = w1| ··· |wm, then the words w′
for whih w →R w′

holds are those words w′

satisfying D(w′) = w′
1 | ··· |w

′
m with wi →R w′

i for eah i. Consequently, in order to prove that

(S,R) is normalising and on�uent, it su�es to prove it for the fators of the D-deomposition,

that is, for speial words. We review the ten types. First, an S-word w of type a, b, c, d, ab,

bc, or cd is R-normal form, or we have w →R w′
for some R-normal S-word w′

. Next, there are

nine S-words of type abc, and the orresponding restrition of →R is (where framed S-words
are the R-normal ones)

abc′ ab′c′ abc ab′c ab′′c′′

abc′′ ab′c′′ ab′′c ab′′c′

The graph for bcd is entirely similar. Finally, for the type abcd, we �nd:

abcd

ab′cd

abc′d

ab′′c′′d ab′c′d

ab′′cd ab′′c′d

abc′′d ab′c′′d

Thus, for eah type, the orresponding onneted omponent of the relation→R ontains exatly

one R-normal S-word, whih is reahable from any other S-word of the omponent. It follows

that (S,R) is normalising and on�uent. Moreover, the inspetion of the normalisation of

length-three S-words shows that the normalisation (S,Φ) assoiated with R is of minimal

lass (4, 4). �

By ontrast, the following example shows that terminating rewriting systems may also arise

when the minimal lass is at least (4, 4).

Example 5.3.2. For a totally ordered �nite setX , the Chinese monoid over X is the monoid CX

generated by X and submitted to the relations zyx = zxy = yzx, for x 6 y 6 z [6℄. Assume

that X has three elements and denote by S the eight-element set obtained from X by adjoin-

ing the empty word e, the three words yx for x < y, and yy if y is the middle element of X
(neither the minimal one nor the maximal one). The following twelve rules are derivable from

the de�ning relations of CX : the nine rules y|x → yx, y|yx → yx|y, yx|x → x|yx for x < y; the

two rules y|zx → zx|y and z|yx → zx|y for x < y < z; and y|y → y if y is the middle element

of X . This redued rewriting system terminates (using the weighted right-lexiographi order

generated by x < yx for x 6 y and zx < y for x < y) and, after appliation of Knuth-Bendix

ompletion, it yields a onvergent rewriting system (Se, Re) with 22 rules presenting CX . Af-

ter homogenisation, we obtain a redued, quadrati and onvergent rewriting system (S,R),
whose orresponding quadrati normalisation is of lass (4, 4), the worst ase being reahed on

z|yy|y if y is the middle element and z > y holds. Similar onvergent quadrati presentations

also exist when X has four or �ve elements (to be ompared with the nonquadrati ones of [5,

Theorem 3.3℄), the lass being (5, 4) in both ases.

6. Garside normalisation

In this last setion, we investigate the onnetion between our urrent general framework and

Garside families. It turns out that the latter provide natural examples of quadrati normalisa-

tions of lass (4, 3) and that, onversely, a normalisation of lass (4, 3) omes from a Garside

family if, and only if, it satis�es some expliit additional ondition alled left-weightedness.



QUADRATIC NORMALISATION IN MONOIDS 23

The setion is organised as follows. In Subsetion 6.1, we brie�y reall the basi de�nitions

involving Garside families and the assoiated normal forms. In Subsetion 6.2, we introdue

the notion of a left-weighted normalisation and establish the above mentioned onnetion,

whih is Theorem C of the introdution. Finally, in Subsetion 6.3, we mention a few further

onsequenes.

6.1. Greedy deompositions. Hereafter, if M is a left-anellative monoid, we denote by 4

the assoiated left-divisibility relation, de�ned by f 4 g if fg′ = g holds in M for some g′. The
starting point is the notion of an S-normal word.

De�nition 6.1.1 ([10, De�nition III.1.1℄). If M is a left-anellative monoid and S is inluded

in M , an S-word s1|s2 is alled S-normal if the following ondition holds:

(6.1.2) ∀s∈S, ∀f∈M, (s 4 fs1s2 ⇒ s 4 fs1).

An S-word s1| ··· |sp is alled S-normal if si|si+1 is S-normal for every i.

The intuition underlying ondition (6.1.2) is that s1 already ontains as muh of S as it an,

a greediness ondition; note that we do not only onsider the left-divisors of s1s2 that lie in S,
but, more generally, all elements of S that left-divide fs1s2.

Then the notion of a Garside family arises naturally. Here we state the de�nition in a

restrited ase �tting our urrent framework (see [10℄ for the general ase):

De�nition 6.1.3. Assume that M is a monoid with no nontrivial invertible elements and S is

a subset of M that ontains 1. We say that S is a Garside family in M if every element g of M
has an S-normal deomposition, that is, there exists an S-normal S-word s1| ··· |sp satisfying

s1 ···sp = g.

Example 6.1.4. The seminal example of a Garside family is the family of all simple braids.

Let Bn be Artin's n-strand braid group and B+

n be the submonoid of Bn onsisting of all braids

that an be represented by a diagram in whih all rossings have a positive orientation (see for

instane [13℄ or [10, Setion I.1℄). Then the subfamily Sn of B+

n onsisting of those positive

braids that an be represented by a diagram in whih any two strands ross at most one is a

Garside family in B+

n .

More generally, if M is an Artin�Tits monoid, that is, a monoid de�ned by relations of the

form stst... = tsts... where both terms have the same length, and if W is the Coxeter group

obtained by adding the torsion relations s2 = 1 to the above relations, then M admits a Garside

family that is a opy of W [9℄. When W is �nite, this Garside family (whih onsists of the

divisors of some element ∆ onneted with the longest element of W ) is minimal. When W is

in�nite, it is not minimal, but there exists in every ase a �nite Garside family [9℄. For instane,

if M is the Artin�Tits monoid of (a�ne) type Ã2, that is, M admits a presentation with three

generators σ1, σ2, σ3 and three relations σiσjσi = σjσiσj , then the assoiated Coxeter group is

in�nite, but M admits a �nite Garside family S onsisting of the sixteen right-divisors of the

elements σ1σ2σ3σ2, σ2σ3σ1σ3, and σ3σ1σ3σ1.

It turns out that a large number of monoids admit interesting Garside families, and many

results involving suh families, inluding various pratial haraterisations, and the derived

normalisations are now known [10℄.

For our urrent approah, what ounts is that Garside normalisation enters the framework

of Setions 2 to 4. First, a mild disussion is in order, beause the S-normal form as introdued

in De�nition 6.1.3 is not readily unique.

Lemma 6.1.5. Assume that M is a left-anellative monoid with no nontrivial invertible ele-

ments and S is a Garside family in M .

(i) [10, Proposition III.1.25℄ Call two S-words ≃-equivalent if they only di�er by appending

�nal entries 1. Then every sequene that is ≃-equivalent to an S-normal sequene is S-normal;

onversely, any two S-normal deompositions of the same element of M are ≃-equivalent.
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(ii) [10, Proposition III.1.30℄ Every element of M with a representative in S[p]
admits an

S-normal deomposition of length at most p.

Building on Lemma 6.1.5, we immediately obtain

Proposition 6.1.6. Assume that M is a left-anellative monoid with no nontrivial invertible

elements and S is a Garside family of M . Then every element g of M admits a unique S-
normal deomposition of minimal length, and the orresponding map is a geodesi normal form

on (M,S \ {1}).

We an then apply Proposition 2.2.7, and assoiate with the Garside family S a normalisa-

tion (S,Φ). The latter involves the generating set S \1 enrihed with one letter representing the

unit, and it is then natural to use 1 for that letter so that we simply reover S. We shall then

say that (S,Φ) is derived from the Garside family S. In this ase, 1 is a Φ-neutral element in S
by Proposition 2.2.7, and M admits the presentation (2.2.3). Here is the main observation:

Proposition 6.1.7. Assume that M is a left-anellative monoid with no nontrivial invertible

elements and S is a Garside family of M . Then the normalisation (S,Φ) derived from S is

quadrati of lass (4, 3).

Proof. That Φ satis�es (3.1.3) diretly follows from De�nition 6.1.1, sine S-greedy words are

de�ned by a ondition that only involves length-two fators. For (3.1.4) and the more preise

result about the lass, it follows from [10, Proposition III.1.45℄ whih states that the domino

rule is valid for Φ. As the urrent statement is di�erent from [10, Proposition III.1.45℄, we reall

the argument.

So assume that s1, s2, s
′
1, s

′
2, t0, t1, t2 lie in S, that s1|s2 is S-

normal, and that we have s′1|t1 = Φ(s1|s2) and s′2|t2 = Φ(t1|s2).
Assume s ∈ S and s 4 fs′1s

′
2. A fortiori we have s 4 fs′1s

′
2t2, hene

s 4 ft0s1s2, sine the diagram on the right is ommutative. As s1|s2
is S-normal, we dedue s 4 ft0s1, whene s 4 fs′1t1. As s′1|t1 is

S-normal, we dedue s 4 fs′1. This shows that s
′
1|s

′
2 is S-normal. � s1 s2

s′1 s′2

s

f

t0 t1 t2

The result of Proposition 6.1.7 is optimal: as the example below shows, (4, 3) is in general

the minimal lass. Let us mention that there is a partiular lass of Garside families, alled

bounded [10, hapter VI℄, for whih the lass drops to (3, 3) or less. Garside monoids [7℄ are

typial examples of the latter situation.

Example 6.1.8. The normalisation derived from the �nite Garside family mentioned in Ex-

ample 6.1.4 for the Artin�Tits monoid of type Ã2 is not of lass (3, 3): for instane, one �nds
Φ121(σ1|σ1 |σ2σ1σ3σ2) = σ1σ2σ1|σ2|σ3σ1, in whih σ2|σ3σ1 is not normal.

6.2. Left-weighted normalisation. De�nition 6.1.1 is highly non-symmetri, so we an ex-

pet that the normalisations derived from Garside families satisfy some relations apturing the

spei� role of the left-hand side.

De�nition 6.2.1. Assume that (S,Φ) is a (quadrati) normalisation for a monoid M . We say

that (S,Φ) is left-weighted if, for all s, t, s′, t′ in S, the equality s′|t′ = Φ(s|t) implies s 4 s′

in M .

In other words, a normalisation (S,Φ) is left-weighted if, for every s in S, the �rst entry of any
length-two S-word Φ(s|t) is always a right-multiple of s the assoiated monoid: normalising s|t
amounts to adding something in the left entry.

Lemma 6.2.2. The normalisation derived from a Garside family in a left-anellative monoid

with no nontrivial invertible element is left-weighted.

Proof. Assume that (S,Φ) derives from a Garside family S. If s′|t′ = Φ(s|t) holds, s is an

element of S, and we have st = s′t′, whene s 4 s′t′. By assumption, s′|t′ is S-normal,

so (6.1.2) implies s 4 s′. Thus Φ is left-weighted. �
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We shall now establish that left-weightedness haraterises Garside normalisation, as stated

in Theorem C:

Proposition 6.2.3. Assume that (S,Φ, 1) is a quadrati epinormalisation for a monoid M
that is left-anellative and ontains no nontrivial invertible element. Then the following are

equivalent:

(i) The family S is a Garside family in M and (S,Φ) derives from it.

(ii) The normalisation (S,Φ) is of lass (4, 3) and is left-weighted.

Aording to Proposition 6.1.7 and Lemma 6.2.2, the impliation (i)⇒(ii) holds and we are

left with the onverse diretion. So, until the end of the subsetion, we assume that (S,Φ, 1) is
a left-weighted quadrati epinormalisation of lass (4, 3) for a monoid M that is left-anellative

and ontains no nontrivial invertible element. Our aim is to show that S is a Garside family

in M and that Φ derives from it. We deompose the argument into several steps.

Lemma 6.2.4. The family S is losed under right-divisor in M .

Proof. Assume s ∈ S. An element g of M is a right-divisor of s if there exists f in M satisfying

s = fg. We prove g ∈ S by indution on the minimal length ‖f‖ of the S-words representing f .
For ‖f‖ = 0, we have s = g, whene g ∈ S.

Assume ‖f‖ > 1. Then we an write f = f ′t for some f ′
satisfying ‖f ′‖ = ‖f‖ − 1 and

some t in S. Then we have s = f ′tg, so the indution hypothesis implies tg ∈ S and, therefore,

the S-normal deompositions of tg are the S-words tg|1| ··· |1. Let s1| ··· |sp be a Φ-normal

deomposition of g. For p = 1, we have g = s1 ∈ S. So assume p > 2. By Proposition 4.2.3,

as Φ is quadrati of lass (4, 3), the domino rule is valid for Φ and, therefore, a Φ-normal

deomposition of tg is s′1| ··· |s
′
p|tp where we put t0 = t and s′i|ti = Φ(ti−1|si) for i = 1, ... , p.

By ≃-uniqueness of the Φ-normal form, we have s′1 = tg and s′2 = ··· = s′p = tp = 1. Now, we
prove using indution on k dereasing from p to 2 that tk−1 and sk equal 1. For k = p, we have
s′p = tp = 1; by onstrution, we have tp−1sp = s′ptp, whene tp−1sp = 1, and tp−1 = sp = 1,
sine M ontains no nontrivial invertible element. For 2 6 k < p, we have s′k = 1 by assumption

and tk = 1 by indution hypothesis, so that the same argument gives tk−1 = sk = 1. Thus g
admits a Φ-normal deomposition of the form s1|1| ··· |1 and, therefore, it belongs to S. �

Lemma 6.2.5. For g in M , de�ne H(g) to be 1 for g = 1, and to be the �rst entry in the

Φ-normal deomposition of g otherwise. Then H(g) is an element of S that left-divides g, and
every element of S that left-divides g in M left-divides H(g).

Proof. By de�nition, H(g) belongs to S, and it left-divides g inM , sine we have g = H(g)ev(w)
if H(g)|w is the Φ-normal deomposition of g.

Now assume that t is an element of S that left-divides g, say g = th. Let s1| ··· |sp be the

Φ-normal deomposition of h. As Φ is quadrati of lass (4, 3), the domino rule is valid for Φ, so
the Φ-normal deomposition of g is s′1| ··· |s

′
p|tp with t0 = t and s′i|ti = Φ(ti−1|si) for i = 1, ... , p.

By uniqueness of the Φ-normal form, we must have H(g) = s′1. But the fat that (S,Φ) is

left-weighted implies that t0 left-divides the �rst entry in Φ(t0|s1), whih is s′1|t1, so t 4 H(g)
holds. �

Lemma 6.2.6. The family S is a Garside family in the monoid M .

Proof. By assumption, S ontains 1 and, by Lemma 6.2.4, it is losed under right-divisor. So S
is what is alled solid in [10, Setion IV.2℄. Moreover, by de�nition, S is a generating family

in M . Then, by [10, Proposition IV.2.7℄, we know that a solid generating family is a Garside

family in M if, and only if, for every element g of M , there exists an element H(g) of S with the

properties of Lemma 6.2.5. Thus the latter lemma implies that S is a Garside family in M . �

We an now omplete the argument.
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Proof of Proposition 6.2.3. Owing to the previous results, it only remains to show that, in the

impliation (ii)⇒(i), the given normalisation (S,Φ) oinides with the one, say (S,Φ′), derived
from the Garside family S. As both normalisations are quadrati, it is su�ient to prove

Φ(s1 |s2) = Φ′(s1|s2) for all s1, s2 ∈ S, and, to this end, it is su�ient to prove that Φ(s1|s2)
is S-normal (in the sense of De�nition 6.1.1). Now assume s′1|s

′
2 = Φ(s1 |s2). Sine S is a

Garside family in M , we an appeal to [10, Corollary IV.1.31℄ whih says that s′1|s
′
2 is S-greedy

if, and only if, every element of S that left-divides s′1s
′
2 left-divides s′1: we an skip the term f

in (6.1.2). Now assume s ∈ S and s 4 s′1s
′
2 = s1s2. By Lemma 6.2.5, we have t 4 H(s1s2) = s′1

and, therefore, s′1|s
′
2 is S-greedy. �

Remark. In Proposition 6.2.3, we take as an assumption that the monoid M assoiated

with (S,Φ, e) is left-anellative and has no nontrivial invertible element. It is natural to wonder

whether expliit onditions involving (S,Φ, e) imply these assumptions. For invertible elements,

requiring that s|t 6= e|e implies Φ(s|t) 6= e|e is suh a ondition but, for left-anellativity, we

leave it as an open question.

6.3. Two further results. By Proposition 3.1.8, if (S,Φ) is a quadrati normalisation for a

monoid M , then M admits a presentation onsisting of all quadrati relations s|t = Φ(s|t). In
fat, in the left-weighted ase, this presentation an be replaed with a smaller one involving

triangular relations of the form r|s = t.

Proposition 6.3.1. Assume that (S,Φ, e) is a left-weighted quadrati epinormalisation system

of lass (4, 3) for a left-anellative monoid M . Then M admits the presentation (Se, T ) where T
onsists of all relations s|t = st with s, t in Se satisfying st ∈ S.

Proof. By Proposition 3.1.8 (i), we know that M admits a presentation in terms of S by the

relations s|t = πe(Φ(s|t)) with s, t ∈ Se. First, if s, t in Se satisfy st ∈ Se, then we must have

Φ(s|t) = st|e, and, if they satisty st = 1, then we must have Φ(s|t) = e|e, so that πe(Φ(s|t)) = st
holds in both ases. Thus, T is inluded in the presentation of Proposition 3.1.8 (i). Conversely,

let us show that eah relation s|t = πe(Φ(s|t)) with s, t in Se follows from a �nite number of

relations of T . So assume that s and t lie in Se and let s′|t′ = Φ(s|t). If t′ = e holds, we

have s′ = st in M , so the result is true. Otherwise, the assumption that (S,Φ) is left-weighted
implies that there exists r in M satisfying sr = s′. By onstrution, r is a right-divisor of s′

in M so, by Lemma 6.2.4, r must lie in S. Then, in M , we have s′ = sr, whene st = srt′.
The assumption that M is left-anellative implies t = rt′. Hene the relation s|t = s′|t′ is the
onsequene of s|r = s′ and rt′ = t. �

Note that the existene of the presentation of Proposition 6.3.1 is only possible in a non-

graded ontext, exept for the free monoid S∗
with its presentation 〈S | 〉+.

Example 6.3.2. Consider the braid monoid B+

3 , that is, the monoid presented by 〈a, b | aba =
bab〉+. Then B+

3 has a Garside family onsisting of the six elements 1, a, b, ab, ba, and aba.

Proposition 6.3.1 provides a presentation of B+

3 whose generators are the �ve nontrivial elements

of the Garside family, and with the six relations a|b = ab, b|a = ba, and a|ba = b|ab = ab|a =
ba|b = aba. This presentation is muh smaller than the one provided by (3.1.11), that has the

same �ve generators and 52 = 25 relations, suh as ab|ab = aba|b or a|a = a|a.

Another subsequent development is that Garside families give rise to onvergent rewriting

system. Indeed, Propositions 5.2.1 and 6.2.3 diretly imply

Proposition 6.3.3. Assume that M is a left-anellative monoid with no nontrivial invertible

elements and S is a Garside family in M . Let R onsist of all rules s|t → w with s, t in S \ {1}
and w the minimal length S-normal deomposition of s|t. Then the rewriting system (S\{1}, R)
is onvergent.
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As mentioned in Example 6.1.4, every �nitely generated Artin�Tits monoid admits a �nite

Garside family. Being also left-anellative with no nontrivial invertible element, Artin�Tits

monoids are thus eligible to Proposition 6.3.3.

Corollary 6.3.4. Every Artin�Tits monoid admits a �nite quadrati onvergent presentation.

Example 6.3.5. In the ase of a spherial Artin�Tits monoid, the elements of the orre-

sponding Coxeter group form a �nite Garside family, and Corollary 6.3.4 orresponds to [14,

Theorem 3.1.3, Prop. 3.2.1℄. In the nonspherial ase, Corollary 6.3.4 is an improvement of the

latter results, whih only give an in�nite onvergent presentation. For instane, in type Ã2,

the 16-element Garside family desribed in Example 6.1.4 yields a onvergent rewriting system

for Ã2 with 15 generators and 87 relations.
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