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Shear-induced vertical mixing in a stratified flow is a key ingredient of thermohaline circulation.
We experimentally determine the vertical flux of momentum and density of a forced gravity current
using high-resolution velocity and density measurements. A constant eddy viscosity model provides a
poor description of the physics of mixing, but a Prandtl mixing length model relating momentum and
density fluxes to mean velocity and density gradients works well. For 〈Rig〉 ≈ 0.08 and Reλ ≈ 100,
the mixing lengths are fairly constant, about the same magnitude, comparable to the turbulent
shear length.

PACS numbers: 47.20.Ft,47.27.Wj,47.55.Hd,92.10.Lg

Mixing in stratified shear flows is an important process
in many geophysical situations including atmospheric
shear layers or the upper ocean mixing induced by wind
stresses at the surface [1–3]. Of particular current inter-
est are the mixing and entrainment of oceanic overflows,
which are involved in the transport of heat and salt in
the global ocean via the thermohaline “conveyor belt”
[4–7]. Such circulations are thought to play a significant
role in decadal predictability of ocean evolution. Under-
standing the physics of mixing in stratified layers and
providing a simple description of this mixing may help
improve predictions of global climate change [8].

Laboratory studies of stratified mixing layers [9–11]
and gravity currents on shallow inclines [12–14] have
characterized the mixing and entrainment resulting from
the competition of shear and buoyancy. Whereas funda-
mental studies of shear layers have provided reasonable
characterization of some turbulence quantities, the grav-
ity current experiments have focused on bulk entrain-
ment measurements rather than on details of the turbu-
lence itself. There is a need to apply modern turbulence
measurements to the physically relevant problem of in-
clined gravity currents as a model of turbulent oceanic
overflows. In particular, understanding turbulent mixing
implies being able to describe how correlations of small
scale fluctuating quantities affect large-scale fluid trans-
port properties.

We developed an experiment of a stratified flow on an
inclined plane that is destabilized by shear. Our main
result is that the turbulent transport of momentum and
density are described in a direct and compact form by a
Prandtl mixing length model [15, 16]. In particular, the
turbulent vertical fluxes of momentum and density scale
with the vertical mean gradients of velocity ∂zu and den-
sity ∂zρ as an eddy viscosity νT = L2

m|∂zu| and an eddy
diffusivity γT = L2

ρ|∂zu| where Lm and Lρ are approx-
imately constant over the mixing zone of the stratified
shear layer. In general, Prandtl mixing length models,
although widely used because of their simplicity, are of-

ten not verified by simulation or experiment [17]. For
example, a mixing length description does not work well
in our system when the flow is unstratified, suggesting
that stratification plays a key role in the correlations we
measure. More complicated descriptions beyond a sim-
ple eddy-viscosity or mixing length approach have been
developed [17] but seem unnecessary here. Our compact
description may provide an efficient parameterization of
mixing and entrainment in oceanic overflows.

The experiment, sketched in Fig. 1a, and described in
detail elsewhere [18], consists of a turbulent, uniform-
density flow injected via a pump through a 5 cm high
by 45 cm wide nozzle at a speed of U0 = 8 cm/s into
a tank filled with unstirred higher density fluid. The
turbulence level of the injection current is enhanced by
an active grid device located just before the injection
nozzle. The flow, upon exiting the nozzle, is bounded
from above by a transparent plate inclined at an angle
of 10o with respect to horizontal, is unbounded below,
and is confined in a tank about 2 m long, 0.5 m wide
and 0.5 m high. The components of the spatial position
vector x describing the flow are the mean flow direction
x, the cross-stream direction y and the downward dis-
tance perpendicular to the plate z. The corresponding
velocity u(x) has components {u, v, w}. We use the no-
tation u for a time- and ensemble-averaged quantity and
u
′ = u− u for its fluctuating part. The exit fluid, a so-

lution of ethanol and water, is less dense (ρe = 996.8
g/L) than the fluid in the tank, water and salt (NaCl)
(ρs = 999.4 g/L). The net density difference between the
fluids is ∆ρ = 2.6 g/L. The concentrations of ethanol and
salt are adjusted (and the fluid temperatures maintained
equal within 0.2◦C) so that the fluids are index matched
to avoid optical distortions[19]. All the fluids are freshly
prepared for each run, which lasts for about 45 s.

Instantaneous velocity and density fields are measured
in a 9 cm × 9 cm area of a 0.1 cm thick laser sheet in the
x−z plane. Velocity and density are measured simultane-
ously using particle image velocimetry (PIV) and planar
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laser-induced fluorescence (PLIF), respectively, at a rate
of 3 Hz with two 20482 pixels digital cameras. Fluores-
cent dye (Rhodamine 6G) is added to the light fluid, and
a calibration of density versus fluorescence intensity is
performed for each position of the field of view. Figure 1
shows a snapshot of the density difference obtained from
the PLIF and of the y-component of vorticity, derived
from the PIV velocity field (Ωy = ∂zu(x, z)− ∂xw(x, z)).
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FIG. 1: (Color Online) a) Sketch of the experimental de-
vice. b) Density snapshot obtained from PLIF and c) vor-
ticity snapshot from PIV. The scale of density is from 0
(yellow, salt water) to -1.4 g/L (red, mixture of salt water
with ethanol). The scale of vorticity is from positive (yel-
low) to negative (red) with vorticity amplitude in the range
−12 < Ωy < 6 s−1.

The lighter exit fluid is stably stratified with respect to
the heavy fluid in the tank and forms a gravity current
on the bottom side of the plate. The competition be-
tween the stabilizing effect of buoyancy and the destabi-
lizing shear is captured in a dimensionless parameter, the
gradient Richardson number, Ri = −(g/ρs)(∂zρ)/(∂zu)
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where g is acceleration of gravity. For small Ri, shear
dominates buoyancy, and the flow is unstable to Kelvin-
Helmoltz instability [3]. The gravity current is fully tur-
bulent as it exits the nozzle with streamwise velocity fluc-
tuations u′ about 25% of u, corresponding to a Taylor
Reynolds number Reλ = u′2/

√
15ǫν ≈ 100, where ν is

the fluid kinematic viscosity and ǫ is the mean dissipation
rate measured directly from velocity field (the spatial res-
olution of our velocity measurement is 0.5 mm compared
to the dissipation scale of 0.33 mm). Over the first 20
cm, there is rapid evolution of mean quantities including
the vertical-velocity and density gradients. In this Let-
ter, we focus on the region from 21 to 45 cm over which
averages are approximately stationary, e.g., Ri ≈ 0.08,
∂zu ≈ 1 s−1, (1/ρ)∂zρ ≈ 10−4 cm−1, and ǫ ≈ 1 cm2/s3.
Note, however, that the results decribed here also apply

to the initial region, except for a stronger dependence
on downstream distance. Details of the spatial distribu-
tion of mean and fluctuating quantities in vertical and
streamwise directions will be presented elsewhere.

The time-averaged profiles of density difference ∆ρ =
ρ− ρs and downstream velocity u as functions of z are
shown in Fig. 2a. Figure 2b shows the corresponding
profiles of ∂zρ and ∂zu. There is a strong mixing region
between 1.5 cm< z <7 cm where the gradients are within
50% of their maximum values. The velocity field goes to
zero over a turbulent boundary layer (not resolved) which
leads to the velocity maximum at z ≈ 1 cm. The vertical
density gradient decreases near the wall indicating less
vigorous mixing owing to the presence of the boundary.
Nevertheless, some mixing has occurred at lower x, as
indicated by the reduced density difference at the wall
compared to the initial difference. Far from the wall, the
velocity and density difference approach quiescent values
because of the stabilizing influence of stratification.
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FIG. 2: (Color Online) The time averaged values of a) down-
plane velocity u (solid line, bottom axis) and density differ-
ence ∆ρ (dashed, top axis) and b) the vertical gradients dzu
(solid, bottom axis) and dzρ (dashed, top axis) as functions
of the distance z from the plane. These profiles have also
been averaged along the downstream distance (〈•〉x symbol),
between 21 and 47 cm.

The density and momentum evolution equations are:

∂tu+ (u ·∇)u = −1

ρ
∇p+ ν∇2

u− g

(

∆ρ

ρs

)

∂t

(

∆ρ

ρs

)

+ (u ·∇)

(

∆ρ

ρs

)

= κ∇2

(

∆ρ

ρs

)

,

where p is the pressure field and κ is the molecular mass
diffusivity of the light fluid into the heavy one. For a
turbulent flow, the Reynolds decomposition of quantities
into mean and fluctuating parts yields an additional effec-
tive force density due to the turbulent fluctuations [17].
It takes the form of the divergence of the stress tensor
ρu′

iu
′

j. In the same way, for a flow with variable density,

the divergence of ρ′u′ appears in the density equation.
The equations for the evolution of the averaged momen-
tum and density, in the stationary case, become (with the
spatial derivative along the ith component of x denoted
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∂i):

uj∂jui = −1

ρ
∂ip+ ν∂jjui − ∂ju′

iu
′

j − gi

(

∆ρ

ρs

)

uj∂j

(

∆ρ

ρs

)

= κ∂jj

(

∆ρ

ρs

)

− 1

ρs
∂jρ′u′

j ,

In particular, u′w′ and ρ′w′ can be interpreted, re-
spectively, as the vertical flux of downstream momen-
tum and of density due to turbulent fluctuations. To
understand the transport mechanisms that maintain the
vertical gradients shown in Fig. 2, we need to relate the
turbulent fluxes to the mean gradients. A closure scheme
commonly used in turbulence establishes these relations
via effective diffusivity coefficients (or eddy diffusivities)
νT = −u′w′/∂zu and γT = −ρ′w′/∂zρ.
The simplest models used in geophysical models of cli-

mate (see, e.g., [20]), assume a constant effective diffu-
sivity, which yields a linear relation between the fluxes
and the corresponding gradients. Because we are able
to directly measure u′w′ and ρ′w′, we can test the eddy
diffusivity assumption. In Fig. 3 several two-dimensional
histograms show the correlation between fluxes and gra-
dients. Each entry in a histogram corresponds to one
particular PIV grid point, averaged over time for a given
experimental run and then over all experimental runs
for the field view locations beyond x = 21 cm. We ex-
clude data from the vicinity of the solid boundary layer
(z <1.5 cm) as well as data in the quiescent zone (z >7
cm), which display a somewhat different behavior.
In contrast to the constant eddy viscosity (diffusivity)

assumption, the data in Fig. 3a show that the momentum
flux is proportional to the square of the velocity gradi-
ent. In the same way, Fig. 3b shows that the density
flux is proportional to the product of the velocity gradi-
ent and the density gradient. The quadratic dependence
yields a nice description for the fluxes over most of the
mean gradient range. The insets in Figs. 3a,b show the
momentum and density fluxes versus the corresponding
gradients. The data fails to support the constant eddy
diffusivity model because the fluxes increase faster than
the gradients. This qualitative trend was reported earlier
[21].
The quadratic behavior can be understood if both eddy

diffusivities are linear functions of the velocity gradi-
ent, instead of being constant. Indeed, as the gradi-
ent becomes larger, one expects the turbulence inten-
sity to increase. This can be interpreted in terms of
a mixing length model, originally proposed by Ludwig
Prandtl [15]. Prandtl’s argument is analogous to that
applied in the kinetic theory of gases to molecular trans-
port processes: it assumes that the coefficient of eddy
viscosity is equal to the product of a “mixing length” Lm,
characteristic of the mixing phenomena, and a suitable
velocity: νT ≃ Lm × U(typical). One straightforward
way of defining this velocity is to relate it to the mixing

FIG. 3: Two dimensional histograms representing the correla-
tion between turbulent stresses and mean gradients. Grayscale
represents a number of entries in the histogram. (a) Momen-
tum flux u′w′ vs square of vertical velocity gradient ∂zu

2; (b)
density flux ρ′w′ vs product of vertical velocity and density gra-
dient ∂zu∂zρ. The insets show a test of the linear assumption :
u′w′ vs ∂zu in (a) and ρ′w′ vs ∂zρ in (b). The respective slopes
indicated by dashed lines yield respectively L2

m and L2

ρ for the
main plots and νT and γT for the insets.

length and the mean velocity gradient along the direction
of the transport: U(typical) = Lm|∂zu|. This relation as-
sumes that Lm is small enough so that the variation of
the gradient over a distance Lm can be neglected. The
following expression for the momentum flux is then ob-
tained: u′w′ = −L2

m|∂zu|∂zu. In our case, where u′w′

is positive and ∂zu negative, this expression becomes:
u′w′ = L2

m∂zu
2. The same argument for the density flux

yields ([16]): ρ′w′ = −L2
ρ|∂zu|∂zρ, where Lρ is a mix-

ing length associated with the density transport. As a
result, averaging quantities along the downstream direc-
tion (〈•〉x symbol), we computed the mixing lengths as:

L2
m =

〈u′w′〉x
〈∂zu2〉x

and L2
ρ =

−〈ρ′w′〉x
〈|∂zu|∂zρ〉x

The resulting z profiles of mixing lengths are shown
in Fig. 4. The profiles are fairly uniform, yielding mean
values of Lm = Lρ = 0.45 ± 0.1 cm. The constancy
of these lengths through the mixing zone and their equal
magnitude (turbulent Prandtl number νT /γT ≈ 1) yields
a simple but powerful model for the mixing in stratified
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FIG. 4: (Color Online) Mixing lengths Lm (•) and Lρ (�) vs
distance z from the plane. The error bars correspond to the
standard deviation computed from the average along x.

shear flows. The physics of possible vertical variations of
Lm and Lρ is not discussed here.

By comparing the results presented above with data
obtained with different conditions of stratification and/or
turbulence level (although always at lowRi), we can draw
some conclusions and provide a physical interpretation of
the mixing length. Without turbulent enhancement, the
mean Ri is unchanged but the smaller Lm ≈ Lρ ≈ 0.3
cm implies that the degree of initial turbulence in the
current strongly affects vertical mixing. Increasing the
stratification leads as expected to less efficient mixing
and a smaller mixing length (Lm ≈ Lρ ≈ 0.3 cm for
a doubled density difference). Other data at higher Re
suggest a stronger quadratic correlation between flux and
gradient, as well as an increased mixing length (Lm ≈ 0.6
cm for Reλ = 140) but further experiments are necessary
to confirm that trend. Finally, without stratification,
i.e., for a free shear flow, the distribution of fluxes for
a particular mean gradient is much wider, and neither
a constant eddy viscosity model nor the mixing length
model provides an adequate description of the data.
An interpretation of Lm implies comparison with scales

[22] involving the competition of turbulent kinetic en-
ergy with the stabilization of buoyancy or the destabi-
lization from shear. The energy of a typical eddy of size
ℓ is of order v2t ∼ (ǫℓ)2/3 whereas the energy associated
with buoyancy and shear is v2b ∼ (Nℓ)2 and v2s ∼ (Sℓ)2,
respectively, where N2 = g∂zρ/ρ and S = ∂zu. Bal-
ancing the turbulent and forcing components yields a
buoyancy length Lo = (ǫ/N3)1/2 and a shear length
Ls = (ǫ/S3)1/2. The smaller of these lengths limits the
typical eddy size. We have Lo ≈ 2 cm and Ls ≈ 0.5 cm so
we would expect Lm ≈ Ls as indeed we observe. Further,
the results obtained with different stratification and/or
turbulence levels indicate Lm ≈ Lρ ≈ Ls for those condi-
tions, implying that for low Richardson number the tur-
bulent mixing lengths scale with shear rather than buoy-
ancy. Applying this argument to oceanic Mediterranean
Overflow data [7] where one has measured values of Ls ≈

2.3 m and 〈∂zu〉 ≈ 0.013 s−1, our model predicts eddy
diffusivities of νT ≈ γT ≈ Ls〈∂zu〉 ≈ 650 cm2/s. We
also expect that at higher Richardson number, as in the
ocean, the length scale will be determined by buoyancy
since Lo < Ls so that our oceanic estimate may be a bit
high. Unfortunately, data allowing a direct comparison
between our measurements and oceanic conditions is not
available to our knowledge. Parametrizations in ocean
models [23] have used values in the range 300< νT <7000
cm2/s for typical overflow scenarios. Critical to extrap-
olating to oceanic conditions is a systematic exploration
of the dependence of the mixing lengths on turbulence
intensity and on the degree of stratification as measured
by Ri.
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