CUTOFF FOR NON-BACKTRACKING RANDOM WALKS ON SPARSE RANDOM GRAPHS - Archive ouverte HAL
Article Dans Une Revue Annals of Probability Année : 2017

CUTOFF FOR NON-BACKTRACKING RANDOM WALKS ON SPARSE RANDOM GRAPHS

Résumé

A finite ergodic Markov chain is said to exhibit cutoff if its distance to stationarity remains close to 1 over a certain number of iterations and then abruptly drops to near 0 on a much shorter time scale. Discovered in the context of card shuffling (Aldous-Diaconis, 1986), this phenomenon is now believed to be rather typical among fast mixing Markov chains. Yet, establishing it rigorously often requires a challengingly detailed understanding of the underlying chain. Here we consider non-backtracking random walks on random graphs with a given degree sequence. Under a general sparsity condition, we establish the cutoff phenomenon, determine its precise window, and prove that the (suitably rescaled) cutoff profile approaches a remarkably simple, universal shape.
Fichier principal
Vignette du fichier
draft.pdf (411.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01141192 , version 1 (10-04-2015)

Identifiants

Citer

Anna Ben-Hamou, Justin Salez. CUTOFF FOR NON-BACKTRACKING RANDOM WALKS ON SPARSE RANDOM GRAPHS. Annals of Probability, 2017, ⟨10.1214/16-AOP1100⟩. ⟨hal-01141192⟩
238 Consultations
171 Téléchargements

Altmetric

Partager

More