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We consider the one-dimensional Vlasov equation with an attractive cosine potential, and its non
homogeneous stationary states that are decreasing functions of the energy. We show that in the
Sobolev space W 1,p (p > 2) neighborhood of such a state, all stationary states that are decreasing
functions of the energy are stable. This is in sharp contrast with the situation for homogeneous
stationary states of a Vlasov equation, where a control over strictly more than one derivative is
needed to ensure the absence of unstable stationary states in a neighborhood of a reference stationary
state [Z.Lin and C.Zeng, Comm.Math.Phys. 306, 291-331 (2011)].
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I. INTRODUCTION

Vlasov equation is central in different areas of physics, notably plasma physics, where it is used with the Coulomb
potential, and astrophysics, where the Newton potential is used instead. In this latter context, it is usually called
“collisionless Boltzmann equation”. Understanding the asymptotic behavior of a perturbation to a stationary state
of the Vlasov equation is an old problem. A huge literature is devoted to the linearized dynamics, starting with the
pioneering work of Landau [1]. The full non linear problem, despite a large literature (for instance [2–6]), is still not
fully understood.

The subject has witnessed spectacular mathematical progresses recently. Mouhot and Villani [7, 8] showed that if
the initial condition is close, in some analytical norm, to a stable homogeneous stationary state, then the dynamics is an
exponential relaxation towards another nearby stable homogeneous stationary state. Lin and Zeng in [9] investigated
weaker norms of the Sobolev space W s,p with p > 1. They showed among other results that if the norm is weak
enough (precisely, s < 1 + 1/p), any neighborhood of a stable homogeneous stationary state also contains unstable
homogeneous stationary states, as well as small BGK waves. In particular, complete damping for any initial condition,
as in Mouhot-Villani’s setting, is excluded. Conversely, if s > 1+ 1/p, there is a neighborhood of the reference stable
state that contains no unstable stationary states. All these impressive results hold for homogeneous stationary states:
this is unfortunately a severe limitation, since it excludes all situations of interest for self-gravitating systems.

A natural question is then: what could it be possible to show in the context of non-homogeneous stationary states?
First, any exponential relaxation as in [7, 8] is impossible, since one always expects an algebraic relaxation, already
for the linearized problem [10, 11]. One may then conjecture an algebraic relaxation at the non linear level (see [12]
for such a conjecture in the context of the 2D Euler equation), but it seems difficult to prove. Now, is an analysis in
the spirit of [9] possible? Again, the complexity of the linearized problem is a serious obstacle (see for instance [13]
for a textbook account of the study of the linearized Vlasov equation in astrophysics). However, a simple criterion
for the stability of a large class of non-homogeneous stationary states has been found recently [14], in the context of
a simple toy model, called the Hamiltonian Mean-Field model (HMF).

The purpose of this paper is to take advantage of this simple formulation to investigate the neighborhood of
inhomogeneous stable stationary solutions in the case of the HMF model. This is a first partial advance, in the spirit
of Lin and Zeng, for inhomogeneous stationary states. We will show that the results differ significantly from the
homogeneous case: it is actually easier to rule out the presence of unstable states in a neighborhood of the reference
stable state, since a W 1,p norm may be sufficient.

We state precisely our results in section II, emphasizing the important difference with the homogeneous case, and
postpone the proofs to section III. Section IV presents some numerical illustration of our findings.

II. STATEMENT OF THE RESULTS

The Vlasov equation associated to the HMF model is

∂f

∂t
+ {h, f} = 0, with {f, g} =

∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
. (1)

and the one-body Hamiltonian of the HMF model is

h(q, p, t) =
p2

2
−M [f ](t) cos(q − ϕ(t)), M [f ](t)eiϕ(t) =

∫∫

µ

f(q, p, t)(cos q + i sin q)dqdp, (2)

where µ represents the phase space of the one-body system.

Remark: Note that 0 ≤M [f ] ≤ 1. Furthermore, thanks to the rotational symmetry of the HMF model, we may set
the magnetization’s phase to zero without loss of generality. We will always do so in the following.

Notation: If f is stationary, the Hamiltonian system h is integrable, and we can introduce the angle-action variables
(Θ, J). An integrable Hamiltonian h(q, p) can be expressed as a function of J only. We denote such a Hamiltonian as
H(J). We also write Ω(J) = ∂JH(J).

Remark: The phase space of Hamiltonian (2) presents a separatrix, at energy M . Strictly speaking, one must then
define the angle-action variables separately in the different regions delimited by the separatrix. This is technical and
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a little bit cumbersome, so we postpone it to section III B.

Clearly, any function f that depends on (q, p) through the Hamiltonian h only is a stationary solution to (1). In
this paper, we concentrate on the following special class of stationary solutions:

Definition: A function f is called a monotonous stationary solution if it can be written as

f(q, p) = F (h(q, p))

with F a C1, real, strictly decreasing function, and if it is normalized:
∫∫

µ
fdqdp = 1.

Note that a monotonous stationary solution f is non-homogeneous in space if and only if M [f ] 6= 0. We further
note that M [f ] = 1 is excluded, since M [f ] = 1 implies that f is concentrated on the p-axis and hence f is not C1.
As will be clear in the following, these stationary solutions may be stable or unstable. This is a difference with 3D self
gravitating systems, where stationary solutions that are strictly decreasing functions of the energy are always stable
(see [15] for the most recent results in this direction).
To measure the distance between two stationary solutions, we will use the fractional Sobolev spaces W s,a. In

addition, we require that to be close to each other, two stationary solutions must not differ too much in their
magnetization, which is rather natural. In the whole paper, we will use “stable” to mean “formally stable”. We can
now state our main result.

Theorem 1 Let f be a non-homogeneous stable monotonous stationary state, such that f ∈ W 1,a with a > 2. Let f̃
be another monotonous stationary state such that f̃ ∈ W 1,a. Then there exists ǫ > 0 such that:

∣

∣

∣

∣

∣

∣
f − f̃

∣

∣

∣

∣

∣

∣

W 1,a
< ε and |M [f ]−M [f̃ ]| < ε imply that f̃ is stable.

In other words, there exists a neighborhood of f in the W 1,a(a > 2) norm that does not contain any unstable
monotonous stationary state, with magnetization close to M [f ].

This is to be contrasted with the following statement concerning homogeneous stationary states:

Theorem 2 Let f be a homogeneous stable monotonous stationary state, such that f ∈ W s,a, with a > 1 and
s < 1 + 1/a. Any neighborhood of f in the W s,a norm contains an unstable monotonous homogeneous stationary
state.

From Theorem 1, we see that using a norm that controls only one derivative of the distribution function is enough to
ensure that a neighborhood of f is “simple”, in the sense that it does not contain any unstable monotonous stationary
state. By contrast, in the homogeneous case, even requiring more regularity (with s > 1) may not be enough.
We have stated Theorem 2 in this way to emphasize the contrast with the non-homogeneous case. It is actually a

much weaker and less general statement of the results in [9]. We will give a proof of it, because it is instructive and
for self-consistency of the paper.

Idea of the proof of Theorem 1: The proof relies on the analysis of the simple formal stability criterion obtained
for non-homogeneous monotonous stationary states in [14]. From the condition |M [f ]−M [f̃ ]| < ǫ, we may choose a

small enough ǫ such that M [f̃ ] is not zero, and hence we will assume that f̃ is non-homogeneous in the proof.

Notation: We need to define the average over the angle Θ variable, at fixed action J ; for a function A(Θ, J), we
denote it as (see Sec. III B for a more precise definition of the integrals over Θ and/or J):

〈A〉J =
1

2π

∫ π

−π

A(Θ, J)dΘ. (3)

Following [14], we now introduce the functional I[f ]:

I[f ] = 1 +

∫

cos2 qdq

∫

1

p

∂f

∂p
dp− 2π

∫

1

Ω(J)

d(F ◦H)

dJ
〈cosQ〉2J dJ, (4)

where Q(Θ, J) is the position variable q in angle-action coordinates. From [14], we have the convenient formal stability
criterion:

Proposition 3 Let f be a monotonous stationary solution. Then I[f ] > 0 if and only if f is formally stable.
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If M = 0, f is homogeneous, and action/angle variables coincides with the (q, p) variables. Hence the average over Θ
coincides with the average over the spatial variable q, and I is simplified to:

I[f ] = 1 + π

∫

1

p

∂f

∂p
dp. (5)

With criterion (4) in hand, we only have to show that if f is a non-homogeneous monotonous stationary state such

that I[f ] > 0, and f̃ and f are close in W 1,a norm and their magnetization are close, then |I[f̃ ]− I[f ]| is small.
To prove Theorem 2, it is enough to construct, for each f homogeneous monotonous stable stationary state, a

nearby (in W s,a norm) homogeneous monotonous stationary state f̃ , such that I[f̃ ] < 0.

Discussion: Clearly, the proof of Theorem 1 heavily relies on the stability criterion obtained in [14]. Thus, it is not
clear how to generalize this result to more general models than HMF. Indeed, in general the linear stability analysis
of a non-homogeneous stationary state is complicated; see for instance [13] for the three dimensional gravitational
case, but note that the situation is not much better for general one dimensional systems.

III. PROOFS

A. Proof of theorem 2

We first give for consistency a proof of Theorem 2, although it is contained (in a much more general form) in [9].
The proof relies on the stability functional (5): given a stable monotonous stationary state f0 (hence I[f0] > 0),
we have to find a modification f1, small in W s,a norm, such that I[f0 + f1] < 0. Following the strategy of [9], we

introduce g(p) = e−p2/2/(2π)3/2, and gε,α(p) = εg(p/εα). Note that
∫

gε,αdqdp = ε1+α. It is easy to see that

∫

g′ε,α(p)

p
dp = − 1

2π
ε1−α. (6)

Furthermore, for small ε and 1− α+ α/a > 0, we have the estimate [9]

||gε,α||W s,a = O(ε1−sα+α/a). (7)

We now choose a modified state as

f0(p) + f1(p) =
1

1 + ε1+α
(f0(p) + gε,α(p)) , (8)

which corresponds to a modification

f1(p) =
1

1 + ε1+α
gε,α(p)−

ε1+α

1 + ε1+α
f0(p). (9)

From (5) and (6), it is clear that gε,α induces a large negative variation of the stability functional as soon as α > 1.
Hence in this case I[f0 + f1] < 0, and f0 + f1 is unstable.
From the expression of f1 (9), we see that the only way ||f1||W s,a could be large is if ||gε,α||W s,a itself is large.

Now, from (7), gε,α is small in W s,a norm if 1 − sα + α/a > 0. We see that it is possible to choose α such that the
two conditions α > 1 and 1 − sα + α/a > 0 are satisfied, as soon as s < 1 + 1/a. Remembering that (7) is valid for
1− α+ α/a > 0, α > 1 implies a > 1.
This completes the proof of Theorem 2. �

B. Angle-action variables

We need to define a bijection between position/momentum (q, p) and angle/action (Θ, J) coordinates. We will
repeatedly use this change of variable in both directions. To keep notations as understandable as possible, we will
use the following convention: functions of (q, p) will be denoted with small letters (for instance q, p, h(q, p), j(q, p) . . .),
and functions of (Θ, J) with capital letters (for instance Θ, J,H(J), Q(Θ, J) . . .).
As a further difficulty, the presence of a separatrix in phase space imposes us to divide the phase space in three

regions, in order to properly define the change of variables: above separatrix (U1), inside the separatrix (U2) and
below separatrix (U3), see Fig. 1. In equations:
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FIG. 1. The one particle phase space µ, divided in the three regions U1, U2 and U3.

U1 = {(q, p) | h(q, p) > M, p > 0},
U2 = {(q, p) | −M < h(q, p) < M},
U3 = {(q, p) | h(q, p) > M, p < 0}.

Over each of these three regions, it is possible to define a bijective change of variables

Ui → Vi

(q, p) 7→ (θi(q, p), ji(q, p))

with

V1 = {(Θ1, J1) | Θ1 ∈]− π, π], J1 > 4
√
M/π},

V2 = {(Θ2, J2) | Θ2 ∈]− π, π], 0 < J2 < 8
√
M/π},

V3 = {(Θ3, J3) | Θ3 ∈]− π, π], J3 > 4
√
M/π}. (10)

The inverse change of variables reads

Vi → Ui

(Θi, Ji) 7→ (Qi(Θi, Ji), Pi(Θi, Ji)).

To keep notations simple, we will however use a single notation for each of these functions: θ(q, p), j(q, p), Q(Θ, J), P (θ, J).
Similarly, any real function G of the angle-action variables is thus actually made of three distinct functions

Gi : Vi → R i = 1, 2, 3.

We will however use for such a function a single notation G(Θ, J). The integrals over dΘ dJ are thus to be understood
as the sum of three integrals over V1, V2 and V3:

∫∫

µ

G(Θ, J)dΘdJ =

3
∑

i=1

∫∫

Vi

Gi(Θi, Ji)dΘidJi.

The average over Θ defined in (3) also yields three functions of the action, which we do not write explicitly.

C. General strategy

For later use, we rewrite the stability functional (4) to make it easier to analyze.

Lemma 1 Let f be a monotonous stationary solution. The stability functional I[f ] (4) can be rewritten as

I[f ] = 1 +

∫∫

µ

F ′(h(q, p))w(q, p)dqdp, (11)
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with

w(q, p) =
〈

cos2Q
〉

j(q,p)
− 〈cosQ〉2j(q,p) . (12)

Note that the function w implicitly depends on f through the definitions of the functions Q and j.

Proof: Remembering F ′(h(q, p)) = F ′(H(J)), the second term of (4) is:
∫∫

µ

F ′(h(q, p)) cos2 qdqdp =

∫

dJ F ′(H(J))

∫

cos2Q(Θ, J)dΘ

=

∫∫

µ

F ′(H(J))
〈

cos2Q
〉

J
dΘdJ =

∫∫

µ

F ′(h(q, p))
〈

cos2Q
〉

j(q,p)
dqdp. (13)

Similarly, the third term is

− 2π

∫

F ′(H(J)) 〈cosQ〉2J dJ = −
∫∫

µ

F ′(H(J)) 〈cosQ〉2J dΘdJ = −
∫∫

µ

F ′(h(q, p)) 〈cosQ〉2j(q,p) dqdp. � (14)

Remark: Looking back at (13) and using the fact Q(θ(q, p), j(q, p)) = q, we may replace the function w(q, p) defined
in (12) with

w1(q, p) = cos2 q − 〈cosQ〉2j(q,p) . (15)

We consider f = F ◦ h a stable non-homogeneous monotonous stationary state, and f̃ = F̃ ◦ h̃ another monotonous
stationary state. h̃ is the Hamiltonian corresponding to f̃ :

h̃(q, p) =
p2

2
− M̃ cos q, M̃ =

∫∫

µ

f̃(q, p) cos qdqdp, (16)

and the angle-action variables associated to h̃ are written (Θ̃, J̃). The change of variable is (θ̃(q, p), j̃(q, p)), and the

inverse change is (Q̃(Θ̃, J̃), P̃ (Θ̃, J̃)). The stability functional for f̃ is

I[f̃ ] = 1 +

∫∫

µ

F̃ ′(h̃(q, p))

[

〈

cos2 Q̃
〉

j̃(q,p)
−
〈

cos Q̃
〉2

j̃(q,p)

]

dqdp. (17)

We write

w̃(q, p) =
〈

cos2 Q̃
〉

j̃(q,p)
−
〈

cos Q̃
〉2

j̃(q,p)
.

Since f is stable, I[f ] > 0. Thus, to prove Theorem 1, it is enough to show that if

H1. ||f̃ − f ||W 1,a is small; and

H2. |M̃ −M | is small, then

∣

∣

∣
I[f̃ ]− I[f ]

∣

∣

∣
is small. (18)

For convenience we denote the discrepancies by

∆M = M̃ −M ; ∆I = I[f̃ ]− I[f ]. (19)

∆I can be rewritten as

∆I =

∫∫

µ

[

(F̃ ′ ◦ h̃)w̃ − (F ′ ◦ h)w
]

dqdp = ∆I1 −∆I2 (20)

where

∆I1 =

∫∫

µ

[

F̃ ′ ◦ h̃− F ′ ◦ h
]

w̃dqdp (21)
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and

∆I2 =

∫∫

µ

(F ′ ◦ h)
[

〈

cos Q̃
〉2

j̃(q,p)
− 〈cosQ〉2j(q,p)

]

dqdp. (22)

We have used here the remark after Lemma 1. We have

|∆I| ≤ |∆I1|+ |∆I2|, (23)

and will show smallness of |∆I1| and |∆I2| in Secs. III D and III E respectively.

D. |∆I1| is small

In this section, the hypothesis H1 on ||f̃−f ||W 1,a will be crucial; we will also use H2. We begin with some Lemmas.

Lemma 2 Let m be a positive constant and the function ua be defined by

ua(q, p;m) = (|p|a + |m sin q|a)1/a . (24)

Then, ||1/ua||Lb is finite for any a > 0 and 1 < b < 2. Moreover, when m is small, the leading order is O(m−1/b).

Proof: The considered norm is
∣

∣

∣

∣

∣

∣

∣

∣

1

ua

∣

∣

∣

∣

∣

∣

∣

∣

b

Lb

=

∫∫

µ

dqdp

(|p|a + |m sin q|a)b/a . (25)

We have to check the convergence of the integral at the points where the integrand diverges, which are (q, p) =
(0, 0), (±π, 0), and when |p| → ∞.

• Around (0, 0) and (π, 0):

Let (q0, 0) be the point we are considering. Using polar coordinates: q − q0 =
r

m
cos ρ, p = r sin ρ, we have

dqdp =
r

m
drdρ and

dqdp

(|p|a + |m sin q|a)b/a =
1

m

dρ

(| sin ρ|a + | cos ρ|a)b/a r
1−bdr (26)

The integral over ρ is finite, and the integral over r converges for b < 2.

• |p| → ∞:

dqdp

(|p|a + |m sin q|a)b/a ≤ dp

|p|b (27)

Thus the integral converges for 1 < b.

Putting all together, we conclude that the integral converges for 1 < b < 2. Moreover, if m is small, the leading order
of ||1/ua||Lb is O(1/m1/b) from the estimations around (0, 0) and (π, 0). �

Remark: That m is non-zero is important to ensure convergence for 1 < b < 2. If m = 0, then the integrand diverges
around (0, 0) only, but the divergence occurs on the line p = 0. As a result, around the line p = 0,

∫∫

dqdp

(|p|a)b/a ≃
∫

dp

|p|b (28)

which converges for b < 1. Considering the estimation for |p| → ∞, which requires 1 < b, the interval of b for
convergence is empty!
Since | cosQ| ≤ 1, |w̃| ≤ 1. Hence

|∆I1| ≤
∫∫

µ

∣

∣

∣
F̃ ′ ◦ h̃− F ′ ◦ h

∣

∣

∣
dqdp =

∣

∣

∣

∣

∣

∣
F̃ ′ ◦ h̃− F ′ ◦ h

∣

∣

∣

∣

∣

∣

L1

. (29)



8

Since M > 0, we introduce ua(q, p;M), and the Hölder inequality leads to:

|∆I1| ≤
∣

∣

∣

∣

∣

∣
(F̃ ′ ◦ h̃− F ′ ◦ h)ua

∣

∣

∣

∣

∣

∣

La

∣

∣

∣

∣

∣

∣

∣

∣

1

ua

∣

∣

∣

∣

∣

∣

∣

∣

Lb

(30)

with a and b non-negative real numbers such that 1/a + 1/b = 1. The norm ||1/ua||Lb is finite for 1 < b < 2 by
Lemma 2, and our job is to show that

∣

∣

∣

∣

∣

∣
(F̃ ′ ◦ h̃− F ′ ◦ h)ua

∣

∣

∣

∣

∣

∣

a

La
=

∫∫

µ

∣

∣

∣
F̃ ′ ◦ h̃− F ′ ◦ h

∣

∣

∣

a

(|p|a + |M sin q|a) dqdp (31)

is small. The first term is rewritten as
∫∫

µ

∣

∣

∣
F̃ ′ ◦ h̃− F ′ ◦ h

∣

∣

∣

a

|p|adqdp =
∫∫

µ

∣

∣

∣
∂p

(

f̃ − f
)
∣

∣

∣

a

dqdp ≤
∣

∣

∣

∣

∣

∣
f̃ − f

∣

∣

∣

∣

∣

∣

W 1,a
, (32)

and is small by the hypothesis
∣

∣

∣

∣

∣

∣
f̃ − f

∣

∣

∣

∣

∣

∣

W 1,a
small. Using the trick:

M sin q
(

F̃ ′ ◦ h̃− F ′ ◦ h
)

= ∂q

(

f̃ − f
)

−∆M sin qF̃ ′ ◦ h̃, (33)

we rewrite the second term as
∫∫

µ

∣

∣

∣
F̃ ′ ◦ h̃− F ′ ◦ h

∣

∣

∣

a

|M sin q|adqdp =
∫∫

µ

∣

∣

∣
∂q

(

f̃ − f
)

−∆M sin qF̃ ′ ◦ h̃
∣

∣

∣

a

dqdp

≤ 2amax

[
∫∫

∣

∣

∣
∂q

(

f̃ − f
)
∣

∣

∣
dqdp, |∆M |a

∫∫

∣

∣

∣
sin qF̃ ′ ◦ h̃

∣

∣

∣

a

dqdp

]

≤ 2amax

[

∣

∣

∣

∣

∣

∣
f̃ − f

∣

∣

∣

∣

∣

∣

W 1,a
,
|∆M |a
Ma

∫∫

∣

∣

∣
∂q f̃

∣

∣

∣

a

dqdp

]

.

(34)

Thus, the second term is also small by the hypothesis
∣

∣

∣

∣

∣

∣
f̃ − f

∣

∣

∣

∣

∣

∣

W 1,a
small, |∆M | small and f̃ ∈ W 1,a. We have

therefore proven that |∆I1| is small using the main hypotheses H1 and H2. �

E. |∆I2| is small

In this section, the crucial hypothesis is H2, i.e. |∆M | is small. If ∆M = 0, then

M̃ =M =⇒ h̃ = h =⇒ (θ̃, j̃) = (θ, j) and (Q̃, P̃ ) = (Q,P ) =⇒ ∆I2 = 0, (35)

so that ∆I2 is trivially small. We therefore consider the case ∆M 6= 0. We may choose ∆M > 0 without loss of
generality, since we can exchange the roles of f and f̃ in order to estimate |∆I2| when ∆M < 0.
The quantity ∆I2, which reads

∆I2 =

∫∫

µ

(F ′ ◦ h)
[

〈

cos Q̃
〉2

j̃(q,p)
− 〈cosQ〉2j(q,p)

]

dqdp, (36)

depends on f̃ only through the Hamiltonian and magnetization, while ∆I1 directly depends on the derivative of F̃ .
Thus, it is rather natural to expect that ∆I2 is small if M̃ is close to M . A technical problem is that the separatrix

changes as the magnetization changes, so that a direct comparison between
〈

cos Q̃
〉

j̃(q,p)
and 〈cosQ〉j(q,p) becomes

difficult around the separatrix. To solve this problem, we divide the µ space into three regions:

1. Inside the separatrix

2. Close to the separatrix

3. Outside the separatrix

For this purpose, we introduce M1 and M2 as

M1 =M − 2∆M, M2 =M + 2∆M. (37)

From H2, we may consider a small ∆M which makes M1 positive. Thus, we also have M̃ > 0.
We now use the following strategy. ∆I2 is divided in three parts, according to the division of the µ space detailed

below. Secs.III E 2,III E 3 and III E 4 show the smallness of the contribution to ∆I2 of the region close to, inside, and
outside the separatrix respectively.
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1. Division of µ space

Using the Hamiltonian

h(q, p) =
p2

2
−M cos q, (38)

and M1,M2 defined in (37), we divide µ into three µj as

µ = µ1 ∪ µ2 ∪ µ3 (39)

where

µ1 = {(q, p) ∈ µ | h(q, p) < 2M1 −M}
µ2 = {(q, p) ∈ µ | 2M1 −M ≤ h(q, p) ≤ 2M2 −M}
µ3 = {(q, p) ∈ µ | 2M2 −M < h(q, p)}.

(40)

Accordingly, the second term ∆I2 is divided as

∆I2 = ∆I21 +∆I22 +∆I23, (41)

where ∆I2j corresponds to the integral over µj :

∆I2j =

∫∫

µj

(F ′ ◦ h)
[

〈

cos Q̃
〉2

j̃(q,p)
− 〈cosQ〉2j(q,p)

]

dqdp. (42)

FIG. 2. Division of µ space. This figure describes the upper half µ space and the lower half µ is similarly divided thanks to
the symmetry p → −p. The shaded area is µ2. The solid curves represent h(q, p) = 2M2 −M,M and 2M1 −M from top to
bottom, and the dashed curves are separatrices for M + |∆M | and M − |∆M | from top to bottom. The vertical solid lines at
q = cos−1((M − 2M1)/M) are used to further divide µ2.

2. Near the separatrix: µ2

Proposition 4 Under the hypotheses of Theorem 1, |∆I22| is small.

We first show that the area of µ2 is small.

Lemma 3 Let A =
∫∫

µ2

dqdp. Then, A is estimated as A ≤ 16π
√
∆M .

Proof: Introducing qmax = cos−1((M − 2M1)/M), we further divide µ2 into two parts,

µ21 = {(q, p) ∈ µ2 | |q| ≤ qmax}
µ22 = {(q, p) ∈ µ2 | |q| > qmax}

(43)
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and denote the areas of µ21 and µ22 as A1 and A2 respectively.
The upper and the lower bound of the upper half of µ21 is expressed as

pu =
√

2(2M2 −M +M cos q), pl =
√

2(2M1 −M +M cos q) (44)

for |q| < qmax. The height of µ21 for a fixed q is estimated as

pu − pl =
p2u − p2l
pu + pl

=
4(M2 −M1)

√

2(2M2 −M +M cos q) +
√

2(2M1 −M +M cos q)

≤ 4(M2 −M1)
√

2(2M2 −M +M − 2M1) + 0
= 2

√

M2 −M1

(45)

and hence the area A1 is

A1 = |µ21| ≤ 2 · 2
√

M2 −M1 2qmax = 8
√

M2 −M1 qmax (46)

In µ22, one peace of the region is smaller than the rectangle whose vertices are (qmax, 0), (π, 0), (π, 2
√
M2 −M1) and

(qmax, 2
√
M2 −M1). Thus, A2 is bounded as

A2 = |µ22| ≤ 4 · 2
√

M2 −M1(π − qmax) = 8
√

M2 −M1(π − qmax). (47)

The total area A is therefore

A ≤ 8π
√

M2 −M1 ≤ 16π
√
∆M. � (48)

Proof of Proposition 4 : From the fact | cos q| ≤ 1, we have

∣

∣

∣

∣

〈

cos Q̃
〉2

j̃
− 〈cosQ〉2j

∣

∣

∣

∣

≤ 1. F ′ is continuous, so that

it is bounded by F ′

max < +∞ in a neighborhood of the separatrix, containing µ2 for ∆M small. Thus, we have

|∆I22| ≤
∫∫

µ2

|F ′(h(q, p))|
∣

∣

∣

∣

〈

cos Q̃
〉2

j̃(q,p)
− 〈cosQ〉2j(q,p)

∣

∣

∣

∣

dqdp ≤ F ′

maxA. (49)

Using Lemma 3 and H2, we conclude that |∆I22| is small.

3. Inside the separatrix: µ1

Proposition 5 Under the hypotheses of Theorem 1, |∆I21| is small.

Proof: From

∣

∣

∣

∣

〈

cos Q̃
〉

j̃(q,p)
+ 〈cosQ〉j(q,p)

∣

∣

∣

∣

≤ 2, we estimate ∆I21 as

|∆I21| ≤ 2
∣

∣

∣

∣

∣

∣
(F ′ ◦ h)

(

φin(q, p; M̃)− φin(q, p;M)
)
∣

∣

∣

∣

∣

∣

L1(µ1)

≤ 2 ||F ′ ◦ h||L1(µ1)
sup

(q,p)∈µ1

∣

∣

∣
φin(q, p; M̃)− φin(q, p;M)

∣

∣

∣
.

(50)

Here, we have introduced the following functions to simplify the notations:

〈cosQ〉j(q,p) = φin(q, p;M),
〈

cos Q̃
〉

j̃(q,p)
= φin(q, p; M̃) (51)

where

φin(q, p;M) = ϕin(ψ(q, p;M)), (52)

ϕin(k) =
2E(k)

K(k)
− 1, (53)

and

k = ψ(q, p;M) =

√

p2/2 +M(1− cos q)

2M
. (54)

The functions K(k) and E(k) are the complete elliptic integrals of the 1st and the 2nd kinds respectively.
The proof is done by the following three steps:
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1. We show that ||F ′ ◦ h||L1(µ1)
is finite. [Lemma 4]

2. We extract the small ∆M from φin(q, p; M̃)− φin(q, p;M). [Lemma 5]

3. We show that the remaining supremum part is finite. [Lemma 6]

The three following Lemmas prove the Proposition 5.

Lemma 4 F ′ ◦ h ∈ L1 (this implies of course that F ′ ◦ h ∈ L1(µ1)).

Proof: Using the function ua(q, p;M) and the Hölder inequality, we have

||F ′ ◦ h||L1 ≤ ||(F ′ ◦ h)ua||La

∣

∣

∣

∣

∣

∣

∣

∣

1

ua

∣

∣

∣

∣

∣

∣

∣

∣

Lb

, (55)

where 1 ≤ a, b ≤ ∞ and 1/a+ 1/b = 1. By Lemma 2 the factor ||1/ua||Lb converges for 1 < b < 2, which corresponds
to 2 < a <∞. On the other hand, we have

||(F ′ ◦ h)ua||La =

(
∫∫

|F ′ ◦ h|a(|p|a|+ |M sin q|a)dqdp
)1/a

=
(

||∂pf ||aLa + ||∂qf ||aLa

)1/a ≤ ||f ||W 1,a .

(56)

Thus, we have

||F ′ ◦ h||L1 ≤ ||f ||W 1,a

∣

∣

∣

∣

∣

∣

∣

∣

1

ua

∣

∣

∣

∣

∣

∣

∣

∣

Lb

< +∞. � (57)

Our next job is to extract the small ∆M from the supremum part.

Lemma 5 For each point (q, p), there exists M∗ ∈ [M, M̃ ] such that

|φin(q, p; M̃)− φin(q, p;M)| = ∆M

∣

∣

∣

∣

∂φin
∂M

(q, p;M∗)

∣

∣

∣

∣

. (58)

Proof: We first remember that M, M̃ ∈ (0, 1). The function ψ(q, p;M) is C1 with respect to M for M ∈ (0, 1), and
ϕin(k) is C

1 in k ∈ [0, 1). φin(q, p;M) is hence C1 for M ∈ (0, 1). Thus Taylor theorem proves the lemma. �

Lemma 5 gives

∆I21 ≤ 2∆M ||F ′ ◦ h||L1(µ1)
sup

(q,p)∈µ1

∣

∣

∣

∣

∂φin
∂M

(q, p;M∗(q, p))

∣

∣

∣

∣

. (59)

The last job is to show that the supremum is finite.

Lemma 6 sup
(q,p)∈µ1

∣

∣

∣

∣

∂φin
∂M

(q, p;M∗(q, p))

∣

∣

∣

∣

<∞.

Proof: The concrete form of ∂Mφin is

∂φin
∂M

(q, p;M∗) =
∂ϕin

∂k
(ψ(q, p;M∗))

∂ψ

∂M
(q, p;M∗). (60)

The derivatives of ϕin and ψ are

∂ϕin

∂k
(k) =

2

K(k)2
[E′(k)K(k)− E(K)K ′(k)]

=
−2

k

[

(

E(k)

K(k)
− 1

)2

+
k2

1− k2

(

E(k)

K(k)

)2
] (61)
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and

∂ψ

∂M
(q, p;M∗) =

−p2
4M∗

√
2M∗

√

p2/2 +M∗(1− cos q)
=

−p2
8M2

∗
k
, (62)

where k must be evaluated at ψ(q, p;M∗(q, p)). The derivative ∂Mφin is hence

∂φin
∂M

=
p2

4M2
∗

1

k2

[

(

E(k)

K(k)
− 1

)2

+
k2

1− k2

(

E(k)

K(k)

)2
]

. (63)

The functions E(k) and 1/K(k) are finite in the interval k ∈ [0, 1]. Therefore, remembering M∗(q, p) ∈ [M, M̃ ] and is
positive, it is enough to show

• No divergence at k = 0,

• No appearance of k = 1.

No divergence at k = 0: Around k = 0, from the Taylor expansions of K(k), (B3), and E(k), (B4), we have

E(k)

K(k)
= 1− k2

2
+O(k4). (64)

Thus, we have

∂φin
∂M

=
p2

4M2
∗

1

k2

[

(

E(k)

K(k)
− 1

)2

+
k2

1− k2

(

E(k)

K(k)

)2
]

=
p2

4M2
∗

1

k2

[

O(k4) +
k2

1− k2
(1 +O(k2))

]

→ p2

4M2
∗

(k → 0).

(65)

Actually, k → 0 implies (q, p) → (0, 0) and hence ∂Mφin → 0.

No appearance of k = 1: k = ψ(q, p;M∗) is an increasing function of p for a fixed q, thus it is enough to investigate
the upper value of k on the upper boundary of µ1:

p =
√

2(2M1 −M +M cos q). (66)

Substituting this p into ψ(q, p;M∗), we have

k2 =
2M1 −M +M∗ + (M −M∗) cos q

2M∗

≤ 2M1 −M +M∗ +M∗ −M

2M∗

= 1− 2
∆M

M∗

≤ 1− 2
∆M

M̃
. (67)

Thus, k is bounded by a positive number which is smaller than 1:

k <

√

1− 2
∆M

M̃
< 1. � (68)

4. Outside the separatrix: µ3

Proposition 6 Under the hypotheses of Theorem 1, |∆I23| is small.

Proof: The strategy of the proof is almost the same as for Proposition 5, but we replace ϕin(k), introduced in (53),
by

ϕout(k) =
2k2E(1/k)

K(1/k)
− 2k2 + 1. (69)

We show the following Lemma, which corresponds to Lemma 6:
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Lemma 7 sup
(q,p)∈µ3

∣

∣

∣

∣

∂φout
∂M

(q, p;M∗(q, p))

∣

∣

∣

∣

<∞.

Proof: The derivative of ϕout is

∂ϕout

∂k
= 4k

(

E(1/k)

K(1/k)
− 1

)

− 2

K(1/k)2
[E′(1/k)K(1/k)− E(1/k)K ′(1/k)]

= 4k

(

E(1/k)

K(1/k)
− 1

)

− 2k

[

(

E(1/k)

K(1/k)
− 1

)2

+
1

1− k2

(

E(1/k)

K(1/k)

)2
]

.

(70)

The value of k must be evaluated at k = ψ(q, p;M∗). The derivative ∂Mφout is hence

∂φout
∂M

=
p2

4M2
∗

[

(

E(1/k)

K(1/k)
− 1

)2

+
1

1− k2

(

E(1/k)

K(1/k)

)2

− 2

(

E(1/k)

K(1/k)
− 1

)

]

. (71)

The functions E(1/k) and 1/K(1/k) are finite in the interval k ∈ [1,∞], and hence it is enough to show

• No appearance of k = 1,

• No divergence at k = ∞.

No appearance of k = 1: As commented previously, ψ is an increasing function of p, and hence a lower bound for k is
given by considering the lower boundary of µ3

p =
√

2(2M2 −M +M cos q). (72)

Substituting this p into ψ(q, p;M∗), we have

k2 =
2M2 −M +M∗ + (M −M∗) cos q

2M∗

≥ 2M2 −M +M∗ − |M −M∗|
2M∗

=
M + 2∆M

M∗

≥ 1 +
∆M

M̃
. (73)

Thus, we have proved

k >

√

1 +
∆M

M̃
> 1. (74)

No divergence at k = ∞: The estimation (64) gives, in the limit k → ∞,

E(1/k)

K(1/k)
= 1− 1

2k2
+O(1/k4), (75)

and p2 ≤ 4M̃k2. Thus, we have

∣

∣

∣

∣

∂φout
∂M

∣

∣

∣

∣

≤ M̃k2

M2
∗

∣

∣

∣

∣

O(1/k4) +
1 +O(1/k2)

1− k2
+

1

k2
+O(1/k4)

∣

∣

∣

∣

→ 0, (k → ∞). � (76)

IV. NUMERICAL TESTS

In this section, we present some numerical simulations of the Vlasov equation for the HMF model, using a semi-
Lagrangian code [17]. The purpose is twofold:
i) Illustrate numerically Theorems 1 and 2. We will show that a modification of the distribution function small in
W s,a, with 1 ≤ s < 1+ 1/a can destabilize a homogeneous stable stationary state. By contrast, we never observe the
destabilization of an inhomogeneous stationary state by such perturbations.
ii) Perform a few numerical tests in a case not covered by Theorem 1, where modifications are in spaces rougher than
W 1,a.



14

A. Set up

In this section we concentrate on a = 2, and denoteW s,2 by Hs following the conventional notation. Let us consider
the following modification of the reference state f0:

gε,δ(q, p) = εδe−(h(q,p)−h(0,0))/Tε2 , (77)

where

h(q, p) =
p2

2
−M cos q (78)

is the one-body Hamiltonian. The modification we actually use is slightly different from (77), to ensure the normal-
ization of the modified reference stationary state. The function gε,δ(q, p) is almost zero except for a neighborhood
of the origin, thus we may approximate h(q, p) in the inhomogeneous case as h(q, p) ≃ (p2 + q2)/2. The exponent δ
controls since the Hs norm of gε,δ:

||gε,δ||Hs ≃
{

ε1/2+δ−s, homogeneous case,
ε1+δ−s, inhomogeneous case.

(79)

Since Hs ⊂ Ht for t ≤ s, we have

gε,δ ∈
{

Hs(s < 1/2 + δ), homogeneous case,
Hs(s < 1 + δ), inhomogeneous case.

(80)

Let us estimate the contribution of gε,δ to the stability functional, that is I[gε,δ] − 1. The homogeneous case
is straightforward. For the inhomogeneous case, we expand cos q in the Taylor series, and using the angle-action
variables, q =

√
2J sinΘ and p =

√
2J cosΘ, we obtain the following approximation of the function w(q, p):

w(q, p) ≃ (p2 + q2)2 +O[(q, p)6]. (81)

From the above approximation, we have the estimates of I[gε,δ]−1 both for the homogeneous and the inhomogeneous
cases:

I[gε,δ]− 1 =

{

εδ−1, homogeneous case,
εδ+4, inhomogeneous case.

(82)

These estimations imply: i) In homogeneous case, the modification gε,δ may change the sign of the stability functional
even in the limit ǫ → 0 for δ ≤ 1, that is when gε,δ is small in Hs(s < 1/2 + δ). ii) In inhomogeneous case, no δ can
change the sign of the stability functional in the limit ǫ→ 0 contrasting with the homogeneous case.
Based on the above considerations, we prepare a perturbed initial distribution

fǫ,δ,µ(q, p) = A
[

e−h(q,p)/T (1 + µ cos q) + εδe−(h(q,p)−h(0,0))/Tε2
]

, (83)

where A is the normalization factor, the first term corresponds to the distribution in thermal equilibrium, the third
term corresponds to the modification gε,δ, and the second term proportional to µ is a perturbation to check the
stability of the stationary state fε,δ,0(q, p). The magnetization M in the one-body Hamiltonian h(q, p) must satisfies
the self-consistent equation

M =

∫

fǫ,δ,0(q, p) cos qdqdp. (84)

The critical temperature in thermal equilibrium states is Tc = 0.5 in the HMF model, and therefore, we will set
T = 0.6 for homogeneous case and T = 0.4 for inhomogeneous case.
We perform numerical integration of the Vlasov equation by using the semi-Lagrangian code [17] with the time

step ∆t = 0.05. We introduce a mesh on the truncated phase space (q, p) ∈] − π, π] × [−3, 3], and the mesh size is
512× 512 unless otherwise specified.
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FIG. 3. (color online) (a) Typical temporal evolutions of magnetization M(t). ǫ = 0.05, which gives the stability threshold
value as δc ≃ 1.536. The values of δ are δ = 1.40 (red plus), 1.45 (blue crosses), 1.50 (green stars) and 1.55 (purple boxes),
with which the solid lines are computed by using a finer mesh size 1024 × 1024 from top to bottom. The black straight line
marks the level M th

f = 5.10−5, which is used in the panel (b). (b) Phase diagram on the (ε, δ) plane. Solid red line represent
the boundary of stability defined by 1− (1 + εδ−1)/2T (1 + εδ+1) = 0. Green circles and blue crosses represent Mf < M th

f and
Mf > M th

f respectively. Purple stars, overwritten on green circles, are for Mf > M th
f , but with a finer mesh size 1024 × 1024.

B. Homogeneous case

We set the magnetization as zero in the one-body Hamiltonian h(q, p), (78). Typical temporal evolution of mag-
netization is exhibited in Fig.3(a). In a short time region M(t) decreases, and then it increases if the considered
stationary state is unstable. The instability gets weaker as δ approaches the threshold value, which can be computed
by the stability functional

I[fε,δ,0] = 1− 1 + εδ−1

2T (1 + εδ+1)
. (85)

We remark that for the thermal equilibrium with T = 0.6, I[f0,δ,0] = 1/6 > 0 and hence the unmodified distribution
f0,δ,0 is stable. The strange looking discontinuity around t = 512 is an artifact due to the mesh size; indeed, it
disappears when a finer 1024× 1024 mesh is used. Nevertheless, in most cases a 512× 512 mesh is sufficient to judge
the stability of the modified state.
We use the perturbation level µ = 10−4. Varying ǫ and δ, we compute values of magnetization at t = 1000, and

judge the stability of the modified states fε,δ,0. From the typical temporal evolutions of M(t), we use the criterion
that the state fε,δ,0 is unstable if the final magnetization Mf = M(1000) is larger than M th

f = µ/2 = 5.10−5, which
is slightly larger than the initial value Mi = µ/[2(1 + ǫδ+1)]. The phase diagram on the (ε, δ) plane is reported in
Fig.3(b), together with the theoretical threshold line defined by I[fε,δ,0] = 0.
Numerical results are not in perfect agreement with the theoretical prediction. There are three numerical reasons.

1) Mesh size: A smaller ε implies that the modification is strongly concentrated around the line p = 0. As a result, we
need a finer mesh to capture the modification for a smaller ε. Indeed, using the mesh size 1024×1024, three points on
the line ε = 0.005 are found unstable, whereas the 512× 512 mesh judged the same states stable. 2) Computational
time: If δ goes up to the theoretical line with a fixed ǫ, the strength of instability gets weaker. Thus, a longer time
computation is required to observe instability, since typical M(t) curves decrease in a short time region. 3) Weak
instability: in relation with the point 2), if the instability is very weak, then the magnetization saturates at a lower
level than the threshold M th

f .

Summarizing, a large δ, corresponding to a “smooth” space H1/2+δ, keeps the modified state stable, but a small
δ, corresponding to a “rough” space changes the stability and the modified state becomes unstable. We stress that,
even ε is small enough, there is a modification which makes the state unstable.

C. Inhomogeneous case

The estimation of the stability functional (82), suggests that a small modification by gǫ,δ cannot change the stability
of the inhomogeneous stationary state f0,δ,0. We numerically confirm this suggestion.
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FIG. 4. (color online) Temporal evolutions of magnetization M(t)−Mst, where Mst is the value satisfying the self-consistent
equation. (a) δ = 0.5, ε = 0.01 to 0.05. (b) ǫ = 0.05, δ = 0.5 to 0.1. In both panels, µ = 10−4 and five types of points
corresponding to five values of ε or δ almost collapse.

Computations are performed along two lines: (i) δ = 0.5. (ii) ǫ = 0.05. We choose the value δ = 0.5 since it gives
the same threshold s = 3/2 as the homogeneous case with δ = 1. Then, we examine stability by decreasing δ, which
means that the modification gǫ,δ becomes “rough”.
Along the two lines, no instability is observed. Thus, the stability of the inhomogeneous stationary state does not

seem to change even when the modification is “rough” enough. We have used a perturbation level µ = 10−4; changing
it do not significantly affect the results.

V. CONCLUSION AND DISCUSSIONS

We have shown that, in the 1D Vlasov equation with a cosine potential (corresponding to the HMF model), any
non homogeneous stable monotonous stationary has a neighborhood in the W 1,a(a > 2) norm that does not contain
any unstable monotonous stationary states with nearby magnetization.
This is in striking contrast with the homogeneous case, where all neighborhoods of a reference stable state in norms

controlling only one derivative do contain unstable stationary states.
These results are illustrated with direct simulations of the Vlasov equation, using a reference stationary state and

controlling the norm of a modification of this reference state in various Sobolev spaces.
Theorem 1 points to an important difference in the mathematical structure of the neighborhoods of homogeneous

and inhomogeneous stationary states of Vlasov equation. Understanding the physical consequences of this fact,
especially with respect to the non linear evolution of a perturbation, remains an open question.
Finally, we stress that the proof of Theorem 1 relies on the knowledge of a stability functional which is rather

simple in the HMF model. Extending the Theorem to other models having long-range interactions, where such a
simple stability functional is not available, is another open problem.

Appendix A: W 1,p spaces

For X ⊂ R
n, the Sobolev space W 1,p(X) is defined by

W 1,p = {f : X → R | ||f ||Lp + ||∇f ||Lp <∞} . (A1)

The norm on W 1,p is:

||f ||W 1,p = ||f ||Lp + ||∇f ||Lp (A2)

where we recall

||f ||Lp =











(
∫

X

|f(x)|pdx
)1/p

(1 ≤ p <∞)

sup
x∈X

|f(x)| (p = ∞).
(A3)
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We refer the reader to [16] for fractional Sobolev spaces, needed for Theorem 2.

Appendix B: Some useful properties of the complete elliptic integrals

We list a few useful properties of the complete elliptic integrals.

1. K is monotonically increasing, and E is monotonically decreasing

2. K(0) = E(0) = π/2

3. K(k) → ∞ (k → 1)

4. E(1) = 1

5. The derivatives of K and E are

dK

dk
(k) =

E(k)− (1− k2)K(k)

k(1− k2)
(B1)

and

dE

dk
(k) =

E(k)−K(k)

k
. (B2)

6. Taylor expansions of K and E around k = 0 are

K(k) =
π

2

(

1 +
k2

4
+

9

64
k4 + · · ·

)

, (B3)

and

E(K) =
π

2

(

1− k2

4
− 9

192
k4 − · · ·

)

. (B4)
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