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Introduction

The geodesic growth function of a group G with respect to a finite generating set S counts, for each positive integer n, the number of geodesics of length n starting at the identity 1 G in the Cayley graph of G with respect to S. The geodesic growth series is the formal power series that takes the values of the geodesic growth function as its coefficients (see Definition 2.4).

The groups that we consider in this paper, right-angled Coxeter groups, or RACGs, are known to have a regular language of geodesics with respect to the standard generating sets, and therefore rational geodesic growth series (see [START_REF] Loeffler | Graph products and Cannon pairs[END_REF] or [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF]Theorem 4.8.3] for proofs of these facts). Our goal here is to obtain more specific data concerning the geodesic growth of RACGs. Namely, we are interested in extracting information about the geodesic growth series from the defining graph of the group. It is known that non-isomorphic graphs define non-isomorphic RACGs [START_REF] Radcliffe | Rigidity of graph products of groups[END_REF], and that non-isomorphic RACGs can have equal geodesic growth [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF]. However, we are interested in knowing how much the similarities or differences between two defining graphs influence the geodesic growth of the corresponding RACGs.

Two RACGs G i = G(Γ i ), i = 1, 2, with non-isomorphic defining graphs Γ i , may have equal standard growth (see Definition 2.4 (2)); this can be determined by computing the fpolynomials of the graphs Γ i [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]Proposition 17.4.2]. However, their geodesic growth exhibits more subtle properties [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF], and in general it is not known which graph theoretic conditions completely determine the geodesic growth of a RACG. The examples of non-isomorphic graphs Γ i defining RACGs with equal geodesic growth in [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF] are degree-regular and have cycles. In this paper we consider the case when the Γ i 's are trees. Although these are some of the simplest classes of graphs, we already encounter a phenomenon that shows a great difference between the behaviour of the standard growth and that of the geodesic growth. The standard growth of each RACG G i is determined solely by the number of vertices (or edges) in the respective tree Γ i , while the geodesic growth can be distinct even for two co-spectral trees (which might have co-spectral complements as well). Recall that two graphs are co-spectral if the characteristic polynomials of their adjacency matrices are the same.

In this paper we count and compute with the help of an automaton generating the geodesic language in a RACG based on a tree T . This automaton reflects some of the path information from T . In general, a good deal of combinatorial information about T can be extracted from its spectrum. However, we encounter two rather different behaviours: on one hand we produce (infinitely many) pairs of trees T 1 and T 2 which are non-isomorphic, co-spectral, with co-spectral complements, and the RACGs G(T i ), i = 1, 2, based on them have the same geodesic growth; on the other hand we obtain (infinitely many) pairs of trees S 1 and S 2 which are non-isomorphic and co-spectral, with co-spectral complements, whose respective RACGs G(S i ) have distinct geodesic growth. This shows that the spectrum of a tree alone does not determine the geodesic growth of the RACG based on that particular tree.

The following two theorems, proved in Sections 3 and 5, respectively, are the main results of the paper: Theorem 1.1. There exist two families of trees We note that McKay showed in [START_REF] Mckay | On the spectral characterisation of trees[END_REF] that the trees T 1 i and T 2 i in Theorem 1.1 are simultaneously co-spectral, have co-spectral complements and co-spectral line graphs. On the contrary, the trees S 1 i and S 2 i from Theorem 1.2 might have line graphs with distinct spectra. Moreover, by a result of McKay [START_REF] Mckay | On the spectral characterisation of trees[END_REF], in both Theorem 1.1 and Theorem 1.2 the cardinality of each family T i n and S i n tends asymptotically to the cardinality of the set Υ n of all trees on n vertices:

T 1 n = {T 1 1 , T 1 2 , . . . } and T 2 n = {T 2 1 , T
(1) card T i n card Υ n → 1 and card S i n card Υ n → 1, as n → ∞, i = 1, 2.
The two theorems above, together with McKay's results, lead us to the following conjecture:

Conjecture 1.3. If two trees are simultaneously co-spectral, have co-spectral complements and co-spectral line graphs, then they have the same geodesic growth.

Section 4 contains details about the computation of several kinds of geodesics, and their numbers, for the trees introduced in Section 3.

The authors have created a Python code Monty 1 [START_REF] Kolpakov | SAGE" worksheet, available on-line at[END_REF], which performs the computations needed for the results in this paper by using either SAGE standard routines for symbolic computation of determinants and rational expressions of growth series, or the Berlekamp-Massey algorithm for restoring the rational expression for a growth series from a sufficient number of its coefficients, as a more efficient approach. Our Python code constructs finitestate automata that accept the geodesic languages in RACGs based on triangle-free graphs (in this case, trees), and then proceeds to determine the respective growth series.

Definitions and notation

Let S be a finite set and S * the free monoid on S. We identify S * with the set of words over S, that is, finite sequences of elements of S. We use |.| to denote word length.

Let G = S be a group generated by S. For an element g of G, denote by |g| S the word length of g with respect to S. Given w ∈ S * , we denote by w the image of w in G under the natural projection S * → G. Definition 2.1. A word w over an alphabet S is geodesic in G = S if |w| = |w| S . The set of geodesics in G with respect to S will be denoted by Geo(G) or Geo(S).

Let Γ = Γ(G, S) be a simple (no loops, no multiple edges) graph with vertex set V (Γ) = S (or simply V ) and edge set E(Γ) (or simply E), where E ⊆ V × V . The RACG based on Γ is given by the presentation s ∈ S | s 2 = 1 ∀s ∈ S, and (ss

) 2 = 1, ∀{s, s } ∈ E .
It is easy to see that for any two involutions s and s the relation (ss ) 2 = 1 implies ss = s s. This leads to another possible presentation for RACGs: s ∈ S | s 2 = 1, ss = s s, ∀{s, s } ∈ E .

In the present paper we use the same letters for the vertices of Γ and the corresponding generators of the group G(Γ).

The star of a vertex v ∈ V in Γ, denoted by St Γ (v), or St(v) if the ambient graph is clear in the given context, is the set of vertices in Γ that are adjacent to v. That is,

St Γ (v) = {w ∈ V | {v, w} ∈ E}.
We now describe a finite deterministic automaton that recognises geodesics in RACGs (see [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF] for definitions of languages and automata). We define such automata in the standard way, as quintuples (Q, Σ, δ, q 0 , F ), where Q is the finite set of states, Σ the input alphabet, δ the transition function, q 0 the initial or start state, and F the set of final or accepting states. The following definition is a simplified version of Proposition 4.1 in [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF]. Definition 2.2. Let Γ = (V, E) be a tree. The deterministic finite state automaton recognising the geodesics in

G(Γ) is A = (Q, S, δ, {∅}, F ), where the set of states is Q = {∅} ∪ V ∪ E ∪ {ρ},
ρ is the unique "fail" state, and {∅} is the start state. The input alphabet is S = V , the set of accept states F is ∅ ∪ V ∪ E, and the transition function

δ : Q × S → Q is given by (1) δ(σ, s) = (St(s) ∩ σ) ∪ {s}, for s / ∈ σ; (2) δ(σ, s) = ρ, otherwise.
Definitions 2.3. Any set L of words over an alphabet Σ gives rise to a strict growth function

f L : N → N, defined by f L (n) := |{W ∈ L | |W | = n}|.
1 this is not the given name of the code, which would be obviously too posh for such a petty thing, but a reference name, which is seemingly good for any Python code.

Definitions 2.4. Let G be a group generated by S. Then we define the following:

(1) The geodesic growth function f Geo(G) : N → N is given by

f Geo(G) (r) := f Geo(G,S) (r) = |{w ∈ S * | |w| = |w| S = r}|,
and the geodesic growth series of G equals

G (G,S) (t) = ∞ r=0 f Geo(G) (r) t r .
(2) The spherical (standard) growth function σ (G,S) : N → N is given by

σ (G,S) (r) = |{g ∈ G | |g| S = r}|,
and the spherical (standard) growth series of G equals

Σ G (t) := Σ (G,S) (t) = ∞ r=0 σ (G,S) (r) t r .
We recall that the f -polynomial of a graph Γ is the generating function for the number of cliques (that is, complete subgraphs) of size i in Γ:

f (t) = f 0 + f 1 t + f 2 t 2 + . . .
, where f i is the number of i-cliques in Γ. We consider the empty set to be a clique on zero vertices, and therefore f 0 = 1. We remark that the spherical (standard) growth function of a RACG is determined by the f -polynomial of its defining graph [START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]Proposition 17.4.2]. We want to contrast this to the fact that the geodesic growth function is not uniquely determined by the f -polynomial, or even by the spectrum of the defining graph, as the following sections show.

RACGs with equal geodesic growth

In this section we prove Theorem 1.1 by giving an explicit construction of the families of trees T i n , i = 1, 2. Definition 3.1. We define the coalescence τ • σ of two rooted trees τ and σ to be the tree which results from merging τ and σ at their roots. The tree τ • σ has as vertex set the union of the vertex sets of τ and σ, and as root the identification of the roots of τ and σ, as shown in Fig. 1.

Consider the trees T 1 and T 2 , both rooted at 0, first described by McKay in [START_REF] Mckay | On the spectral characterisation of trees[END_REF], as shown in Fig. 2. In [START_REF] Mckay | On the spectral characterisation of trees[END_REF] the following fact is proved: Theorem 3.2. Let T be a rooted tree with at least two vertices and with root labelled 0. Then the trees Γ i = T • T i , i = 1, 2, are not isomorphic, but are co-spectral. Also, their complements Γ i and line graphs

L(Γ i ), L(Γ i ), L(Γ i ), i = 1, 2, are respectively co-spectral. Now let G 1 := G(T 1
) and G 2 := G(T 2 ) be the RACGs associated to the trees T 1 and T 2 defined above. First note that since the trees T 1 and T 2 are isomorphic as graphs, the groups G 1 and G 2 are isomorphic. However, T 1 and T 2 are not isomorphic as rooted trees.

Let τ be a tree with n vertices. Fix a labelling {0, . . . , n-1} of the vertices of τ , and suppose that 0 represents τ 's root. Define Γ 1 = τ • T 1 and Γ 2 = τ • T 2 to be the trees obtained as the coalescence of τ with T i at vertex 0, and let G(Γ 1 ) and G(Γ 2 ) be the RACGs based on Γ 1 and Γ 2 , respectively. Since Γ 1 and Γ 2 are non-isomorphic, G(Γ 1 ) and G(Γ 2 ) are non-isomorphic, as well.

The following lemma is the key ingredient of Theorem 1.1. In order to simplify the exposition in the proof of Lemma 3.3 we use the notation below.

Notation 3.4. Let G be a group with generating set T containing the letter 0. Denote the set of words in Geo(T ) starting with 0 by Geo 0 (T ), the set of words in Geo(T ) ending in 0 by Geo 0 (T ), and the set of words in Geo(T ) ending and starting with 0 by Geo 0 0 (T ).

Proof. (of Lemma 3.3) Notice that f Geo(Γ 1 ) (r) (respectively f Geo(Γ 2 ) (r)) is equal to the number of all words of length r in Γ * 1 (respectively, Γ * 2 ) minus the number of those words of length r in Γ * 1 that are not geodesics. We denote the number of non-geodesics by f Geo(Γ 1 ) (r) (and

f Geo(Γ 2 ) (r), respectively). Since |Γ 1 | = |Γ 2 |, clearly f Geo(Γ 1 ) (r) = f Geo(Γ 2 ) (r) if and only if f Geo(Γ 1 ) (r) = f Geo(Γ 2 ) (r).
We now show that f Geo(Γ 1 ) (r) = f Geo(Γ 2 ) (r) for all r ≥ 1. Any word in Γ * 1 can be written as w 1 u 1 w 2 . . . u n , where u i ∈ (τ \ {0}) * and w i ∈ T * 1 . A non-geodesic word w in Γ * 1 belongs to one of the following sets (or is of the type), depending on its form:

A : w contains non-geodesics u i ∈ (τ \ {0}) * or w j ∈ T * 1 , or both, for some 1 ≤ i, j ≤ n, or B : all w i and u i are geodesic on their respective alphabets, and there exists 1 ≤ j < n such that 0u j 0 is a subword of w with u j ∈ (St Γ 1 (0) ∩ τ ) * , or C : all w i and u i are geodesic on their respective alphabets, and w contains a subword of the form s0s, where s

∈ (St Γ 1 (0) ∩ τ ) * .
Notice that the set of non-geodesics is then

A ∪ B ∪ C, where A ∩ (B ∪ C) = ∅ and B ∩ C = ∅.
The number of words in A depends only on the geodesic growth series of τ and T 1 , and thus it will be equal to the number of words of type A in Γ * 2 . The computations in Section 4 show that the following identities hold:

f Geo(T 1 ) (r) = f Geo(T 2 ) (r), f Geo 0 (T 1 ) (r) = f Geo 0 (T 1 ) (r), f Geo 0 (T 1 ) (r) = f Geo 0 (T 2 ) (r) and f Geo 0 0 (T 1 ) (r) = f Geo 0 0 (T 2 ) (r
) for all r ≥ 1, as a result of (2). This means that there is a length-presenting bijection φ 0 between Geo 0 (T 1 ) and Geo 0 (T 2 ), i.e. for each geodesic w = 0v ∈ Geo 0 (T 1 ) there is a geodesic w = 0v = φ 0 (w) ∈ Geo 0 (T 2 ), and |w| = |w |. Analogously, there is a length-preserving bijection φ 0 : Geo 0 (T 1 ) → Geo 0 (T 2 ), and a bijection φ 0 0 : Geo 0 0 (T 1 ) → Geo 0 0 (T 2 ). This means there is a length-preserving bijection φ : Geo 0 (T 1 ) ∪ Geo 0 (T 1 ) → Geo 0 (T 2 ) ∪ Geo 0 (T 2 ) between those geodesics starting or ending with 0, for which we have that φ| Geo 0 = φ 0 , φ| Geo 0 = φ 0 and φ| Geo 0 0 = φ 0 0 . By the computations in (2) we have that f (Geo 0 ∪Geo 0 )(T 1 ) (r) = f (Geo 0 ∪Geo 0 )(T 2 ) (r) by the standard formula for the cardinality of the union of two sets, and since f Geo(T 1 ) (r) = f Geo(T 2 ) (r), we also have that f Geo\(Geo 0 ∪Geo 0 )(T 1 ) (r) = f Geo\(Geo 0 ∪Geo 0 )(T 2 ) (r). Thus, there is a length-preserving bijection ψ between Geo \ (Geo 0 ∪ Geo 0 )(T 1 ) and Geo \ (Geo 0 ∪ Geo 0 )(T 2 ).

The bijection φ can be extended to the set Geo(T 1 ) of all geodesics on T 1 by letting φ(w) = ψ(w) for all w ∈ Geo \ (Geo 0 ∪ Geo 0 )(T 1 ), and then furthermore extended to Geo(T 1 ) ∪ Geo(τ \ {0}) by letting φ(w) = w for all w ∈ Geo(τ \ {0}).

Then φ provides a bijection between the words of type B in Γ * 1 and the words of type B in Γ * 2 . To see this, associate to each w 1 u 1 w 2 . . . u n the word φ(w 1 )φ(u 1 ) . . . φ(w n )φ(u n ) = φ(w 1 )u 1 . . . φ(w n )u n . Then w i ends in 0, w i+1 starts with 0, and u i ∈ St τ (0) * if and only if φ(w i ) ends in 0, φ(w i+1 ) starts with 0, and φ(u i ) = u i ∈ St τ (0) * , by definition.

It is immediate to see that φ also provides a bijection between the words of type C, and between the words of type B ∩ C in Γ 1 and Γ 2 , respectively. Thus, there is a length-preserving bijection between the words of type A ∪ B ∪ C (i.e. all non-geodesic words) in Γ 1 and Γ 2 . This concludes the proof of the lemma.

Proof. (of Theorem 1.1) Let Υ k = {τ 1 , τ 2 , . . . } be the set of non-isomorphic trees on k ≥ 2 vertices. For i = 1, 2 the two families of trees

T i n = {τ • T i |τ ∈ Υ k }, k = n -15, satisfy Theorem 1.1.
From Theorem 3.2 we already know that Γ 1 = τ • T 1 and Γ 2 = τ • T 2 are co-spectral, for any τ ∈ Υ k . By Lemma 3.3 the groups G(Γ 1 ) and G(Γ 2 ) have the same geodesic growth series. Theorem 3.5 (Lemma 4.3 in [START_REF] Mckay | On the spectral characterisation of trees[END_REF]). Let p i (n), i = 1, 2, be the proportion of trees on n vertices that have T i as a limb. Then p 1 (n) = p 2 (n) for all n and lim n→∞ p i (n) = 1. From Theorem 3.5, we obtain that card T i n card Υn → 1, as n → ∞.

Computing the numbers of special geodesics

In this section we prove, by concrete computations, the equalities between the numbers of special geodesics required in the proof of Lemma 3.3.

Let T 1 and T 2 be as in Figure 2, and recall Notation 3.4. For each group G i = G(T i ), i = 1, 2, we construct a finite automaton A i accepting the geodesic language of G i , as described in Definition 2.2, and with the help of A i we compute the growth series

γ G 1 (t) = r≥0 f Geo(T 1 ) (r) t r , 0 γ G 1 (t) = r≥0 f Geo 0 (T 1 ) (r) t r , 0 γ G 1 (t) = r≥0 f Geo 0 (T 1 ) (r) t r , and 0 0 γ G 1 (t) = r≥0 f Geo 0 0 (T 1 ) (r) t r .
We also compute the analogous growth series γ G 2 (t), 0 γ G 2 (t), 0 γ G 2 (t) and 0 0 γ G 2 (t) for G 2 , where the series coefficients are given by the sequences Geo(T 2 )(r), Geo(T 2 ) 0 (r), Geo(T 2 ) 0 (r) and Geo(T 2 ) 0 0 (r), respectively. Our computations, which we elaborate upon below, show that

(2) γ G 1 (t) = γ G 2 (t), 0 γ G 1 (t) = 0 γ G 2 (t), 0 γ G 1 (t) = 0 γ G 2 (t) and 0 0 γ G 1 (t) = 0 0 γ G 2 (t).
These identities prove the equality of the corresponding numbers of geodesics.

Let A be a deterministic finite-state automaton with accepting states q i , i = 0, 1, . . . , N , where q 0 is the start state and the "fail" state is denoted by q. Let M = M (A) be the transition matrix of the automaton A. Computing the generating function γ A (t) of A is a standard technique, and the formula for γ A (t) is

(3) γ A (t) = e T M w det(I -tM ) ,
where I is the N × N identity matrix, M is the adjoint matrix of I -tM , e = (1, 0, . . . , 0) T and w = (1, 1, . . . , 1) T are two vectors in Z N . Now let A i be the deterministic finite-state automata accepting the language of geodesics in G i , i = 1, 2, and let M i = M (A i ) be the transition matrix of A i . Then the geodesic growth series γ G i (t) is a rational function (determined by the equality (3)), and the coefficients of its numerator and denominator can be easily computed, see [START_REF] Epstein | Growth functions and automatic groups[END_REF]. The Python code Monty [START_REF] Kolpakov | SAGE" worksheet, available on-line at[END_REF] may perform the above computation either by finding the symbolic determinant det(I -tM i ) (usually slow), or by applying the Berlekamp-Massey algorithm (a faster one). This Python code starts by creating the finite-state automaton A i , given a triangle-free graph T i (in this case, a tree), and then proceeds to determining γ G i (t).

Since G 1 and G 2 are isomorphic, the equality

γ G 1 (t) = γ G 2 (t) is immediate.
Here we provide an explicit formula for these identical growth series. The output of Monty for both trees T 1 and T 2 consists of two finite-state automata A i which are isomorphic, as one only renumbers the vertices of T 2 in order to obtain T 1 . Each A i has 32 states and 466 transition arrows, and the corresponding growth series are

γ G 1 (t) = γ G 2 (t) = (1 + t)(1 + 2t -2t 3 -4t 4 -t 5 )(1 + 5t + 10t 2 + 9t 3 -5t 4 -26t 5 -34t 6 -22t 7 -t 8 + 7t 9 + 4t 10 )(1 -8t -85t 2 -243t 3 -222t 4 + 332t 5 + 1194t 6 + 1349t 7 + 132t 8 -1510t 9 -2008t 10 -1088t 11 + 28t 12 + 359t 13 + 170t 14 + 15t 15 ) -1 .
Now we compute the functions 0 γ G i (t), i = 1, 2, which will turn out to be equal, as well. However, in this case the equality is not known to hold beforehand: even though the groups G 1 and G 2 are isomorphic, the image of vertex 0 in T 1 under the canonical isomorphism does not correspond to vertex 0 in T 2 . We shall explicitly compute the generating function 0 γ G i (t) for the number of geodesic words starting with 0 accepted by each A i , i = 1, 2, and then compare these functions. Suppose that the start state of each A i is q 0 = ∅. Let the corresponding transition function δ i be so that δ i (q 0 , 0) = q k i = {0}. If a word w labels a path from q k i to an accept state, then the word 0w is a geodesic word in G i starting with 0. Thus, we have to compute the generating function 0 α G i (t) for the number of words starting at q k i and ending at an accept state:

0 α G i (t) = e T M i w det(I -tM i )
,

where e = (0, . . . , 0, 1

k i , 0, . . . , 0) T and w = (1, 1, . . . , 1) T . Then we use the fact that 0 γ G i (t) = t • 0 α G i (t). By symmetry, we get 0 γ G i (t) = 0 γ G i (t), i = 1, 2.
By using Monty we obtain

0 γ G 1 (t) = 0 γ G 2 (t) = t(1 + t)(1 + 2t -2t 3 -4t 4 -t 5 )(1 + 4t + 4t 2 -3t 3 -9t 4 -5t 5 + 3t 6 + t 7 -3t 8 -3t 9 )(1 -8t -85t 2 -243t 3 -222t 4 + 332t 5 + 1194t 6 + 1349t 7 + 132t 8 -1510t 9 -2008t 10 -1088t 11 + 28t 12 + 359t 13 + 170t 14 + 15t 15 ) -1 .
Finally, it remains to compute the growth series 0 0 γ G i (t). There are two kinds of words forming disjoint subsets of the geodesic language of G i that we are interested in:

(I) the words w starting at the accept state q k i = δ(q 0 , 0) = {0} of A i and coming back to it: then the geodesic word 0w starts and ends with a "0" (since there are only 0-transitions leading to q k i = {0} and no 0-transition coming out of q k i ), by Definition 2.2 (i). (II) the words w starting at the state q k i = {0} and ending at a state q l i such that δ(q l i , 0) = q m i = q k i and q m i is an accept state: then the word 0w0 will be a geodesic word starting and ending with a "0". Let 0 0 α G i (t) be the generating function for the words of type (I), and 0 0 β G i (t) be that for the words of type (II). Then,

0 0 γ G i (t) = t • 0 0 α G i (t) + t 2 • 0 0 β G i (t). We have that 0 0 α G i (t) = e T M i w det(I -tM i )
,

with e = w = (0, . . . , 0, 1

k i , 0, . . . , 0) T .
Analogously,

0 0 β G i (t) = e T M i w det(I -tM i )
,

with e = (0, . . . , 0, 1 k i , 0, . . . , 0) T and w having a "1" at position l i for all states q l i as described above, and zeroes at all other places.

By using Monty we obtain

0 0 γ G 1 (t) = 0 0 γ G 2 (t) = t • (1 -5t -94t 2 -374t 3 -456t 4 + 955t 5 + 4275t 6 + 5652t 7 -1617t 8 -16773t 9 -24255t 10 -7337t 11 + 26583t 12 + 45100t 13 + 26181t 14 -12789t 15 -34553t 16 -24957t 17 -3147t 18 + 8130t 19 + 6288t 20 + 1398t 21 -458t 22 -284t 23 -24t 24 ) • (1 + 3t + 2t 2 -3t 3 -9t 4 -8t 5 + 4t 7 + 3t 8 -t 9 ) -1 (1 -8t -85t 2 -243t 3 -222t 4 + 332t 5 + 1194t 6 + 1349t 7 + 132t 8 -1510t 9 -2008t 10 -1088t 11 + 28t 12 + 359t 13 + 170t 14 + 15t 15 ) -1 .
Thus, the numbers of special geodesics in G 1 and G 2 coincide.

RACGs with different geodesic growth

In this section we give a proof of Theorem 1.2. Our construction will be analogous to that in Section 3, although we shall use different trees, S 1 and S 2 , in order to construct the families

S i n = {τ • S i |τ ∈ Υ k }, k = n -9.
Namely, we will use the rooted trees in Fig. 3. We set Γ 1 = τ • S 1 and Γ 2 = τ • S 2 , where τ is an arbitrary tree with n vertices labelled {0, . . . , n -1}. Suppose that 0 represents τ 's root. Then the following holds: Theorem 5.1 (page 27 of [START_REF] Godsil | Are Almost All Graphs Cospectral?[END_REF]). The trees Γ 1 and Γ 2 are not isomorphic, but are co-spectral and have co-spectral complements. Their line graphs L(Γ i ), L(Γ i ) and L(Γ i ) are not necessarily co-spectral.

Proof. The trees Γ 1 and Γ 2 are not isomorphic, since Γ 1 has the rooted tree σ depicted in Fig. 4 as a limb more times than Γ 2 does.

The characteristic polynomials of τ , S i and Γ i (i.e. the characteristic polynomials of the adjacency matrices of these graphs) are related by

φ Γ i (t) = φ τ (t) • φ S i \{0} (t) + φ τ \{0} (t) • φ S i (t) -t • φ τ \{0} (t) • φ S i \{0} (t),
according to [13, Lemma 2.2 (i)]. Given that the trees S 1 and S 2 are isomorphic as graphs (though not as rooted trees), we obtain that Γ 1 and Γ 2 share the same characteristic polynomial (i.e. are co-spectral).

The fact that Γ 1 and Γ 2 are co-spectral follows from the above and [13, Theorem 3.1 (i)]. Now, by letting τ be the line graph on two vertices we obtain that L(Γ 1 ), L(Γ 1 ) and L(Γ 1 ) have different characteristic polynomials from L(Γ 2 ), L(Γ 2 ) and L(Γ 2 ), respectively. Lemma 5.2. Let τ be a rooted tree with at least two vertices, and let

Γ 1 = τ •S 1 and Γ 2 = τ •S 2 .
The RACGs G(Γ 1 ) and G(Γ 2 ) have distinct geodesic growth series.

Proof. We will prove that f Geo(Γ 1 ) (10) = f Geo(Γ 2 ) [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF]. We use the same argument as in the proof of Lemma

3.3, that is, f Geo(Γ 1 ) (r) = f Geo(Γ 2 ) (r) if and only if f Geo(Γ 1 ) (r) = f Geo(Γ 2 ) (r)
, where f Geo(Γ i ) (r) denotes the numbers of non-geodesics of length r, r ≥ 1. In this proof we use the result of our explicit computations with Monty, which shows that f Geo

0 (Γ 1 ) (r) = f Geo 0 (Γ 2 ) (r) for r < 8, but f Geo 0 (Γ 1 ) (8) = f Geo 0 (Γ 1 ) (8) = 8919523 for G 1 and f Geo 0 (Γ 2 ) (8) = f Geo 0 (Γ 2 ) (8) = 8919522 for G 2 .
Any word in Γ * 1 has the form w 1 u 1 w 2 . . . u n , where u i ∈ (τ \ {0}) * , w i ∈ S * 1 , and w i , u i non-empty except for perhaps w 1 and u n . A non-geodesic word w in Γ * 1 belongs to one of the following sets (or is of the type), depending on its form: (A) it either contains non-geodesics w i ∈ (τ \{0}) * or u j ∈ S * 1 , or both, for some 1 ≤ i, j ≤ n, or (B) all w i and u i are geodesic on their respective alphabets, and there exists 1 ≤ j < n such that 0u j 0 is a subword of w and u j ∈ (St Γ 1 (0) ∩ τ ) * , or (C) all w i and u i are geodesic on their respective alphabets, and w contains a subword of the form s0s, where s ∈ (St Γ 1 (0) ∩ τ ) * .

For the remaining discussion we only consider words w of length 10, and call the number of non-empty subwords u i or w i the syllable length of w. The number of words of type (A) depends only on the geodesic growth series of τ and S 1 , and thus it will be equal to the number of words of type (A) in Γ 2 . Notice that if the syllable length of w is ≤ 2 there are no words of type (B) or (C), so we obtain the same numbers of words in Γ 1 and Γ 2 . If the syllable length of w is > 4 then all w i , u i are shorter than or equal to 6, and our computations show that the numbers of special geodesics of length less than or equal to 6 in Γ 1 and Γ 2 coincide. Thus, a discrepancy may appear only when the syllable length is 3 or 4. The words of type (B) or (C) with syllable length 4 have the form w = w 1 u 1 w 2 u 2 (or w = u 1 w 2 u 2 w 3 ), where w 1 ends in 0 and w 2 starts with 0, or w 2 = 0. But in this case |w 1 |, |w 2 | ≤ 7, and our computations show that f Geo 0 (Γ 1 ) (r) = f Geo 0 (Γ 2 ) (r), up to r = 7.

Next, we consider the non-geodesics w of syllable length 3. If they have the form w = u 1 w 1 u 2 , then w 1 = 0, and the numbers of geodesics u i is the same since they are all written over the same alphabet determined by the tree τ , so no discrepancy in the numbers of non-geodesics occurs. Thus, it remains to count the words of the form w = w 1 u 1 w 2 , where |w 1 | ≤ 8, w 1 ends in 0, |u 1 | ≥ 1, u 1 ∈ (St Γ 1 (0) ∩ τ ) * , and w 2 starts with 0, |w 2 | ≤ 8. Again, if |w i | ≤ 7 we obtain the same numbers of non-geodesics. However, a discrepancy occurs when |w 1 | = 8 or |w 2 | = 8.

Indeed, the number of such words is 2(f Geo 0 (Γ 1 ) (8) deg τ (0)) in Γ * 1 and 2(f Geo 0 (Γ 2 ) (8) deg τ (0)) in Γ * 2 . By using Monty, we obtained f Geo 0 (Γ 1 ) (8) = f Geo 0 (Γ 1 ) (8) = 8919523 for G 1 , but f Geo 0 (Γ 2 ) (8) = f Geo 0 (Γ 2 ) (8) = 8919522 for G 2 , so the numbers of non-geodesics in these two groups are distinct. Now we can finish the proof of our second main result.

Proof. (of Theorem 1.2) This is a straightforward consequence of Theorem 5.1 and Lemma 5.2.
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 12 Figure 1. Trees τ and σ with marked roots (on the left) and their coalescence τ • σ (on the right)
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 3 Figure 3. Godsil's rooted trees: S 1 on the left, and S 2 on the right
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 4 Figure 4. The rooted tree σ with root 0
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Appendix

In this section we give the Python code "Monty" that we used in our computations, with comments and remarks. Its on-line copy [START_REF] Kolpakov | SAGE" worksheet, available on-line at[END_REF] can be downloaded as a SAGE worksheet from the second author's web-page.

We begin by defining the automaton A that recognizes the language of geodesics of a given RACG G whose defining graph Γ is given as input.

def Automaton(t): # takes a triangle-free graph, returns the automaton recognising # the resp. RACG as a digraph CliqueComplex = t.clique_complex(); C = list(); for s in CliqueComplex.faces().values(): for f in s: C.append(set(f)); n = len(C); a = DiGraph(); a.add_vertices(range(n)); for i in range(n):

for v in t.vertices(): Given the automaton A, we then compute the growth function of its accepted language (in this case, the geodesic language for G with respect to S). 

denominator().factor();

A clique c in the defining graph Γ of the RACG G = G(Γ) corresponds to a state q c in the automaton A. We need the following auxiliary function in order to determine the index of q c represented as a vertex of the digraph A (the automaton) created by the procedure Automaton. Now we define a function that takes as input the geodesic automaton A for a RACG G = G(Γ), a list of cliques l = [c 0 , c 1 , . . . , c k ] in the respective defining graph Γ and returns the growth function for geodesic words starting at the state q = δ(q 0 , 0) that bring A to any of the states described by the cliques in l.

def GrowthFuncStart0End(a, l): # takes an automaton and a list of cliques 'l' in the resp. defining graph # as input, returns the growth function for geodesic words starting at # state q, where $\delta(Start, 0) = q$, and ending at any By using a suitable list of cliques l we can compute the functions 0 0 α(t) G and 0 0 β(t) G . Namely, in the proof of Theorem 1.1, we find # the function ${_0^0}\alpha(t)_{G_1}$ a001 = GrowthFuncStart0End(a1, [[0]]); # the function ${_0^0}\alpha(t)_{G_2}$ a002 = GrowthFuncStart0End(a2, [[0]]); # the function ${_0^0}\beta(t)_{G_1}$ b001 = GrowthFuncStart0End(a1, [ [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF], [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF][START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF], [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF][START_REF] Charney | Geodesic automaton and growth functions for Artin groups of finite type[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF][START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]

The list l = [[1], [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF][START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF], [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF][START_REF] Charney | Geodesic automaton and growth functions for Artin groups of finite type[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF][START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]] above contains the cliques of Γ 1 corresponding to the accept states q of the geodesic automaton A 1 for G 1 = G(Γ 1 ) such that δ(p, 0) = q, for a state p. The list l = [[1], [START_REF] Antolín | Geodesic growth in right-angled and even Coxeter groups[END_REF][START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF][START_REF] Charney | Geodesic automaton and growth functions for Artin groups of finite type[END_REF], [START_REF] Bahls | The isomorphism problem in Coxeter groups[END_REF][START_REF] Davis | The geometry and topology of Coxeter groups[END_REF]] contains the cliques of Γ 2 with analogous properties, corresponding to the states of the geodesic automaton A 2 for the RACG G 2 = G(Γ 2 ).

The above described Python procedures are also used to perform the computations in the proof of Theorem 1.2.

The on-line version of Monty [START_REF] Kolpakov | SAGE" worksheet, available on-line at[END_REF] contains a variation of the GrowthFunc procedure, called GrowthFuncBM, that uses the Berlekamp-Massey algorithm for faster computing.