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A Langevin equation for turbulent velocity increments
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Antoine Naert .
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(Received 22 November 1999; accepted 1 June P001

Recently, Friedrich and Peinke demonstrated empirically that a Fokker—Planck equation describes
the scale dependence of probability distribution functions of longitudinal velocity incremgis

fully developed turbulent flows. Thanks to the analysis of an experimental velocity signal, the
stochastic process, is further investigated by examining the related Langevin equation. This
process is found to be Markovian in scale because the turbulent velocity field is correlated over
distances much larger than the correlation lengthof its spatial derivative. A Gaussian
approximation for the random force yields evolution equations for the structure funcu@hs
Analytic solutions are obtained, in agreement with experimental data for even-order moments when
the scale is larger than a few times The third-order momenr f) is found linear irr, as predicted

by Kolmogorov’s four-fifths law. ©2001 American Institute of Physics.

[DOI: 10.1063/1.1386937

I. INTRODUCTION theoretical techniques, from the Navier—Stokes equation
with random forcing’

The physics of high Reynolds number, incompressible  The goal of this article is to further investigate the sto-
hydrodynamic flows remains poorly understood. One imporchastic proces®, by studying the stochastic differential
tant characterization is the probability distribution function equation which governs its trajectories in scale. This study
(pdf) P(v,,r) of longitudinal velocity increment®, at closely follows a similar investigation of a Langevin equa-
scale r, an experimentally measurable quantity. At hightion for the energy dissipation field of fully developed turbu-
enough Reynolds number, and for intermedigigertial) lent flows?® coefficients of the Langevin equation fof are
scales, i.e., sufficiently far from the energy injection and dis-evaluated directly from experimental dat8ec. ll). One
sipation scales, Kolmogorov’s scaling hypothésistes that benefit is immediate access to the stochastic term of the
P(v,,r) becomes a universal function of the ratio equation. We give a physical interpretation of the Markovian
v 1({€)r)*® where(e) denotes the mean energy dissipationcharacter ob, (Sec. IV), and show that this approach yields
rate of the flow. An important goal of current research on@ quantitatively accurate description of the random process.
fully developed turbulence is to quantify and understand thét Gaussian approximation of the random force allows one to
deviations from Kolmogorov's scaling observed at experi-cOmpute analytically the scale dependence of the structure
mentally accessible Reynolds numb&rdpproximately functions(vy) (Sec. V).

Gaussian at large scale, the distributiBiv, ,r) progres-
sively develops long tails toward small scales, due to th
presence in the flow of tiny regions of very high shear an
dissipation. It is also known th&(v,,r) is slightly asym- The turbulent flow studied in this article is an axisym-
metric, as characterized in the inertial range by Kolmogormetric jet in air’ Time series of the longitudinal velocity
ov's four-fifths law (v 3)= — (4/5)(e)r?. componenu(xg,t) are recorded by hot-wire anemometry at

Recent work on experimental velocity signals indicatesa single poinix, on the jet axis. The velocity probe is placed
that P(v,,r) is the solution of a Fokker—Planck equatibn. 2 m downstream from the nozzle, sufficiently f@0 times
The velocity incremenb, is therefore well described by a the nozzle’s diameterfor the turbulence to be considered
continuous stochastic process in scélarkovianfor large  locally homogeneous and isotropic. The hot wire is a TSI
enough scales where viscous effects are neglidibieis ~ 1210-T1.5 tungsten wire of diametey,=4 um and sensing
proves that the turbulent cascade process is local in scalkength 1.24 mrs=310d,,, controlled by an IFA 100 anemom-
Moreover, theoretical work has shown that a Fokker—Plancleter operated at constant temperature 250 °C. The output sig-
equation for P(v,,r) can be derived, thanks to field- nal is low-pass filtered at a cutoff frequendy, then

sampled at a frequency;=39kHz=2 f. (in practice f,
dpermanent address: IRPHE—Universite Provence, 49, rue Joliot-Curie, 2.<u>/ . Where 7 1S Ko'mf)goro"’s scalg then digitized
13384 Marseille, ~ Cedex 13,  France;  electronic  mail: With @ 23 bit analog-to-digital converter on an HP E1430A
Philippe.Marcq@irphe.univ-mrs.fr workstation.

I. EXPERIMENT

1070-6631/2001/13(9)/2590/6/$18.00 2590 © 2001 American Institute of Physics
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The high turbulence intensity observed in this flow variablex is generally omitted to make notations simpler. We
(ums/{U)=28%) means that Taylor's “frozen turbulence checked that similar results are obtained for centered velocity
hypothesis” fails when turning the recorded time seriesincrements (X)=u(x+r/2)—u(x—r/2).

u(xq,t=tg+At) into spatial measurementsu(x=xXq
—(Uu)At,tg) #u(Xq,tp+At). Indeed, recording the velocity
at constantsampling frequency gives rise tosgatistical bias

when fluctuations are important, i.e., at high values of the
turbulence intensity. A slowly evolving part of the velocity
field will be over-sampled, i.e., over-represented in the sta-
tistics. On the contrary, a fast part of the signal will be under-
represented. This bias becomes larger at higher values of the Dy(v,,r)=
fluctuation rate. Following Ref. 8 we choose to correct this

The random forceé(r) must respect{é(r))=0 and
(¢(r)?)=1 at all scales.The drift and diffusion coefficients
Dy(v,,r) andD,(v,,r) are therefore equal to

du,

Dl(v,,r)=—<er>, €)

1 du, 2
(W—’_Dl(vrar)) Uy /s

4

bias by regularly resampling the data. Denoting the recordedhere (f (v, ,r)|v ) denotes the conditional average of the

time series by{u;}j—o, n, We first construct an “abscissa
signal” x;=ju;, then divide it intoN intervals[X; ,X; ] of
equal length(Xg=Xq, Xy=Xy). Values of the de-biased ve-

function f(u,r) at a fixed valuev, of u: (f(v,,r)|v,)

=(f(un|u=v,). | _
In practice, Ito’s conventions for stochastic calculus are

locity signal G; are obtained by linear interpolation at the used when evaluating the derivatige, /dr.° This yields the

new positiony; , Q;

the following, the spatial velocity field is denotedu(x;)
=(; for simplicity.

Longitudinal (de-biase@lvelocity increments are defined
asv,(x)=u(x+r)—u(x), wherer is the separation scale.
Ergodicity is assumed to be valid: ensemble averdges
noted by()) are computed as averages owefat fixedr).
The mean and rms velocity are, respectivel)
=3.3ms?!andu,,=0.9ms?' The mean energy dissipa-

tion rate(e) is evaluated from the small-scale behavior of the

second-order structure functign?):

15v
(e)= I|m—
r—0 r

<v2> (D
We find(e)=3.5(1) nf s>, Kolmogorov’s dissipation scale
and Taylor's microscale are, respectively=175um and
AN=7 mm=407%n. The microscale Reynolds number k&
=430. The third-order structure functiofv?®) is approxi-
mately linear inr (inertial-rangescaling over one decade of
scales: 4g<r=<400y (see Fig. 4.

The integral scale is defined as the sumn
=[5 Cu(r)dr of the normalized velocity autocorrelation
function Cu(r)={u(x)u(x+r))/{(u?). We find L=14cm
=8007. We use a sample of 2410" points (9xX10°L),

=u(X;). We checked that using a higher- following discrete equationdr >0):
order interpolation scheme vyields the same velocity field. In

Uy =045+ D1(v,,1)6r + 2D y(v, 1) or &(r). 6)

The derivativedv, /dr is correctly described by E¢5) when
the discrete stepr is smaller thany, i.e., for scales below
which v, is smooth. We use the valuér = 7/2 hereafter,
equivalent to one sampling step. The drift coefficient is
evaluated a® (v, ,r)=(v,— v, s|v,)/ r. We find thatD;

is a linear function oy, when 5)<r=<L:

Uy 6

Yo (6)
wherey =1/3 [see Fig. 18)]. According to Eq.(5), the dif-
fusion coefficient is equal to the following conditional aver-
age:

Dy(v,,r)=

1
Dy(v,,r)= 250 <(Ur Urssr—Dy(vy,r)6r) |Ur> (7)
Its unit is therefore m&’ [see also Eqdl)]. We find thatD,
is well fitted by a cubic function of, for scales larger than
507 [Fig. 1(b)]:
2 3
+d3 €)

dz

Da(v,r)=do—dyv, +d2

where dy=0.56+0.06ms? d;= 0045t00155

long enough to ensure that all statistical quantifiers have con=0.0057+0.0002, andi;= 0,0015t 0.0002m's

verged. Similar results are obtained for other data sets corre-

sponding to other Reynolds numbers.

IIl. LANGEVIN EQUATION

The goal of this section is to evaluate the parameters of!

the Langevin equation:

d
or_ 1(v,,r)+V2Dy(v,,r)é&(r

S dr )

Values of the first- and second-order Kramers—Moyal
coefficients, estimated as in Ref. 3, are consistent with Egs.
(6) and (8), albeit with a somewhat poorer accuracy. The
asymmetry observed here fOr,(d;,d;#0) is indeed appar-
nt in the figures of Ref. 3. However, the diffusion coeffi-
cient of the Fokker—Planck equation predicted by Ref. 5 is
guadratic (i.e., d3=0 in our notationy with D,(0y)
=0(dy=0), at odds with experimental data.

The (dimensionless random forceé(r) can now be
evaluated as

assumed to describe the scale dynamics of the stochastic pro-

cessv, .
physical direction of the turbulent cascade from lafiggec-
tion) to small (dissipation scales. One realization af,(x)

The minus sign on the left-hand side reflects the v

r—Ur o —Da(vy,1)or

V2 Dy(v,,r)or

&(r)=- (C)

=u(x+r)—u(x) corresponds to a fixed value of the position For consistency, we checked that&(r))=0(|(&(r))]

X, while r varies within the bounded intervdl:=r= 7. The

<104 and(&(r)®)=1(|(&(r)?)—1|<10"3), and find for
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FIG. 1. (a) Drift coefficient D,(v,,r). The slope offD,(v,,r) vs v, is FIG. 22. (@ The prgbability distribution functions of the random forgr)
consistent with— 1/3(D4(v, ’r)z_%vr/r)_ Both rD,(v, ,r) and v, are ((&(r)?)=1) are independent of scale for scaledetween 56 and L

given in m s, (b) Diffusion coefficientD (v, ,r) (unit: ms 2 vsv, (unit: =800y, and identical to t,he pdP(—u’) of thezoszosite of thénormal-
ms). Inset: r(Dy(v, ,F)—do+dyo;) is well fitted by dy?+dav® (dg ized) velocity derivativeu’=(du/dx)/((du/dx)*)*“. The random force
=056 ms2, d;=0.045s "%, d,=0.0057;d;=0.0015 m'* §). The drift and &(r) is dimensionless(b) The autocorrelation function€,(r,Ar) of the
diffusion coefficients are given for scaledbetween 56 andL =8007. random forcet(r) are plotted vs the dimensionless scale incremarity in

the same range of scales”8r <800y. A plot of the autocorrelation func-
tion C,,(Ax) of u’ vs the dimensionless spatial incremant 7 is given for

Lo Lo comparison.
scales larger than 5pthat(v,&(r))=0 within statistical er-

ror ((v,£(r))=<10"3%(v?*?). The pdfP(¢,r) is shown in

Fig. 2(a). It does not erend on scale. Two charaptgnsucrhe random forcei(r)|, defined by Eq.9) is therefore a
features 3ofP(2§,3r/)2 are its asymmetryskewness coefficient |inear function of the velocity derivativelu/dx|y.,. We
S(§)=(&7)/(£7)7“=0.59 and the presence of long tails haye checked that the normalized cross-correlation coeffi-

[flatness coefficienE () =(&*)/(£%)?=8.5]. cient(&(r)|du/dx|.)/{(du/dx)?)*?is indeed close te-1
in the inertial range. Figure 2 confirms th&(r) and
IV. A MARKOVIAN PROCESS —du/dx are statistically equivalent: The normalized auto-

correlation functions of the two variables are identical; the

h The dStOC?aS“C pro_cess de;‘meg by E2).is Markovllan Ifl skewness and flatness coefficients of the random force are
the random forcet(r) is correlate over a range of scales equal t0S(£) = — S(du/dx) andF (&)= F(du/dx).

much smaller than the autocorrelation scale of the variable In other words, the velocity increment is Markovian

Ur- F|ggre 2b) shqws that this is mdged the case: The autoam r because the velocity(x) is correlated over distances
correlation function of £(r), defined as Cg(r,Ar)

- . ) much larger than the correlation length of its derivative
=(&(r)é(r+Ar)), decays rapidly. ltsr-independentauto- g, /4, [A similar argumerft shows that the averaged dissi-
correlation scalep, defined for instance by the integral

— 21CAr AP dAT . | I d to th i | pation e, is also a Markovian process insince its correla-
Tf0| f(r.Ar)|[dAr, is small compared to the autocorrela- ion scale is much larger than the correlation length of the
tion scale ofv, (andu): p=87%n<<L=800%. In practice, this

local dissipati /dx)2.
suggests thaC(r,Ar) can be safely approximated by ocal dissipation qu/dx)*.]
function for scales large compared gpe.g., in the inertial

range. V. A GAUSSIAN APPROXIMATION
The scale derivativelv, /dr at positionx is in fact equal 5 Eyolution equations for the moments of velocity

to the spatial derivativedu/dx computed at positiox+r: increments

sincedv, /dr=(v,.h—v,)/h, whereh<r, we have ) ) ) o
g g We assumed in Sec. Ill that the disordered trajectories in

vy 1 u scale of the variabley, can be described by a stochastic

—_— = +r+h)—u(x+r))=——(x+r). . . ; r . . .
dr h (u(xFrh)=u(x+r) dx(X ) (10 differential equatiofEq. (2)]. Using this equation, we pro-
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geeded to evaluate this equation’s drift and diffusion coeffi- <7r;p>:<;rggl>7a2p_a)2p(2p_ 1)7%2p

cients[Egs.(3) and(7)] and random forcgEq. (9)] from an

experimental velocity signal. In Sec. IV, we verified that the T ~ apy/—2p—2

noise variable£(r) is indeed a “fast” variable compared to X P P(o," %) dp. (18)

the “slow” v,, as implicitly assumed iii2).

The goal of this section is to test the validity of E@). Since(ﬁ%): 1, Vr, the hierarchy of equatior(47) is exactly
Since the random process s already known to be Markov-  solvable. It is easy to prove recursively that its solutof)
ian for large enough scales, approximating the random forcgs 3 finjte linear combination of power laws of The coef-

&(r) by a Gaussian process makes the Langevin equati01ri1cien.[a0 in Eq. (18) is a small expansion paramete(To(

equivalent to a Fokker—Planck equation. We will show that
this Gaussian approximation yields analytical expressions
the scale dependence of the momen{y in agreement with

experimental data.
The Fokker—Planck equation redds

J B J
— - Plo; == E(Dl(vr TP(ur,r))

82
+=52(Da(vr NP r). (11)
Ur
A hierarchy of evolution equations for the momefits') is
easily obtained fron{11):

d n_ n—1
- a<vr>_n<Dl(vr oy >

+n(n—1)(Dy(v,,r)v" 2. (12

Since initial conditions are given at large scéle natural
nondimensional variables are=r/L andv,=v, /U;ps. Us-
ing the coefficientd; andD, as expressed in Eq&)—(8)
the nondimensional evolution equation fa’) reads

d — %n —n qosh-2y 4 o oh-l
d—r_(vr>=?<vr>—n(n—1)(do(vr >—dl<l}? >

+ Ry 3

where coefficients, d,, anda,=n(y—(n—1)d,)=«, are
unchanged, and

do=doL/u2, =0.09+0.01, (14)
dy=d; /U= 0.007+0.001, (15)
dy= d3U,me=0.0013 0.0002. (16)

Noting thaty=1/3, Kolmogorov scalingv"yor ™3 would be
recovered foD,(v,,r)=0.

B. Even-order moments

Let us first consider even-order moments: 2p. Since
P(v,,r) is weakly asymmetric in the inertial rang&(@,)
=—0.25), the odd-order moments|(z=""")| and
|02 " 1y/¥] are small compared #@=""?). A good approxi-
mation of Eq.(13) thus readsd; ,d;<d,)

2 5= ") 2p(2p- AP D). ()

r

The exact solution of Eq17) is

of1). The truncation of Eq(18) at first-order O((d) %)

reads

2p(2p—1)

r\“ze
2p\ /o 2p\| _ 2p-2y PR 7
(WP =(u? >(L) dob(vE" ™) T

agp
1

where the physical variablas andr were used for clarity.
Figure 3 shows that Eq19) fits data well up to =8 for
scales larger than 50

The scale dependence of even-order structure functions
(v?P) is captured by a Fokker—Planck equatidd) with a
linear drift termD (v, ,r)=—v,/(3r) and anevendiffusion
coefficient D§**\v, ,r)=do+d,v?/r. The analytic expres-
sion of (v2P) is the sum of a finite number of power laws of
r. It is interesting to note thati) the dominant ternficcr “2p
at order O((do)°) ] does not reproduce experimental data
(see Fig. 3 (ii) a simple scaling law reminiscent of
Kolmogorov—Obukhov's  theory [(v?P)ocré2p, Lop=(y
+d,)2p—d,(2p)?] corresponds to the hypothetical limit
do—0, DS v, ,r)=dyw?/r.

r

L

X
L

(19

l+a2p,2 ( r

C. Odd-order moments

Since analytic expressions of all even-order moments are
already known, the inhomogeneous term on the right hand
side of Eq.(13) is completely known when solving recur-
sively for the odd-order momenta="""). Using (v7)=0,

Vr, and expressionl8), it is easy to show that Eq13) is
exactly solvable for all odd ordens=2p+1, and that its
solution is also a finite linear combination of power laws of
r with different exponents.

Let us now focus on the third-order moment). Since
a3z=1, the dominant term of the solution ¢613) is linear,
(v3=(v3)(r/L), in agreement with Kolmogorov's four-
fifths law. However, Fig. 4 shows that this linear behavior
reproduces only the main slope observed in log—log scale:
the discrepancy is of the order of 10% in relative value. The
“inertial range” of this flow corresponds to(v?)
=—0.6¢)r, instead of the theoretical predictiofw?)
=—0.8€)r. Indeed, the presence of corrections to the four—
fifths law at experimentally accessible Reynolds numbers is
a well-documented facf Including subdominant contribu-
tions doesnot yield a better agreement with data: the inho-
mogeneous term on the right hand side of E) is negli-
gible (d;=4d;, r=<1 and (F;i:1>23). The leading
correction to the Gaussian approximation stems from the
third-order Kramers—Moyal coefficier® ;= ysv, /r3, lead-
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ing to the additional terrm(n—1)(n— 2)y3<Urﬁ’2>/r_on the
right-hand side of Eq(13). This term vanishes fon=3: a
detailed treatment of the non-Gaussian features of the ran-

dom force is pointless.

Analysis of the fifth-order moment leads to similar ob-
servations(see Fig. 4 Equation(13) yields the dominant
behavior of(v?), but not the curvature observed in a log—log
plot, even when the non-Gaussian statisticg @) is taken
into account. We also checked that agreement between the
analytic solution of Eq(13) and data is only qualitative for
higher odd-order moments. This may be due to the increased
numerical difficulty involved in measuring accurately odd
contributions to the diffusion coefficient.

VI. DISCUSSION

Our analysis shows that the scale dynamics of turbulent
velocity increments can be described, for large enough
scales, by the Langevin equati¢®), with the drift and dif-
fusion coefficients given by Eq$6) and (8) and a random

force &(r) defined by Eq(9).

As already found in Refs. 3 and 4, we confirm that the
random process, is Markovian. The cascade process is lo-
cal in scale, since stochastic trajectoriesvpfare uncorre-
lated over scales larger than the autocorrelation scafahe

random forcet(r), of the order of Kolmogrov’'s scale. The

P. Marcq and A. Naert

FIG. 3. Even-order dimensionless structure functions
(v2P)/(Um9?® Vs r/7. (8) The second-order structure
function (symbols is compared to the analytic solution
(19) (dashed linedy,=0.09, a,=0.66), and to a power
law (v2)=(vZ)(r/L)*2 (dotted line, a,=0.66. The
size of symbols gives the statistical error bar in the
main (lin—lin) graph. The inset gives the same plot in
log—log scale, forn/2<r<8000p=5L. (b) Fourth-
order structure function d,=1.26). (c) Sixth-order
structure function &g=1.83). (d) Eighth-order struc-
ture function @g=2.35).
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FIG. 4. Odd-order dimensionless structure functien& 2™ 1)/(umd?P*?

locality of the cascade, postulated in most statistical modelgs /4. (a) The third-order structure functiofsymbol$ is compared to the
of intermittency, is demonstrated experimentally and quantipower law(v?¥)=(v¥)(r/L)*s (dashed lineas=1). The size of the symbols

fied. Further, we propose a physical explanation for this red\ves
markable fact. The random forggr) is “rapid” compared

the statistical error bar in the mdlm—lin) graph. The inset gives the
ratio —(v2)/((e)r) as a function of scale. A constant value equal to 0.8
would correspond to Kolmogorov's 4/5 lawb) Fifth-order structure func-

to the_ “slow” s_tochastic variable, _because the longitudinal tion (as=1.55). The inset gives the same plot in log—log scale #2
velocity u(x) is correlated over distances much larger thans<r=8000y=5L.
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