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Recently, Friedrich and Peinke demonstrated empirically that a Fokker–Planck equation describes
the scale dependence of probability distribution functions of longitudinal velocity incrementsv r in
fully developed turbulent flows. Thanks to the analysis of an experimental velocity signal, the
stochastic processv r is further investigated by examining the related Langevin equation. This
process is found to be Markovian in scale because the turbulent velocity field is correlated over
distances much larger than the correlation lengthr of its spatial derivative. A Gaussian
approximation for the random force yields evolution equations for the structure functions^v r

n&.
Analytic solutions are obtained, in agreement with experimental data for even-order moments when
the scaler is larger than a few timesr. The third-order moment^v r

3& is found linear inr, as predicted
by Kolmogorov’s four-fifths law. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1386937#

I. INTRODUCTION

The physics of high Reynolds number, incompressible
hydrodynamic flows remains poorly understood. One impor-
tant characterization is the probability distribution function
(pd f ) P(v r ,r ) of longitudinal velocity incrementsv r at
scale r, an experimentally measurable quantity. At high
enough Reynolds number, and for intermediate~inertial!
scales, i.e., sufficiently far from the energy injection and dis-
sipation scales, Kolmogorov’s scaling hypothesis1 states that
P(v r ,r ) becomes a universal function of the ratio
v r /(^e&r )1/3, where^e& denotes the mean energy dissipation
rate of the flow. An important goal of current research on
fully developed turbulence is to quantify and understand the
deviations from Kolmogorov’s scaling observed at experi-
mentally accessible Reynolds numbers.2 Approximately
Gaussian at large scale, the distributionP(v r ,r ) progres-
sively develops long tails toward small scales, due to the
presence in the flow of tiny regions of very high shear and
dissipation. It is also known thatP(v r ,r ) is slightly asym-
metric, as characterized in the inertial range by Kolmogor-
ov’s four-fifths law ^v r

3&52(4/5)^e&r 1.
Recent work on experimental velocity signals indicates

that P(v r ,r ) is the solution of a Fokker–Planck equation.3

The velocity incrementv r is therefore well described by a
continuous stochastic process in scale,Markovian for large
enough scales where viscous effects are negligible.4 This
proves that the turbulent cascade process is local in scale.
Moreover, theoretical work has shown that a Fokker–Planck
equation for P(v r ,r ) can be derived, thanks to field-

theoretical techniques, from the Navier–Stokes equation
with random forcing.5

The goal of this article is to further investigate the sto-
chastic processv r by studying the stochastic differential
equation which governs its trajectories in scale. This study
closely follows a similar investigation of a Langevin equa-
tion for the energy dissipation field of fully developed turbu-
lent flows:6 coefficients of the Langevin equation forv r are
evaluated directly from experimental data~Sec. III!. One
benefit is immediate access to the stochastic term of the
equation. We give a physical interpretation of the Markovian
character ofv r ~Sec. IV!, and show that this approach yields
a quantitatively accurate description of the random process.
A Gaussian approximation of the random force allows one to
compute analytically the scale dependence of the structure
functions^v r

n& ~Sec. V!.

II. EXPERIMENT

The turbulent flow studied in this article is an axisym-
metric jet in air.7 Time series of the longitudinal velocity
componentu(x0 ,t) are recorded by hot-wire anemometry at
a single pointx0 on the jet axis. The velocity probe is placed
2 m downstream from the nozzle, sufficiently far~40 times
the nozzle’s diameter! for the turbulence to be considered
locally homogeneous and isotropic. The hot wire is a TSI
1210-T1.5 tungsten wire of diameterdw54 mm and sensing
length 1.24 mm5310dw , controlled by an IFA 100 anemom-
eter operated at constant temperature 250 °C. The output sig-
nal is low-pass filtered at a cutoff frequencyf c , then
sampled at a frequencyf s539 kHz.2 f c ~in practice f c

.^u&/h, where h is Kolmogorov’s scale!, then digitized
with a 23 bit analog-to-digital converter on an HP E1430A
workstation.

a!Permanent address: IRPHE—Universite´ de Provence, 49, rue Joliot-Curie,
13384 Marseille, Cedex 13, France; electronic mail:
Philippe.Marcq@irphe.univ-mrs.fr
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The high turbulence intensity observed in this flow
(urms/^u&.28%) means that Taylor’s ‘‘frozen turbulence
hypothesis’’ fails when turning the recorded time series
u(x0 ,t5t01Dt) into spatial measurements:u(x5x0

2^u&Dt,t0)Þu(x0 ,t01Dt). Indeed, recording the velocity
at constantsampling frequency gives rise to astatistical bias
when fluctuations are important, i.e., at high values of the
turbulence intensity. A slowly evolving part of the velocity
field will be over-sampled, i.e., over-represented in the sta-
tistics. On the contrary, a fast part of the signal will be under-
represented. This bias becomes larger at higher values of the
fluctuation rate. Following Ref. 8 we choose to correct this
bias by regularly resampling the data. Denoting the recorded
time series by$uj% j 50,...,N , we first construct an ‘‘abscissa
signal’’ xj5 ju j , then divide it intoN intervals@ x̂ j ,x̂ j 11# of
equal length~x̂05x0 , x̂N5xN!. Values of the de-biased ve-
locity signal û j are obtained by linear interpolation at the
new positionx̂ j , û j5u( x̂ j ). We checked that using a higher-
order interpolation scheme yields the same velocity field. In
the following, the spatial velocity field is denotedu(xj )
5û j for simplicity.

Longitudinal~de-biased! velocity increments are defined
as v r(x)5u(x1r )2u(x), where r is the separation scale.
Ergodicity is assumed to be valid: ensemble averages~de-
noted by^ &! are computed as averages overx ~at fixed r!.
The mean and rms velocity are, respectively,^u&
53.3 m s21 and urms50.9 m s21. The mean energy dissipa-
tion rate^e& is evaluated from the small-scale behavior of the
second-order structure function^v r

2&:

^e&5 lim
r→0

15n

r

]

]r
^v r

2&. ~1!

We find ^e&53.5(1) m2 s23. Kolmogorov’s dissipation scale
and Taylor’s microscale are, respectively,h.175mm and
l57 mm.40h. The microscale Reynolds number isRl

.430. The third-order structure function̂v r
3& is approxi-

mately linear inr ~inertial-rangescaling! over one decade of
scales: 40h<r<400h ~see Fig. 4!.

The integral scale is defined as the sumL
5*0

` Cu(r )dr of the normalized velocity autocorrelation
function Cu(r )5^u(x)u(x1r )&/^u2&. We find L514 cm
.800h. We use a sample of 143107 points (93105L),
long enough to ensure that all statistical quantifiers have con-
verged. Similar results are obtained for other data sets corre-
sponding to other Reynolds numbers.

III. LANGEVIN EQUATION

The goal of this section is to evaluate the parameters of
the Langevin equation:

2
dv r

dr
5D1~v r ,r !1A2D2~v r ,r !j~r !, ~2!

assumed to describe the scale dynamics of the stochastic pro-
cessv r . The minus sign on the left-hand side reflects the
physical direction of the turbulent cascade from large~injec-
tion! to small ~dissipation! scales. One realization ofv r(x)
5u(x1r )2u(x) corresponds to a fixed value of the position
x, while r varies within the bounded interval:L>r>h. The

variablex is generally omitted to make notations simpler. We
checked that similar results are obtained for centered velocity
incrementsv r(x)5u(x1r /2)2u(x2r /2).

The random forcej(r ) must respect̂ j(r )&50 and
^j(r )2&51 at all scales.9 The drift and diffusion coefficients
D1(v r ,r ) andD2(v r ,r ) are therefore equal to

D1~v r ,r !52 K dv r

dr Uv r L , ~3!

D2~v r ,r !5
1

2 K S dv r

dr
1D1~v r ,r ! D 2Uv r L , ~4!

where ^ f (v r ,r )uv r& denotes the conditional average of the
function f (u,r ) at a fixed valuev r of u: ^ f (v r ,r )uv r&
5^ f (u,r )uu5v r&.

In practice, Ito’s conventions for stochastic calculus are
used when evaluating the derivativedv r /dr.9 This yields the
following discrete equation (dr .0):

v r5v r 1dr1D1~v r ,r !dr 1A2D2~v r ,r !dr j~r !. ~5!

The derivativedv r /dr is correctly described by Eq.~5! when
the discrete stepdr is smaller thanh, i.e., for scales below
which v r is smooth. We use the valuedr 5h/2 hereafter,
equivalent to one sampling step. The drift coefficient is
evaluated asD1(v r ,r )5^v r2v r 1dr uv r&/dr . We find thatD1

is a linear function ofv r when 50h<r<L:

D1~v r ,r !52g
v r

r
, ~6!

whereg .1/3 @see Fig. 1~a!#. According to Eq.~5!, the dif-
fusion coefficient is equal to the following conditional aver-
age:

D2~v r ,r !5
1

2dr
^~v r2v r 1dr2D1~v r ,r !dr !2uv r&. ~7!

Its unit is therefore m s22 @see also Eq.~11!#. We find thatD2

is well fitted by a cubic function ofv r for scales larger than
50h @Fig. 1~b!#:

D2~v r ,r !5d02d1v r1d2

v r
2

r
1d3

v r
3

r
, ~8!

where d050.5660.06 m s22, d150.04560.015 s21, d2

50.005760.0002, andd350.001560.0002 m21 s
Values of the first- and second-order Kramers–Moyal

coefficients, estimated as in Ref. 3, are consistent with Eqs.
~6! and ~8!, albeit with a somewhat poorer accuracy. The
asymmetry observed here forD2(d1 ,d3Þ0) is indeed appar-
ent in the figures of Ref. 3. However, the diffusion coeffi-
cient of the Fokker–Planck equation predicted by Ref. 5 is
quadratic ~i.e., d350 in our notations!, with D2(0,r )
50(d050), at odds with experimental data.

The ~dimensionless! random forcej(r ) can now be
evaluated as

j~r !52
v r2v r 1dr2D1~v r ,r !dr

A2 D2~v r ,r !dr
. ~9!

For consistency, we checked that̂j(r )&.0(u^j(r )&u
<1024) and ^j(r )2&.1(u^j(r )2&21u<1023), and find for
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scales larger than 50h that ^v rj(r )&.0 within statistical er-
ror (^v rj(r )&<1023^v r

2&1/2). The pd f P(j,r ) is shown in
Fig. 2~a!. It does not depend on scale. Two characteristic
features ofP(j,r ) are its asymmetry~skewness coefficient
S(j)5^j3&/^j2&3/2.0.55! and the presence of long tails
@flatness coefficientF(j)5^j4&/^j2&2.8.5#.

IV. A MARKOVIAN PROCESS

The stochastic process defined by Eq.~2! is Markovian if
the random forcej(r ) is correlated over a range of scales
much smaller than the autocorrelation scale of the variable
v r . Figure 2~b! shows that this is indeed the case: The auto-
correlation function of j(r ), defined as Cj(r ,Dr )
5^j(r )j(r 1Dr )&, decays rapidly. Its~r-independent! auto-
correlation scaler, defined for instance by the integralr
5*0

`uCj(r ,Dr )udDr , is small compared to the autocorrela-
tion scale ofv r ~andu!: r.8h!L.800h. In practice, this
suggests thatCj(r ,Dr ) can be safely approximated by ad
function for scales large compared tor, e.g., in the inertial
range.

The scale derivativedv r /dr at positionx is in fact equal
to the spatial derivativedu/dx computed at positionx1r :
sincedv r /dr.(v r 1h2v r)/h, whereh!r , we have

dv r

dr
.

1

h
~u~x1r 1h!2u~x1r !!.

du

dx
~x1r !. ~10!

The random forcej(r ) ux defined by Eq.~9! is therefore a
linear function of the velocity derivativedu/dxux1r . We
have checked that the normalized cross-correlation coeffi-
cient ^j(r )uxdu/dxux1r&/^(du/dx)2&1/2 is indeed close to21
in the inertial range. Figure 2 confirms thatj(r ) and
2du/dx are statistically equivalent: The normalized auto-
correlation functions of the two variables are identical; the
skewness and flatness coefficients of the random force are
equal toS(j)52S(du/dx) andF(j)5F(du/dx).

In other words, the velocity incrementv r is Markovian
in r because the velocityu(x) is correlated over distances
much larger than the correlation length of its derivative
du/dx. @A similar argument6 shows that the averaged dissi-
patione r is also a Markovian process inr since its correla-
tion scale is much larger than the correlation length of the
local dissipation (du/dx)2.#

V. A GAUSSIAN APPROXIMATION

A. Evolution equations for the moments of velocity
increments

We assumed in Sec. III that the disordered trajectories in
scale of the variablev r can be described by a stochastic
differential equation@Eq. ~2!#. Using this equation, we pro-

FIG. 1. ~a! Drift coefficient D1(v r ,r ). The slope ofrD 1(v r ,r ) vs v r is

consistent with21/3(D1(v r ,r ).2
1
3v r /r ). Both rD 1(v r ,r ) and v r are

given in m s21. ~b! Diffusion coefficientD2(v r ,r ) ~unit: m s22! vs v r ~unit:
m s21!. Inset: r (D2(v r ,r )2d01d1v r) is well fitted by d2v r

21d3v r
3 ~d0

50.56 m s22, d150.045 s21, d250.0057;d350.0015 m21 s!. The drift and
diffusion coefficients are given for scalesr between 50h andL5800h.

FIG. 2. ~a! The probability distribution functions of the random forcej(r )
(^j(r )2&51) are independent of scale for scalesr between 50h and L
5800h, and identical to the pdfP(2u8) of the opposite of the~normal-
ized! velocity derivative u85(du/dx)/^(du/dx)2&1/2. The random force
j(r ) is dimensionless.~b! The autocorrelation functionsCj(r ,Dr ) of the
random forcej(r ) are plotted vs the dimensionless scale incrementDr /h in
the same range of scales 50h<r<800h. A plot of the autocorrelation func-
tion Cu8(Dx) of u8 vs the dimensionless spatial incrementDx/h is given for
comparison.
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ceeded to evaluate this equation’s drift and diffusion coeffi-
cients@Eqs.~3! and~7!# and random force@Eq. ~9!# from an
experimental velocity signal. In Sec. IV, we verified that the
noise variablej(r ) is indeed a ‘‘fast’’ variable compared to
the ‘‘slow’’ v r , as implicitly assumed in~2!.

The goal of this section is to test the validity of Eq.~2!.
Since the random processv r is already known to be Markov-
ian for large enough scales, approximating the random force
j(r ) by a Gaussian process makes the Langevin equation
equivalent to a Fokker–Planck equation. We will show that
this Gaussian approximation yields analytical expressions of
the scale dependence of the moments^v r

n& in agreement with
experimental data.

The Fokker–Planck equation reads9

2
]

]r
P~v r ,r !52

]

]v r
~D1~v r ,r !P~v r ,r !!

1
]2

]v r
2 ~D2~v r ,r !P~v r ,r !!. ~11!

A hierarchy of evolution equations for the moments^v r
n& is

easily obtained from~11!:

2
d

dr
^v r

n&5n^D1~v r ,r !v r
n21&

1n~n21!^D2~v r ,r !v r
n22&. ~12!

Since initial conditions are given at large scaleL, natural
nondimensional variables arer̄ 5r /L and v̄ r5v r /urms. Us-
ing the coefficientsD1 andD2 as expressed in Eqs.~6!–~8!
the nondimensional evolution equation for^v̄ r̄

n& reads

d

dr̄
^v̄ r̄

n&5
an

r̄
^v̄ r̄

n&2n~n21!S d̄0^v̄ r̄
n22&2d̄1^v̄ r̄

n21&

1
d̄3

r̄
^v̄ r̄

n11& D , ~13!

where coefficientsg, d2 , andan5n(g2(n21)d2)5ān are
unchanged, and

d̄05d0L/urms
2 50.0960.01, ~14!

d̄15d1L/urms50.00760.001, ~15!

d̄35d3urms50.001360.0002. ~16!

Noting thatg.1/3, Kolmogorov scalinĝv r
n&}r n/3 would be

recovered forD2(v r ,r )50.

B. Even-order moments

Let us first consider even-order moments:n52p. Since
P(v r ,r ) is weakly asymmetric in the inertial range (S(v r)
.20.25), the odd-order momentsu^v̄ r̄

2p21&u and
u^v̄ r̄

2p11&/ r̄ u are small compared tôv̄ r̄
2p22&. A good approxi-

mation of Eq.~13! thus reads (d̄1 ,d̄3!d̄0)

d

dr̄
^v̄ r̄

2p&5
a2p

r̄
^v̄ r̄

2p&22p~2p21!d̄0^v̄ r̄
2p22&. ~17!

The exact solution of Eq.~17! is

^v̄ r̄
2p&5^v̄ r̄ 51

2p & r̄ a2p2d̄02p~2p21! r̄ a2p

3E
1

r̄
r2a2p^v̄r

2p22&dr. ~18!

Since^v̄ r̄
0&51, ; r̄ , the hierarchy of equations~17! is exactly

solvable. It is easy to prove recursively that its solution^v̄ r̄
2p&

is a finite linear combination of power laws ofr̄ . The coef-
ficient d̄0 in Eq. ~18! is a small expansion parameter (d̄0

!1). The truncation of Eq.~18! at first-order O((d̄0)1)
reads

^v r
2p&5^vL

2p&S r

L D a2p

2d0L^vL
2p22&

2p~2p21!

11a2p222a2p

3S S r

L D 11a2p22

2S r

L D a2pD , ~19!

where the physical variablesv r and r were used for clarity.
Figure 3 shows that Eq.~19! fits data well up to 2p58 for
scales larger than 50h.

The scale dependence of even-order structure functions
^v r

2p& is captured by a Fokker–Planck equation~11! with a
linear drift termD1(v r ,r )52v r /(3r ) and anevendiffusion
coefficient D2

even(v r ,r )5d01d2v r
2/r . The analytic expres-

sion of ^v r
2p& is the sum of a finite number of power laws of

r. It is interesting to note that:~i! the dominant term@}r a2p

at order O((d̄0)0)# does not reproduce experimental data
~see Fig. 3!; ~ii ! a simple scaling law reminiscent of
Kolmogorov–Obukhov’s theory @^v r

2p&}r z2p, z2p5(g
1d2)2p2d2(2p)2# corresponds to the hypothetical limit
d0→0, D2

even(v r ,r ).d2v r
2/r .

C. Odd-order moments

Since analytic expressions of all even-order moments are
already known, the inhomogeneous term on the right hand
side of Eq.~13! is completely known when solving recur-
sively for the odd-order momentŝv̄ r̄

2p11&. Using ^v̄ r̄&50,
; r̄ , and expressions~18!, it is easy to show that Eq.~13! is
exactly solvable for all odd ordersn52p11, and that its
solution is also a finite linear combination of power laws of
r̄ with different exponents.

Let us now focus on the third-order moment^v r
3&. Since

a3.1, the dominant term of the solution of~13! is linear,
^v r

3&5^vL
3&(r /L), in agreement with Kolmogorov’s four-

fifths law. However, Fig. 4 shows that this linear behavior
reproduces only the main slope observed in log–log scale:
the discrepancy is of the order of 10% in relative value. The
‘‘inertial range’’ of this flow corresponds to ^v r

3&
.20.6̂ e&r , instead of the theoretical prediction̂v r

3&
520.8̂ e&r . Indeed, the presence of corrections to the four–
fifths law at experimentally accessible Reynolds numbers is
a well-documented fact.10 Including subdominant contribu-
tions doesnot yield a better agreement with data: the inho-
mogeneous term on the right hand side of Eq.~13! is negli-
gible ~d̄1.4d̄3 , r̄<1 and ^v̄ r̄ 51

4 &.3!. The leading
correction to the Gaussian approximation stems from the
third-order Kramers–Moyal coefficientD3.g3v r /r 3, lead-
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ing to the additional termn(n21)(n22)g3^v̄ r̄
n22&/ r̄ on the

right-hand side of Eq.~13!. This term vanishes forn53: a
detailed treatment of the non-Gaussian features of the ran-
dom force is pointless.

Analysis of the fifth-order moment leads to similar ob-
servations~see Fig. 4!: Equation ~13! yields the dominant
behavior of̂ v r

5&, but not the curvature observed in a log–log
plot, even when the non-Gaussian statistics ofj(r ) is taken
into account. We also checked that agreement between the
analytic solution of Eq.~13! and data is only qualitative for
higher odd-order moments. This may be due to the increased
numerical difficulty involved in measuring accurately odd
contributions to the diffusion coefficient.

VI. DISCUSSION

Our analysis shows that the scale dynamics of turbulent
velocity increments can be described, for large enough
scales, by the Langevin equation~2!, with the drift and dif-
fusion coefficients given by Eqs.~6! and ~8! and a random
force j(r ) defined by Eq.~9!.

As already found in Refs. 3 and 4, we confirm that the
random processv r is Markovian. The cascade process is lo-
cal in scale, since stochastic trajectories ofv r are uncorre-
lated over scales larger than the autocorrelation scaler of the
random forcej(r ), of the order of Kolmogrov’s scaleh. The
locality of the cascade, postulated in most statistical models
of intermittency, is demonstrated experimentally and quanti-
fied. Further, we propose a physical explanation for this re-
markable fact. The random forcej(r ) is ‘‘rapid’’ compared
to the ‘‘slow’’ stochastic variablev r because the longitudinal
velocity u(x) is correlated over distances much larger than

FIG. 3. Even-order dimensionless structure functions
^v r

2p&/(urms)
2p vs r /h. ~a! The second-order structure

function ~symbols! is compared to the analytic solution

~19! ~dashed line,d̄050.09,a250.66!, and to a power
law ^v r

2&5^vL
2&(r /L)a2 ~dotted line, a250.66!. The

size of symbols gives the statistical error bar in the
main ~lin–lin! graph. The inset gives the same plot in
log–log scale, forh/2<r<8000h55L. ~b! Fourth-
order structure function (a451.26). ~c! Sixth-order
structure function (a651.83). ~d! Eighth-order struc-
ture function (a852.35).

FIG. 4. Odd-order dimensionless structure functions2^v r
2p11&/(urms)

2p11

vs r /h. ~a! The third-order structure function~symbols! is compared to the
power law^v r

3&5^vL
3&(r /L)a3 ~dashed line,a351!. The size of the symbols

gives the statistical error bar in the main~lin–lin! graph. The inset gives the
ratio 2^v r

3&/(^e&r ) as a function of scale. A constant value equal to 0.8
would correspond to Kolmogorov’s 4/5 law.~b! Fifth-order structure func-
tion (a551.55). The inset gives the same plot in log–log scale forh/2
<r<8000h55L.
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the correlation length of its spatial derivativedu/dx.
In order to check the consistency of our approach, a

Gaussian approximation for the random force is made. The
evolution equation for the pdfP(v r ,r ) becomes a Fokker–
Planck equation.Exactsolutions of the corresponding evolu-
tion equations for the structure functions^v r

n& are obtained.
For scales large compared tor ~i.e., when the random force
is uncorrelated!, we checked that these solutions agree quan-
titatively with experimental data for even-order structure
functions. However, the agreement is only qualitative for
odd-order structure functions. The non-Gaussian character of
the experimentally measured random forcej(r ) can be ig-
nored. It does not give rise to intermittent corrections to Kol-
mogorov’s scaling. This confirms that higher-order terms of
the Kramers–Moyal expansion can be safely neglected.3,4

Velocity increments obeying the Langevin equation~2!
with the drift and diffusion coefficients~6! and~8! are char-
acterized by an asymmetric, intermittent distribution. The ex-
act solutions of~2! are linear combinations of power laws of
the scaler. Their expressions provide a quantitative assess-
ment of how inertial range behavior depends upon large
scale fluctuations, through the integral scaleL and the mo-
ments^vL

n&.
The physical picture which emerges here is the follow-

ing: Kolmogorov’s scaling corresponds to a ‘‘classical path’’
for trajectories ofv r :dv r /dr5v r /(3r ), while finite Rey-
nolds number corrections amount to fluctuations around this
path. A characterization of the Reynolds number dependence
of our measurements may help to substantiate this conjec-
ture, in particular if the diffusion coefficient is indeed a de-
creasing function ofRl . It may also help uncover the physi-
cal meaning of the various coefficients we introduced. One
would also like to know whether this analysis depends on the
nature of the turbulent flow. These important questions are
left for future study.
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