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On the parity of the number of nodal domains for an

eigenfunction of the Laplacian on tori

Corentin Léna∗

April 9, 2015

Abstract

In this note, we discuss a question posed by T. Hoffmann-Ostenhof (see [3]) concerning the parity
of the number of nodal domains for a non-constant eigenfunction of the Laplacian on flat tori. We
present two results. We first show that on the torus (R/2πZ)2, a non-constant eigenfunction has an
even number of nodal domains. We then consider the torus (R/2πZ)× (R/2ρπZ) , with ρ = 1√

3
, and

construct on it an eigenfunction with three nodal domains.
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1 Introduction

We consider the non-negative Laplace-Beltrami operator −∆ on the torus T2
ρ = (R/2πZ) × (R/2ρπZ) ,

seen as a two-dimensional Riemannian manifold, with ρ ∈ (0, 1] . The eigenvalues of −∆ are given by

λm,n = m2 +
n2

ρ2
,

with (m,n) ∈ N2 , and an associated basis of eigenfunctions is given, in the standard coordinates, by

uccm,n(x1, x2) = cos(mx1) cos

(
nx2
ρ

)
;

ucsm,n(x1, x2) = cos(mx1) sin

(
nx2
ρ

)
;

uscm,n(x1, x2) = sin(mx1) cos

(
nx2
ρ

)
;

ussm,n(x1, x2) = sin(mx1) sin

(
nx2
ρ

)
.

To be more precise, the family consisting of all the above functions that are non-zero is an orthogonal
basis of L2(T2

ρ) . Let us note that the eigenspace associated with the eigenvalue λ is spanned by all the

functions in this basis such that the corresponding pair of indices (m,n) satisfies λ = m2 + n2

ρ2 . If ρ2 is a
rational number, a large eigenvalues can have a very high multiplicity, and an associated eigenfunction
can possess a very complex nodal structure (see for instance [2]).

We recall that for any eigenfunction u of −∆ , we call nodal set the closed set N (u) = u−1({0}) and
nodal domain a connected component of T2

ρ \ N (u) . We will prove the following statements.
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Theorem 1. If ρ2 is irrational or ρ = 1, any non-constant eigenfunction u of −∆ has an even number
of nodal domains. More precisely, we can divide the nodal domains of u into pairs of isometric domains,
u being positive on one domain of each pair and negative on the other.

Proposition 2. If ρ = 1√
3
, there exists an eigenfunction of −∆ with three nodal domains.

In [3], T. Hoffmann-Ostenhof asked if there exists a torus (R/2πZ)× (R/2πρZ) , with ρ ∈ (0, 1] , for
which some eigenfunction of the Laplacian has an odd number of nodal domains, at least equal to three.
Proposition 2 answers the question positively, while Theorem 1 shows that such an eigenfunction does
not exist when ρ2 is irrational or ρ = 1 .

Acknowledgements I thank Bernard Helffer for introducing me to this problem and for numerous
discussions and corrections. I thank Thomas Hoffmann-Ostenhof for its advice and encouragements. This
work was partially supported by the ANR (Agence Nationale de la Recherche), project OPTIFORM n◦

ANR-12-BS01-0007-02.

2 Proof of the theorem

Let us outline the method we will use to prove Theorem 1. Let us first note that to any vector v =
(v1, v2) ∈ R2 , we can associate a bijection x 7→ x + v from T2

ρ to itself . It is defined in the following
way: if x = (x1, x2) in the standard coordinates, x + v = (x1 + v1 mod 2π, x2 + v2 mod 2ρπ) . We will
prove the following result.

Proposition 3. If ρ2 is irrational or ρ = 1, and if u is a non-constant eigenfunction of −∆ on T2
ρ ,

there exists vu ∈ R2 such that u(x+ vu) = −u(x) for all x ∈ T2
ρ .

Let us show that Proposition 3 implies Theorem 1. An eigenfunction u being given, we define the
bijection σ : x 7→ x + vu from T2

ρ to itself. It is an isometry that preserves N (u) , and exchanges the
nodal domains on which u is positive with those on which u is negative. This proves Theorem 1.

Let us now turn to the proof of Proposition 3. Let us first consider the case where ρ2 is irrational, and
let λ be a non-zero eigenvalue of −∆. Since ρ2 is irrational there exists a unique pair of integers (m,n),

different from (0, 0) , such that λ = m2 + n2

ρ2 . The eigenspace associated with λ is therefore spanned by

the functions uccm,n , ucsm,n , uscm,n , and ussm,n . Let us assume that m > 0 and let us set v = (π/m, 0). It
is then immediate to check that, for all x in T2

ρ, u(x+ v) = −u(x) when u is any of the basis functions
uccm,n , ucsm,n , uscm,n , and ussm,n . As a consequence we still have u(x + v) = −u(x) when u is any linear
combination of the previous basis functions, that is to say any eigenfunction associated with λ . If m = 0,
we have n > 0 and the same holds true with v = (0, ρπ/n) . This conclude the proof of Proposition 3 in
the irrational case.

Let us now consider the case ρ = 1. As in the previous case, we will prove a statement that is slightly
more precise than Proposition 3: we will exhibit, for any non-zero eigenvalue λ, a vector v ∈ R2 such
that u(x+ v) = −u(x) for every eigenfunction u associated with λ (see Lemma 5). The difference in this
case is that the equality λ = m2 + n2 can be satisfied for several pairs of integers (m,n). To overcome
this difficulty, we will need the following simple arithmetical lemma. This result is stated and proved in
[4], where it is used to solve a closely related problem: proving that a non-constant eigenfunction of the
Laplacian on the square with a Neumann or a periodic boundary condition must take the value 0 on the
boundary. We nevertheless give a proof of the lemma here for the sake of completeness.

Lemma 4. Let (m,n) be a pair of non-negative integers, with (m,n) 6= (0, 0) , and let us write λ =
m2 + n2 . If λ = 22p(2q + 1) with (p, q) ∈ N2 , then m = 2pm0 and n = 2pn0 , where exactly one of the
integers m0 and n0 is odd. If on the other hand λ = 22p+1(2q + 1) with (p, q) ∈ N2 , then n = 2pm0 and
n = 2pn0 , where both integers m0 and n0 are odd.

Proof. From the decomposition into prime factors, we deduce that we can write any positive integer N
as N = 2tN1 , with t a non-negative and N1 an odd integer. Let us first consider the case where m or
n is zero. Without loss of generality, we can assume that n = 0 . We write m = 2rm1 . We are in the
case λ = 22p(2q + 1) with p = r and 2q + 1 = m2

1 , and we obtain the desired result by setting m0 = m1

(odd) and n0 = 0 (even). We now assume that both m and n are positive. We write m = 2rm1 and
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n = 2sn1 with m1 and n1 odd integers. Without loss of generality, we can assume that r ≤ s . We find
λ = 22r(m2

1 + 22(s−r)n21) . If r < s , then m2
1 + 22(s−r)n21 is an odd integer, and we have λ = 22p(2q+ 1) ,

with p = r and 2q+ 1 = m2
1 + 22(s−r)n21 . In that case, we set m0 = m1 (odd) and n0 = 2s−rn1 (even). If

r = s , we find λ = 22r(m2
1 + n21) . We have furthermore m1 = 2m2 + 1 and n1 = 2n2 + 1, and therefore

m2
1 +n21 = 4(m2

2 +n22 +m2 +n2)+2 . We have λ = 22p+1(2q+1) with p = r and q = m2
2 +n22 +m2 +n2 ,

and we set m0 = m1 and n0 = n1 .

Lemma 5. Let λ be a non-zero eigenvalue of −∆ on T2
1 .

i. If λ = 22p(2q + 1) , we set v = (π/2p, π/2p) , and we have u(x+ v) = −u(x) for every eigenfunction
u associated with λ .

ii. If λ = 22p+1(2q + 1) , we set v = (π/2p, 0) , and we have u(x + v) = −u(x) for every eigenfunction
u associated with λ .

Proof. Let us first consider the case where λ = 22p(2q + 1) . Let us choose a pair of indices (m,n) such
that λ = m2 +n2 , and let us consider one of the associated basis functions given in the introduction, say
uccm,n(x, y) = cos(mx) cos(ny) to fix the ideas. According to Lemma 4, we have m = 2pm0 and n = 2pn0 ,
where exactly one of the integers m0 and n0 is odd. We can assume, without loss of generality, that m0

is odd and n0 even. Then

cos
(
m
(
x1 +

π

2p

))
= cos(mx1 +m0π) = − cos(mx1) ,

cos
(
n
(
x2 +

π

2p

))
= cos(mx2 + n0π) = cos(nx2) ,

and therefore
uccm,n (x+ v) = −uccm,n(x) .

We show in the same way that ucsm,n(x + v) = −ucsm,n(x) , uscm,n(x + v) = −uscm,n(x) , and ussm,n(x + v) =
−ussm,n(x) . Since v depends only on λ , we have u(x + v) = −u(x) as soon as u is a basis function
associated with λ , and therefore, by linear combination, as soon as u is an eigenfunction associated with
λ .

The case λ = 22p+1(2q+1) can be treated in the same way, taking v = (π/2p, 0) (v = (0, π/2p) would
also be suitable).

Remark 6. It can also be shown that Lemma 4 still holds if we replace the equation λ = m2 + n2 by
λ = αm2 + βn2 , where α and β are odd integers such that α + β = 2 mod 4 . This implies that the

conclusion of Theorem 1 still holds if ρ =
√

α
β , with α and β as above.

3 Proof of the proposition

In this section, we assume that ρ = 1√
3

. Let us outline the idea we will use to construct the eigenfunc-

tion whose existence is asserted in Proposition 2. It will belong to the eigenspace associated with the
eigenvalue 4 . We start from the eigenfunction

ucc1,1(x1, x2) = cos(x1) cos
(√

3x2

)
,

which has four rectangular nodal domains, shown in Figure 1(a). We perturb this eigenfunction by
adding a small multiple of the eigenfunction

ucc2,0(x1, x2) = cos(2x1) .

For ε > 0 , we get the eigenfunction

vε(x1, x2) = ucc1,1(x1, x2) + εucc2,0(x1, x2) .

Since ucc2,0 is negative in the neighborhood of the critical points in N (ucc1,1) , adding εucc2,0 has the effect
of opening small ”channels” that connect the nodal domains where ucc1,1 is negative. As a result, if ε > 0
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(a) N (ucc
1,1) (b) N (ucc

2,0)

Figure 1: Nodal sets of basis functions

R

Figure 2: Nodal set of vε = ucc1,1 + εucc2,0 with ε = 0.1

is small enough, vε has three nodal domains, one where it is negative and two where it is positive (see
Figure 2). Let us note that these ideas have already been used, to construct examples of eigenfunctions
whose nodal set satisfies some prescribed properties, in [6, 5, 1]. In particular, the desingularization of
critical points in the nodal set, that we have briefly described, is studied in details in [1, 6.7]

To prove rigorously these assertions, let us consider the open domain R in T2
ρ defined, in the standard

coordinates (x1, x2), as

R =]0, π[×
]
0,

π√
3

[
.

We now define (following [1]) the smooth change of coordinates{
ξ1 = − cos(x1),
ξ2 = − cos(x2),

which sends R to ] − 1, 1[×] − 1, 1[ . In these new coordinates the nodal set of the function vε satisfies
the equation

uv + ε(2u2 − 1) = 0 .

A simple computation shows that this is the equation of an hyperbola. Furthermore, when 0 < ε < 1,
this hyperbola has one branch in the lower left quadrant ] − 1, 0[×] − 1, 0[ and one in the upper right
quadrant ]0, 1[×]0, 1[ .

On the other hand, we have the following symmetries of vε:

vε(2π − x1, x2) = vε(x1, x2)

and
vε(x1, 2π − x2) = vε(x1, x2).

This allows us to recover the nodal set on the whole of T2
ρ . It consists in two simple closed curves, each

containing one branch of the previously considered hyperbola. Each of these closed curve enclose a nodal
domain that is homeomorphic to a disk. Let us now consider the complement of the closure of those two
region. It is the third nodal domain.
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Remark 7. The construction used to prove Proposition 2 can obviously be generalized. We can for
instance consider the eigenfunction

vε(x1, x2) = uccm,n(x1, x2) + εuc,ckm,0(x1, x2) ,

assuming that

m2 +
n2

ρ2
= k2m2 .

We have in that case ρ = n
m
√
k2−1 . Following the same line of reasoning as in this section, we see that

for ε > 0 small enough, vε has 2mn+ 1 nodal domains.

In view of Remarks 6 and 7, it would be desirable to obtain a characterization of the rational numbers
q , such that there exists an eigenfunction of −∆ on the torus T2√

q with an odd number of nodal domains.

Unfortunately, we have not been able to reach this goal so far.
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