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Introduction

The L 1 -Sobolev inequality (also known as Gagliardo-Nirenberg inequality) states that for compactly supported functions u on the Euclidean nspace, [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF] u

L n/(n-1) (R n ) ≤ c ∇u L 1 (R n ) .
The generalization to differential forms is recent (due to Bourgain & Brezis and Lanzani & Stein), and states that the L n/(n-1) -norm of a compactly supported differential h-form is controlled by the L 1 -norm of its exterior differential du and its exterior codifferential δu (in special cases the L 1 -norm must be replaced by the H 1 -Hardy norm). We shall extend this result to Heisenberg groups in the framework of an appropriate complex of differential forms.

1.1. The Euclidean theory. In a series of papers ( [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF], [START_REF] Bourgain | New estimates for the Laplacian, the div-curl, and related Hodge systems[END_REF], [START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF]), Bourgain and Brezis establish new estimates for the Laplacian, the div-curl system, and more general Hodge systems in R n and they show in particular that if → F is a compactly supported smooth vector field in R n , with n ≥ 3, and if curl → F = → f and div → F = 0, then there exists a constant C > 0 so that (2)

→ F L n/(n-1) (R n ) ≤ → f L 1 (R n ) .
This result does not follow straightforwardly from Calderòn-Zygmund theory and Sobolev inequality. Indeed, suppose for sake of simplicity n = 3 and let → F be a compactly supported smooth vector field, and consider the system [START_REF] Baldi | A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups[END_REF]. Then, by Calderón-Zygmund theory we can say that

(3)    curl → F = → f div → F = 0 .

It is well known that

→ F = (-∆) -1 curl → f is a solution of
∇ → F L p (R 3 ) ≤ C p → f L p (R 3 ) , for 1 < p < ∞.
Then, by Sobolev inequality, if 1 < p < 3 we have:

→ F L p * (R 3 ) ≤ → f L p (R 3 ) ,
where 1 p * = 1 p -1 3 . When we turn to the case p = 1 the first inequality fails. The second remains true. This is exactly the result proved by Bourgain and Brezis.

In [START_REF] Lanzani | A note on div curl inequalities[END_REF] Lanzani & Stein proved that (1) is the first link of a chain of analogous inequalities for compactly supported smooth differential h-forms in R n , n ≥ 3,

u L n/(n-1) (R n ) ≤ C du L 1 (R n ) + δu L 1 (R n ) if h = 1, n -1; (4) u L n/(n-1) (R n ) ≤ C du L 1 (R n ) + δu H 1 (R n ) if h = 1; (5) u L n/(n-1) (R n ) ≤ C du H 1 (R n ) + δu L 1 (R n ) if h = n -1, ( 6 
)
where d is the exterior differential, and δ (the exterior codifferential) is its formal L 2 -adjoint. Here H 1 (R n ) is the real Hardy space (see e.g. [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]). In other words, the main result of [START_REF] Lanzani | A note on div curl inequalities[END_REF] provides a priori estimates for a div-curl systems with data in L 1 (R n ). We stress that inequalities [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF] and ( 6) fail if we replace the Hardy norm with the L 1 -norm. Indeed (for instance), the inequality [START_REF] Baldi | Gagliardo-Nirenberg inequalities for horizontal vector fields in the Engel group and in the 7-dimensional quaternionic Heisenberg group[END_REF] u

L n/(n-1) (R n ) ≤ C du L 1 (R n ) + δu L 1 (R n )
is false for 1-forms. The counterexample is given by E.M. Stein in [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF], p. 191. Indeed, take f k ∈ D(R n ) such that f L 1 (H n ) = 1 for all k ∈ N and such that (f k ) k∈N tends to the Dirac δ in the sense of distribution. Set now v k := ∆ -1 f k . Then estimate [START_REF] Baldi | Gagliardo-Nirenberg inequalities for horizontal vector fields in the Engel group and in the 7-dimensional quaternionic Heisenberg group[END_REF] would yield that {|∇v k | ; k ∈ N } is bounded in L n/(n-1) (R n ), and then, taking the limit as k → ∞ that |x| -n ∈ L 1 (R n ).

1.2. The Heisenberg setting. Recently, in [START_REF] Chanillo | Subelliptic Bourgain-Brezis estimates on groups[END_REF], Chanillo & Van Schaftingen extended Bourgain-Brezis inequality to a class of vector fields in Carnot groups. Some of the results of [START_REF] Chanillo | Subelliptic Bourgain-Brezis estimates on groups[END_REF] are presented in Theorems 4.2 and 4.3 below in the setting of Heisenberg groups. These are the main tool that allows us to give a Heisenberg version of Lanzani & Stein's result. We describe now the operators that will enter our theorem.

We denote by H n the n-dimensional Heisenberg group. It is well known that the Lie algebra h of the left-invariant vector fields admits the stratification h = h 1 ⊕ h 2 . We shall refer to the elements of h 1 as to the horizontal derivatives on H n .

Heisenberg groups admit a one-parameter group of automorphisms called dilations. Whereas, in Euclidean space, all exterior forms of degree h have homogeneity h under Euclidean dilations, on the contrary, because of the stratification of h, h-forms on Heisenberg groups split into two weight spaces, with weights h and h + 1. This leads to a modification (E * 0 , d c ) of the de Rham complex introduced by Rumin. Bundles of covectors are replaced by subbundles E h 0 and the exterior differentials by differential operators d c on spaces Γ(E h 0 ) of smooth sections of these subbundles. It turns out that this complex, which is both invariant under left-translations and dilations, is easier to work with that ordinary differential forms.

The core of Rumin's theory relies on the following result.

Theorem 1.1. If 0 ≤ h ≤ 2n + 1 there exists a linear map

d c : Γ(E h 0 ) → Γ(E h+1 0 ) such that i) d 2 c = 0 (i.e. E 0 := (E * 0 , d c ) is a complex); ii) the complex E 0 is exact; iii) d c : Γ(E h 0 ) → Γ(E h+1 0 
) is an homogeneous differential operator in the horizontal derivatives of order 1 if h = n, whereas

d c : Γ(E n 0 ) → Γ(E n+1 0
) is an homogeneous differential operator in the horizontal derivatives of order 2;

iv) if 0 ≤ h ≤ n, then * E h 0 = E 2n+1-h 0 ; v) the operator δ c := (-1) h(2n+1) * d c * is the formal L 2 -adjoint of d c . Definition 1.2. If 0 ≤ h ≤ 2n + 1, 1 ≤ p ≤ ∞, we denote by L p (H n , E h 0 )
the space of all sections of E h 0 such that their components with respect a given left-invariant basis belong to L p (H n ), endowed with its natural norm. Clearly, this definition is independent of the choice of the basis itself. If h = 0, we write

L p (H n ) for L p (H n , E 0 0 ). The notations D(H n , E h 0 ), S(H n , E h 0 ), E(H n , E h 0 )
, and H 1 (H n , E h 0 ) have an analogous meaning (here H 1 is the Hardy space in H n defined in [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF], p.75). Now can state our main result that generalizes the results of [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF] to all Heisenberg groups. Theorem 1.3. Denote by (E * 0 , d c ) the Rumin's complex in H n , n > 2 (for the cases n = 1, 2 we refer to [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF]). Then there exists C > 0 such that for any

h-form u ∈ D(H n , E h 0 ), 0 ≤ h ≤ 2n + 1, such that d c u = f δ c u = g
we have:

i) if h = 0, 2n + 1, then u L Q/(Q-1) (H n ) ≤ C f L 1 (H n ,E 1 0 ) ; u L Q/(Q-1) (H n ,E 2n+1 0 ) ≤ C g L 1 (H n ,E 2n 0 ) ; ii) if h = 1, 2n, then u L Q/(Q-1) (H n ,E 1 0 ) ≤ C f L 1 (H n ,E 2 0 ) + g H 1 (H n ) ; u L Q/(Q-1) (H n ,E 2n 0 ) ≤ C f H 1 (H n ,E 2n+1 0 ) + g L 1 (H n ,E 2n-1 0 ) ; iii) if 1 < h < 2n and h = n, n + 1, then u L Q/(Q-1) (H n ,E h 0 ) ≤ C f L 1 (H n ,E h+1 0 ) + g L 1 (H n ,E h-1 0 ) ; iv) if h = n, n + 1, then u L Q/(Q-2) (H n ,E n 0 ) ≤ C f L 1 (H n ,E n+1 0 ) + d c g L 1 (H n ,E n 0 ) ; u L Q/(Q-2) (H n ,E n+1 0 ) ≤ C δ c f L 1 (H n ,E n+1 0 ) + g L 1 (H n ,E n 0 ) ; u L Q/(Q-1) (H n ,E n 0 ) ≤ C g L 1 (H n ,E n-1 0 ) if f = 0; u L Q/(Q-1) (H n ,E n+1 0 ) ≤ C f L 1 (H n ,E n+2 0 ) if g = 0.
The proof of Theorem 1.3 follows the lines of the proofs in [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF] of the corresponding results for H 1 and H 2 . The new crucial contribution of the present paper in contained in Theorem 5.1 that, roughly speaking, states that the components with respect to a given basis of closed forms in E h 0 are linear combinations of the components of a horizontal vector field with vanishing "generalized horizontal divergence". This is obtained by proving that the symbol of the intrinsic differential d c is left-invariant and invertible (see Corollary 5.5 and Proposition 5.6).

In Section 2 we fix the notations we shall use throughout this paper. In Section 3 we gather some more or less known results about tensor analysis in Heisenberg groups. Section 4 recalls results borrowed to Chanillo and Van Schaftingen. Section 5 contains Theorem 5.1 together with several auxiliary results. The proof of Theorem 1.3 is completed in Section 6. Section 7 contains a variant of Theorem 1.3 where no differential operator occurs on the right hand side.

Notations and definitions

As above, we denote by H n the n-dimensional Heisenberg group identified with R 2n+1 through exponential coordinates. A point p ∈ H n is denoted by p = (x, y, t), with both x, y ∈ R n and t ∈ R. If p and p ′ ∈ H n , the group operation is defined as

p • p ′ = (x + x ′ , y + y ′ , t + t ′ + 1 2 n j=1 (x j y ′ j -y j x ′ j )).
In particular for any p ∈ H n there is a familiy of (left) translations τ p : H n → H n defined by τ p q := p • q, q ∈ H n .

For a general review on Heisenberg groups and their properties, we refer to [START_REF] Elias | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF], [START_REF] Gromov | Carnot-Carathéodory spaces seen from within[END_REF], [START_REF] Bonfiglioli | Stratified Lie groups and potential theory for their sub-Laplacians[END_REF], and to [START_REF] Th | Analysis and geometry on groups[END_REF]. We limit ourselves to fix some notations, following [START_REF] Franchi | Regular submanifolds, graphs and area formula in Heisenberg groups[END_REF].

We denote by h the Lie algebra of the left invariant vector fields of H n . As customary, h is identified with the tangent space T e H n at the origin. The standard basis of h is given, for i = 1, . . . , n, by

X i := ∂ x i - 1 2 y i ∂ t , Y i := ∂ y i + 1 2 x i ∂ t , T := ∂ t .
The only non-trivial commutation relations are [X j , Y j ] = T , for j = 1, . . . , n.

The horizontal subspace h 1 is the subspace of h spanned by X 1 , . 

h = h 1 ⊕ h 2 .
The stratification of the Lie algebra h induces a family of non-isotropic dilations δ λ , λ > 0 in H n . The homogeneous dimension of H n with respect to δ λ , λ > 0 is Q = 2n + 2. The vector space h can be endowed with an inner product, indicated by •, • , making X 1 , . . . , X n , Y 1 , . . . , Y n and T orthonormal.

Throughout this paper, to avoid cumbersome notations, we write also (8)

W i := X i , W i+n := Y i , W 2n+1 := T, for i = 1, • • • , n.
The dual space of h is denoted by 1 h. The basis of 1 h, dual to the basis {X 1 , . . . , Y n , T }, is the family of covectors {dx 1 , . . . , dx n , dy 1 , . . . , dy n , θ} where

θ := dt - 1 2 n j=1 (x j dy j -y j dx j ) is called the contact form in H n .
We indicate as •, • also the inner product in 1 h that makes (dx 1 , . . . , dy n , θ) an orthonormal basis. The same notation will be used to denote the scalar product in 1 h that makes (X 1 , . . . , X n , T ) an orthonormal basis.

Coherently with the previous notation (8), we set

ω i := dx i , ω i+n := dy i , ω 2n+1 := θ, for i = 1, • • • , n.
We put 0 h := 0 h = R and, for 1

≤ k ≤ 2n + 1, k h := span{W i 1 ∧ • • • ∧ W i k : 1 ≤ i 1 < • • • < i k ≤ 2n + 1} =: span Ψ k , k h := span{ω i 1 ∧ • • • ∧ ω i k : 1 ≤ i 1 < • • • < i k ≤ 2n + 1} =: span Ψ k .
The inner product •, • extends canonically to k h and to k h making both bases Ψ k and Ψ k orthonormal.

If 1 ≤ k ≤ 2n + 1, we denote by * the Hodge isomorphism * :

k h ←→ 2n+1-k
h associated with the scalar product •, • and the volume form

dV := ω 1 ∧ • • • ∧ ω 2n ∧ θ.
The same construction can be performed starting from the vector subspace h 1 ⊂ h, obtaining the horizontal k-vectors and horizontal k-covectors

k h 1 := span{W i 1 ∧ • • • ∧ W i k : 1 ≤ i 1 < • • • < i k ≤ 2n} k h 1 := span{ω i 1 ∧ • • • ∧ ω i k : 1 ≤ i 1 < • • • < i k ≤ 2n}.
It is well known that the Lie algebra h can be identified with the tangent space at the origin e = 0 of H n , and hence the horizontal layer h 1 can be identified with a subspace of T H n e that we can still denote by 1 h 1 . In addition, the symplectic 2-form

-dθ = n i=1 dx i ∧ dy i
induces on h 1 a symplectic structure. We point out that this symplectic structure is compatible with our fixed scalar product •, • and with the canonical almost complex structure on h 1 ≡ C n .

Horizontal k-vectors can be identified with skew-symmetric k-tensor in ⊗ k h 1 .

To fix our notations, we remind the following definition.

Definition 2.1. If V, W are finite dimensional linear vector spaces and S : V → W is a linear isomorphism, we define a map

⊗ r S : ⊗ r V → ⊗ r W
as the linear map defined by

(⊗ r S)(v 1 ⊗ • • • ⊗ v r ) = S(v 1 ) ⊗ • • • ⊗ S(v r ),
and a map

⊗ s S : ⊗ s W * → ⊗ s V *
as the linear map defined by

(⊗ s S)(α)|v 1 ⊗ • • • ⊗ v s = α|(⊗ s S)(v 1 ⊗ • • • ⊗ v s ) for any α ∈ ⊗ s W * and any s-tensor v 1 ⊗ • • • ⊗ v s ∈ ⊗ s V . Finally, we define (⊗ s r S) : (⊗ r V ) ⊗ (⊗ s V * ) → (⊗ r W ) ⊗ (⊗ s W * ) as follows: (⊗ s r S)(v ⊗ w) := (⊗ r S)(v) ⊗ (⊗ s S -1
)(w). Throughout this paper, we shall deal with (r, s)-tensors in ⊗ r h ⊗ ⊗ s h * , with r, s ∈ Z, r, s ≥ 0, that, in turn define a left-invariant fiber bundle over H n , that we still denote by ⊗ r h ⊗ ⊗ s h * as follows: first we identify

⊗ r h ⊗ ⊗ s h * with a subspace of ⊗ r T e H n ⊗ ⊗ s T * e H n that we denote by ⊗ r h e ⊗ ⊗ s h * e .
Then the fiber of

⊗ r h p ⊗ ⊗ s h * p of ⊗ r h ⊗ ⊗ s h * over p ∈ H n is ⊗ r h p ⊗ ⊗ s h * p := (⊗ h dτ p (e)) ⊗ r h e ⊗ (⊗ h dτ p -1 (p)) ⊗ s h * e .
The elements of the space of smooth sections of this bundle, i.e.

Γ H n , ⊗ r h ⊗ ⊗ s h * ,
are called (r, s)-tensors fields.

A special instance will be the horizontal tensors belonging to

⊗ r h 1 ⊗ ⊗ s h * 1 .
The horizontal (r, 0)-tensors fields will be called also horizontal r-vector fields. The skew-symmetric horizontal (0, s)-tensors fields are identified with the horizontal differential forms. Moreover, to avoid cumbersome notations, from now on, when dealing with a vector bundle N over H n , if there is no way to misunderstand we shall write also

Γ(N ) for Γ(H n , N ). Finally, a subbundle N of ⊗ r h ⊗ ⊗ s h * is said left invariant if (9) N p = (⊗ s r dτ p (e))N e .
It is customary (see e.g. [START_REF] Weil | Introduction à l'étude des variétés kählériennes[END_REF], Chapter I) to denote by

L : h h 1 → h+2 h 1
the Lefschetz operator defined by Lα := dθ ∧ α, and by Λ its dual operator with respect to •, • . If 2 ≤ h ≤ 2n, we denote by P h ⊂ h h 1 the space of primitive h-covectors defined by ( 10)

P 1 := 1 h 1 and P h := ker Λ ∩ h h 1 , 2 ≤ h ≤ 2n.
Following [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], [START_REF] Michel Rumin | Sub-Riemannian limit of the differential form spectrum of contact manifolds[END_REF], for h = 0, 1, . . . , 2n + 1 we define a linear subspace E h 0 , of h h as follows:

Definition 2.2. We set

• if 1 ≤ h ≤ n then E h 0 = P h ; • if n < h ≤ 2n + 1 then E h 0 = {α = β ∧ θ, β ∈ h-1 h 1 , Lβ = 0}.
Remark 2.3. Definition 2.2 is not the original definition due to M. Rumin, but is indeed a characterization of Rumin's classes that is proved in [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF] (see also [START_REF] Pansu | Differential forms and connections adapted to a contact structure, after M. Rumin[END_REF], [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF] and [START_REF] Baldi | A recursive basis for primitive forms in symplectic spaces and applications to Heisenberg groups[END_REF]).

By [START_REF] Bourbaki | Éléments de mathématique[END_REF], the spaces E * 0 define a family of left-invariant subbundles (still denoted by E h 0 , h = 0, . . . , 2n + 1). It turns out that we can identify E h 0 and (E h 0 ) e .

Basic facts on tensor analysis in Heisenberg groups

The following decomposition theorem holds.

Proposition 3.1. The space of 2-contravariant horizontal tensors ⊗ 2 h 1 can be written as a direct (orthogonal) sum

⊗ 2 h 1 = Sym (⊗ 2 h 1 ) ⊕ 2 h 1
of the space Sym (⊗ 2 h 1 ) of the symmetric 2-tensors and of the space 2 h 1 of the skew-symmetric 2-tensors.

An orthonormal basis of Sym (⊗ 2 h 1 ) with respect to the canonical scalar product in

⊗ 2 h 1 is 1 2 (W i ⊗ W j + W j ⊗ W i ) ; i ≤ j ,
whereas the canonical orthonormal basis Ψ 2 of 2 h 1 can be identified with

1 2 (W i ⊗ W j -W j ⊗ W i ) ; i < j . Definition 3.2 (See [2], Definition 1.7.16
). If φ : H n → H n is a diffeomorphism, then the push-forward of a tensor field t := v ⊗ α, with v ∈ ⊗ r h and α ∈ ⊗ s h * , then its push-forward φ * t at a point p ∈ H n is defined as

φ * t(p) := ⊗ s r dφ(p) ((v ⊗ α)(p))
, where p := φ -1 (p). Moreover, the pull-back φ * t of t is defined by

φ * t = (φ -1 ) * . A tensor field v ⊗ α ∈ Γ H n , ⊗ r h ⊗ ⊗ s h * is said left invariant if (τ q ) * v ⊗ α = v ⊗ α for all q ∈ H n . Lemma 3.3. Let v ⊗ ξ ∈ ⊗ r h e ⊗ ⊗ s h * e be given. If p ∈ H n , we set T p (v ⊗ ξ) := (τ p ) * (v ⊗ ξ) ∈ ⊗ r h p ⊗ ⊗ s h * p . Then the map p → T p (v ⊗ ξ) is left-invariant. Thus, if V ⊗ W is a linear subspace of ⊗ r h e ⊗ ⊗ s h * e , then {T p (v ⊗ ξ), v ⊗ ξ ∈ V ⊗ W, p ∈ H n } defines a left-invariant subbundle of ⊗ r h ⊗ ⊗ s h * . In addition, if {v i ⊗ ξ j , i = 1, . . . N, j = 1, . . . M } is a basis of V ⊗ W , then {T p (v ⊗ ξ), i = 1, . . . N, j = 1, . . . M } is a left-invariant basis of the fiber over p ∈ H n .
We remind the following well-known identity (see e.g. [START_REF] Abraham | Manifolds, tensor analysis, and applications[END_REF], Proposition 6.16): Remark 3.4. If W ∈ h 1 is identified with a first order differential operator and φ :

H n → H n is a diffeomorphism, then W (u • φ)(x) = [(φ * W )u] (φ(x)). Moreover, if W, Z ∈ h 1 , then φ * (W ⊗ Z) = φ * W ⊗ φ * Z. Set N h := dim E h 0 . Given a family of left-invariant bases {ξ h k , k = 1, . . . N h } of E h 0 , 1 ≤ h ≤ n as in Lemma 3.
3, the differential d c can be written "in coordinates" as follows.

Proposition 3.5. If 0 ≤ h ≤ 2n and α = k α k ξ h k ∈ Γ(E h 0 ), then d c α = I,k P I,k α k ξ h+1 I ,
where i) if h = n, then the P I,k 's are linear homogeneous polynomials in W 1 , . . . , W 2n ∈ h 1 (that are identified with homogeneous with first order left invariant horizontal differential operators), i.e.

P I,k = i F I,k,i W i ,
where the F I,k,i 's are real constants; ii) if h = n, then then the P I,k 's are linear homogeneous polynomials in W i ⊗ W j ∈ ⊗ 2 h 1 , i, j = 1, . . . , 2n (that are identified with homogeneous second order left invariant differential horizontal operators), i.e.

P I,k = i,j F I,k,i,j W i ⊗ W j ,
where the F I,k,i,j 's are real constants.

Definition 3.6. If 0 ≤ h < n we denote σ(d c ) the symbol of the intrinsic differential d c that is a smooth field of homomorphisms If h = n, d c is now a second order differential operator in the horizontal vector fields and then its symbol σ(d c ) can be identified with a section

σ(d c ) ∈ Γ(Hom (E h 0 , h 1 ⊗ E h+1 0 )) defined as follows: if p ∈ H n , ᾱ = k ᾱk ξ h k (p) ∈ (E h 0 ) p , then we can assume there exists a smooth differential form α = k α k ξ h k ∈ Γ(E h 0 ) such that ᾱ = α(p). Thus, if u ∈ E(H n ) satisfies u(p) = 0,
σ(d c ) ∈ Γ(Hom (E n 0 , ⊗ 2 h 1 ⊗ E n+1 0 
))

as follows: if p ∈ H n , ᾱ = k ᾱk ξ n k (p) ∈ (E n 0 )
p , then we we can assume there exists a smooth differential form On the other hand, the canonical projection

α = k α k ξ n k ∈ E n 0 such that ᾱ = α(p). Thus, if u ∈ E(H n ) satisfies u(p) = 0 and W i u(p) = 0, i = 1, . . . ,
p : ⊗ 2 h 1 ⊗ E n+1 0 → ⊗ 2 h 1 2 h 1 ⊗ E n+1 0 given by p(W i ⊗ W j ⊗ ξ) := [W i ⊗ W j ] ⊗ ξ defines a new symbol (the symmetric part of the symbol) Σ(d c ) := p • σ(d c ) ∈ Hom (E n 0 , ⊗ 2 h 1 2 h 1 ⊗ E n+1 0 ).
Clearly, since we are dealing with 2-tensors,

[W i ⊗ W j ] can be represented by 1 2 (W i ⊗ W j + W j ⊗ W i ) . Thus Σ(d c )ᾱ = 1 2 I i,j,k ᾱk (F I,k,i,j + F I,k,j,i ) (W i ⊗ W j + W j ⊗ W i ) ⊗ ξ n+1 I =: I i,j,k ᾱk FI,k,i,j (W i ⊗ W j + W j ⊗ W i ) ⊗ ξ n+1 I . (11) 
Remark 3.7. If 0 ≤ h < n, mimicking the usual definition of the principal symbol σ(P ) of a differential operator P (see e.g. [START_REF] Narasimhan | Analysis on real and complex manifolds[END_REF], Definition 3.3.13 or [START_REF] Palais | Seminar on the Atiyah-Singer index theorem[END_REF], IV.3), one can cook up a notion of horizontal principal symbol that takes into account Heisenberg homogeneity. For d c , this map would belong to Γ(Hom (

E h 0 ⊗ h * 1 , E h+1 0 
)). However, our notation is not misleading, since, by [START_REF] Dieudonné | Éléments d'analyse. Tome III: Chapitres XVI et XVII. Cahiers Scientifiques[END_REF] (16.8.2.3) and (16.18.3.4),

Hom (E h 0 ⊗ h * 1 , E h+1 0 ) ∼ = Hom (E n 0 , Hom (h * 1 , E h+1 0 ) ) ∼ = Hom (E h 0 , h 1 ⊗ E h+1 0 
).

An analogous comment applies when h = n. In this case, only the projection Σ(d c ) of the symbol onto symmetric tensors will be used.

Since h 1 , d c and E * 0 are invariant under left translations, then the symbol σ(d c ) is uniquely determined by its value at the point p = e. More precisely, we have: Proposition 3.8. If 1 ≤ h < n and p ∈ H n , then the following diagram is commutative:

(12) (E h 0 ) p σ(dc)(p) -----→ (h) p ⊗ (E h+1 0 ) p ⊗ h τp(e)   Tp   (E h 0 ) e σ(dc)(e) -----→ (h) e ⊗ (E h+1 

0

) e An analogous comment applies when h = n.

Analytic facts

The proof of Theorem 1.3 consists in applying the following two results due to Chanillo & Van Schaftingen, after an algebraic reduction that will be performed in the next section. Definition 4.1. If f : H n → R, we denote by ∇ H f the horizontal vector field

∇ H f := 2n i=1 (W i f )W i , whose coordinates are (W 1 f, ..., W 2n f ). If Φ is a horizontal vector field, then ∇ H Φ is defined componentwise. Theorem 4.2 ([14], Theorem 1). Let Φ ∈ D(H n , h 1 ) be a smooth compactly supported horizontal vector field. Suppose G ∈ L 1 loc (H n , h 1 ) is H-divergence free, i.e. if G = i G i W i , then i W i G i = 0 in D ′ (H n ). Then G, Φ L 2 (H n ,h 1 ) ≤ C G L 1 (H n ,h 1 ) ∇ H Φ L Q (H n ,h 1 ) .
We notice that a stronger version of this result can be found in [START_REF] Yung | A subelliptic Bourgain-Brezis inequality[END_REF], Theorem 1.9.

As in the Euclidean case, estimates similar to Theorem 4.2 still hold when the condition on the divergence is replaced by a condition on higher-order derivatives [START_REF] Van Schaftingen | Estimates for L 1 vector fields under higher-order differential conditions[END_REF]. Similar ideas have been applied in nilpotent homogeneous groups by S. Chanillo and J. Van Schaftingen as follows.

Let k ≥ 1 be fixed, and let G ∈ L 1 (H n , ⊗ k h 1 ) belong to the space of horizontal k-tensors. We can write

G = i 1 ,...,i k G i 1 ,...,i k W i 1 ⊗ • • • ⊗ W i k .
We remind that G can be identified with the differential operator

u → Gu := i 1 ,...,i k G i 1 ,...,i k W i 1 • • • W i k u.
Denoting by D(H n , Sym(⊗ k h 1 )) the subspace of compactly supported smooth symmetric horizontal k-tensors, we have:

Theorem 4.3 ([14], Theorem 5). Let k ≥ 1 and G ∈ L 1 (H n , ⊗ k h 1 ), Φ ∈ D(H n , Sym(⊗ k h 1 )). Suppose that i 1 ,...,i k W i k • • • W i 1 G i 1 ,...,i k = 0 in D ′ (H n ). Then H n Φ, G dp ≤ C G L 1 (H n ,⊗ k h 1 ) ∇ H Φ L Q (H n ,⊗ k h 1 ) .

Main algebraic step

As in [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF], our proof of Theorem 1.3 relies on the fact (precisely stated in Theorem 5.1 below) that the components with respect to a given basis of closed forms in E h 0 can be viewed as the components of a horizontal vector field with vanishing horizontal divergence if h = n, n + 1 or vanishing "generalized horizontal divergence" if h = n, n + 1. More precisely, we have:

Theorem 5.1. Let α = J α J ξ h J ∈ Γ(E h 0 ), 1 ≤ h ≤ 2n, be such that d c α = 0.

Then

• if h = n then each component α J of α, J = 1, . . . , dim E h 0 , can be written as

α J = dim E h+1 0 I=1 2n i=1 b J i,I G I,i ,
where the b J i,I 's are real constants and for any I = 1, . . . , dim E h+1 0 the G I,i 's are the components of a horizontal vector field

G I = i G I,i W i with i W i G I,i = 0, I = 1, . . . , dim E h+1 0 .
Moreover there exist a geometric constant C > 0 such that for I = 1, . . . , dim E h+1

0 and 1 ≤ p ≤ ∞ (13) G I L p (H n , 1 h 1 ) ≤ C α L p (H n ,E h 0 ) . • If h = n, then each component α J of α, J = 1, . . . , dim E n
0 , can be written as

α J = dim E n+1 0 I=1 i,j b J i,j,I (G Sym I ) i,j .
Here the b J i,j,I 's are real constants and for any I = 1, . . . , dim E n+1 0 the (G Sym I ) i,j 's are the components of the symmetric part (see Proposition 3.1) of the 2-tensor

G I = i G I,i,j W i ⊗ W j that satisfies i,j W i W j G I,i,j = 0, I = 1, . . . , dim E n+1 0 .
Moreover there exist a geometric constant C > 0 such that for I = 1, . . . , dim E n+1

0 and 1 ≤ p ≤ ∞ (14) G I L p (H n ,⊗ 2 h 1 ) ≤ C α L p (H n ,E n 0 ) .
The proof of this theorem requires several preliminary steps. First of all, we want to prove that the exterior differential d c is invariant (i.e. "natural") under the action of a class of intrinsic transformation of H n . Theorem 5.2. If A belongs to the symplectic group Sp 2n (R), we associate with A the real (2n + 1) × (2n + 1) matrix [START_REF] Michel Rumin | An introduction to spectral and differential geometry in Carnot-Carathéodory spaces[END_REF] or [START_REF] Franchi | Wave and Maxwell's equations in Carnot groups[END_REF].

(15) f A : h → h, f A = A 2n×2n 0 2n×1 0 1×2n 1 . Then i) f A (h 1 ) = h 1 ; ii) f A induces a homogeneous group isomorphism exp •f A • exp -1 still denoted by f A such that f A : H n → H n ; iii) f * A : Γ(E * 0 ) → Γ(E * 0 ); iv) for any h-form α ∈ Γ(E h 0 ) d c (f * A α) = f * A (d c α); Proof. See
The next step consists in proving that the symbols σ(d c ) and Σ(d c ) are injective.

First of all, we remind that, by [START_REF] Weil | Introduction à l'étude des variétés kählériennes[END_REF], Chapter I, Theorem 3 and Corollary at p. 28), the following proposition holds: Proposition 5.3. Let P h be space of primitive forms defined in [START_REF] Bourgain | On the equation div Y = f and application to control of phases[END_REF]. Then i) if 1 ≤ h ≤ 2n, then the following orthogonal decomposition holds:

h h 1 = i≥(n-h) + L i (P h-2i ); ii) P h = {0} if h > n; iii) the map L n-h : h h 1 → 2n-h h 1 is a linear isomorphism; iv) if h ≤ n, then P h = ker L n-h+1 ; v) the map L n-h : P h → 2n-h h 1 ∩ ker L is a linear isomorphism; vi) a symplectic map A ∈ Sp 2n (R) commutes with L, i.e. if 1 ≤ h ≤ 2n -2, then [⊗ h A, L] = 0.
The injectivity of the symbols will follow from the following result.

Proposition 5.4. The symplectic group Sp 2n (R) acts irreducibly on P h for h = 1, . . . , n and on ker L for h = n + 1, . . . , 2n -1.

Proof. If 1 ≤ h ≤ n, then the statement is proved in [START_REF] Bourbaki | Éléments de mathématique[END_REF], p. 203. Suppose now h > n. If A ∈ Sp 2n (R) and α ∈ ker L, then by Proposition 5.3, vi), ⊗ h AL ∈ ker L, so that A acts on ker A. On the other hand, if V ⊂ ker L ∩ h h 1 is invariant under the action of Sp 2n (R), then, by Proposition 5.3, v) and vi), (L h-r ) -1 V is also invariant under the action of Sp 2n (R), and the assertion follows by the first part of the proof.

Using Definition 2.2, we have:

Corollary 5.5. If A ∈ Sp 2n (R) and f A is defined as in [START_REF] Dieudonné | Éléments d'analyse. Tome III: Chapitres XVI et XVII. Cahiers Scientifiques[END_REF], then f A acts irreducibly on E h 0 for h = 1, . . . , 2n. Since d c is equivariant under all smooth contact transformations, it is in particular Sp 2n (R)-equivariant. It follows that the kernels ker σ(d c ) and ker Σ(d c ) are invariant subspaces for the action of Sp 2n (R), so that the injectivity will follow. In fact, we have:

Proposition 5.6. Keeping in mind Definition 3.6, if 1 ≤ h ≤ 2n , h = n, then ker σ(d c )(e) is invariant under the action of Sp 2n (R), i.e. if A ∈ Sp 2n (R), then we have: if ᾱ ∈ E h 0 and σ(d c )(e)(ᾱ) = 0 then σ(d c )(e)((⊗ h A) ᾱ) = 0. If h = n, then ker Σ(d c )(e) is invariant under the action of Sp 2n (R), i.e., A ∈ Sp 2n R), then we have: if ᾱ ∈ E h 0 and Σ(d c )(e)(ᾱ) = 0 then Σ(d c )(e)((⊗ h A) ᾱ) = 0. Proof. Suppose first h < n and let α ∈ Γ(E h
0 ) be a differential form such that α(e) = ᾱ. Let f A be the matrix associated with A as in [START_REF] Dieudonné | Éléments d'analyse. Tome III: Chapitres XVI et XVII. Cahiers Scientifiques[END_REF]. We notice first that ( 16)

f * A (α)(e) = (⊗ h A)ᾱ, since f A (e) = e. Let now u be a smooth function such that u(e) = 0. We set v := u • f -1
A . Keeping again in mind that ( 16), we have also that v(e) = 0. By Theorem 5.2 and Remark 3.4, we have:

d c (uf * A α)(e) = d c (f * A (vα))(e) = f * A (d c (vα))(e) = (⊗ h+1 f A )(d c (vα)(e)) = (⊗ h+1 A)(d c (vα)(e)) = I,k (A -1 P I,k u)(e)ᾱ k (⊗ h+1 A)(ξ h+1 I (e)). (17) 
Hence, by ( 16)

σ(d c )(e)((⊗ h A)ᾱ) = σ(d c )(e)((f * A α)(e)) = I A -1 k ᾱk P I,k (e) ⊗ (⊗ h+1 A)(ξ h+1 I (e)). (18) 
On the other hand, by assumption, 

σ(d c )(e)((⊗ h A) ᾱ) = 0.
Consider now the case h = n, when d c is a second order operator in the horizontal derivatives. We stress that E n+1 0 contains only vertical forms, i.e. forms that are multiple of the contact form θ. Suppose Σ(d c )(e)ᾱ = 0. Then, by [START_REF] Bourgain | New estimates for the Laplacian, the div-curl, and related Hodge systems[END_REF], [START_REF] Franchi | Regular submanifolds, graphs and area formula in Heisenberg groups[END_REF] 

i,j,k ᾱk FI,k,i,j (W i ⊗ W j + W j ⊗ W i ) = 0, I = 1, . . . , dim E h+1 0 .
We take now u ∈ E(H n ) satisfies u(e) = 0 and W i u(e) = 0, i = 1, . . . , 2n. As above, we set v := u • f -1

A . Keeping in mind that f A (e) = e, we have also that v(e) = 0 and (W i v)(e) = 0, i = 1, . . . , 2n. Then equations [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF] become

d c (uf * A α)(e) = d c (f * A (vα))(e) = f * A (d c (vα))(e) = (⊗ h+1 f A )(d c (vα)(e)) = I,k i,j F I,k,i,j (A -1 W i )(A -1 W j )u(e)ᾱ k (⊗ n+1 f A )(ξ n+1 I (e)).
Therefore, keeping in mind Remark 3.4 and ( 16), we have:

Σ(d c )(e)((⊗ h A)ᾱ) = Σ(d c )(e)((f * A α)(e)) = I i,j,k ᾱk FI,k,i,j (A -1 W i )(e) ⊗ (A -1 W j )(e) +(A -1 W j )(e) ⊗ (A -1 W i )(e) ⊗ (⊗ n+1 f A )(ξ n+1 I (e)) = I A -1 i,j,k ᾱk FI,k,i,j W i (e) ⊗ W j (e) + W j (e) ⊗ W i (e) ⊗ (⊗ n+1 f A )(ξ n+1
I (e)) = 0, by [START_REF] Franchi | Regular submanifolds, graphs and area formula in Heisenberg groups[END_REF].

Finally, the proof for h > n can be carried out precisely as in the case h < n, with only minor changes. In particular, ( 16) must be replaced taking into account that a form α ∈ E h 0 has also a vertical component of the form β ∧ θ and that f * A (β ∧ θ)(e) = (⊗ h A)β(e) ∧ θ. This completes the proof of the proposition. ). We deal first with the case h = n and we set

B h ∈ Hom (h 1 ⊗ E h+1 0 , E h 0 ), B n ∈ Hom (Sym (⊗ 2 h 1 ) ⊗ E n+1 0 , E n 0 ) such that (20) α = B h (σ(d c )α) for all α ∈ Γ(E h 0 ), h = n,
B h (W i ⊗ ξ h+1 I ) := J b J i,I ξ h J .
Then, if we write α = J α J ξ h J ∈ Γ(E h 0 ) and

P I,k = i F I,k,i W i ,
(where the F I,k,i 's are real constants) identity [START_REF] Franchi | Wave and Maxwell's equations in Carnot groups[END_REF] becomes

α = B h ( I,k α k P I,k ⊗ ξ h+1 I ) = J   I,k,i b J i,I F I,k,i α k   ξ h J , (22) 
so that 

α J = I,k,i b J i,I F I,k,i α k , for J = 1, . . . , dim E h 0 . ( 23 
G I = i G I,i W i := i k F I,k,i α k W i then i W i G I,i = 0, I = 1, . . . , dim E h+1 0 .
Thus [START_REF] Maheux | Analyse sur les boules d'un opérateur souselliptique[END_REF] reads as

α J = I,i b J i,I G I,i ,
achieving the proof in the case h < n.

We deal now with the case h = n and we set

B n ((W i ⊗ W j + W j ⊗ W i ) ⊗ ξ n+1 I ) := J b J i,j,I ξ n J .
Thus, if we write α = J α J ξ h J ∈ Γ(E n 0 ) by [START_REF] Bourgain | New estimates for the Laplacian, the div-curl, and related Hodge systems[END_REF], identity (21) becomes α = B n (

I,k,i,j α k FI,k,i,j (W i ⊗ W j + W j ⊗ W i ) ⊗ ξ n+1 I ) = J   I,k,i,j b J i,j,I FI,k,i,j α k   ξ n J , (24) 
so that

α J = I,k,i,j b J i,j,I FI,k,i,j α k , for J = 1, . . . , dim E n 0 . ( 25 
)
Denote by G I the horizontal tensor field

G I = i,j G I,i,j W i ⊗ W j := i,j k F I,k,i,j α k W i ⊗ W j . (26) 
By Proposition 3.1 we can write

G I = G Sym I + G Skew I , where 
G Sym I = i,j (G Sym I ) i,j (W i ⊗ W j + W j ⊗ W i ) := i,j k FI,k,i,j α k (W i ⊗ W j + W j ⊗ W i ).
We suppose now that d c α = 0, that, by [START_REF] Pansu | Differential forms and connections adapted to a contact structure, after M. Rumin[END_REF], in coordinates is i,j

W i W j G I,i,j = 0, I = 1, . . . , dim E n+1 0 .
Thus (25) reads as

α J = I,i,j b J i,j,I (G Sym I ) i,j for J = 1, . . . , dim E n 0 ,
achieving the proof in the case h = n.

Proof of Theorem 1.3

The proof follows the lines of [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF]. Let us reming few facts of harmonic analysis in homogeneous groups.

A differential operator P : Γ(E h 0 ) → Γ(E k 0 ) is said left-invariant if for all q ∈ H n P (τ q ) * α = (τ q ) * (P α) for all α ∈ Γ(E h 0 ). If f is a real function defined in H n , we denote by v f the function defined by v f (p) := f (p -1 ), and, if T ∈ D ′ (H n ), then v T is the distribution defined by v T |φ := T | v φ for any test function φ.

Following e.g. [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF], we can define a group convolution in H n : if, for instance, f ∈ D(H n ) and g ∈ L 1 loc (H n ), we set [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF] f * g(p) := f (q)g(q -1 • p) dq for q ∈ H n .

We remind that, if (say) g is a smooth function and P is a left invariant differential operator, then

P (f * g) = f * P g.
We remind also that the convolution is again well defined when f, g ∈ D ′ (H n ), provided at least one of them has compact support. In this case the following identities hold As in [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF], we also adopt the following multi-index notation for higherorder derivatives. If I = (i 1 , . . . , i 2n+1 ) is a multi-index, we set

W I = W i 1 1 • • • W i 2n 2n T i 2n+1
. By the Poincaré-Birkhoff-Witt theorem, the differential operators W I form a basis for the algebra of invariant differential operators in H n . Furthermore, we set |I| := i 1 + • • • + i 2n + i 2n+1 the order of the differential operator W I , and d(I)

:= i 1 + • • • + i 2n + 2i 2n+1 its degree of homogeneity with respect to group dilations. Suppose now f ∈ E ′ (H n ) and g ∈ D ′ (H n ). Then, if ψ ∈ D(H n ), we have (W I f ) * g|ψ = W I f |ψ * v g = (-1) |I| f |ψ * (W I v g) = (-1) |I| f * v W I v g|ψ . (29) 
Following [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], we remind now the notion of kernel of order a, as well as some basic properties. Definition 6.1. A kernel of order a is a homogeneous distribution of degree a -Q (with respect to group dilations), that is smooth outside of the origin. Proposition 6.2. Let K ∈ D ′ (H n ) be a kernel of order a.

i) v K is again a kernel of order a; ii) W ℓ K is a a kernel of order a -1 for any horizontal derivative W ℓ K, ℓ = 1, . . . , 2n; iii) If a > 0, then K ∈ L 1 loc (H n ). Definition 6.3. In H n , following [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], we define the operator ∆ H,h on E h 0 by setting

∆ H,h =    d c δ c + δ c d c if h = n, n + 1; (d c δ c ) 2 + δ c d c if h = n; d c δ c + (δ c d c ) 2 if h = n + 1.
Notice that -∆ H,0 = 2n j=1 (W 2 j ) is the usual sub-Laplacian of H n . For sake of simplicity, once a basis of E h 0 is fixed, the operator ∆ H,h can be identified with a matrix-valued map, still denoted by ∆ H,h

∆ H,h = (∆ ij H,h ) i,j=1,...,N h : D ′ (H n , R N h ) → D ′ (H n , R N h ) (30) 
. This identification makes possible to avoid the notion of currents: we refer to [START_REF] Baldi | Compensated compactness for differential forms in Carnot groups and applications[END_REF] for this more elegant presentation.

Combining [START_REF] Michel Rumin | Formes différentielles sur les variétés de contact[END_REF], Section 3, and [START_REF] Baldi | Hypoellipticity, fundamental solution and Liouville type theorem for matrix-valued differential operators in Carnot groups[END_REF], Theorems 3.1 and 4.1, we obtain the following result. Theorem 6.4. If 0 ≤ h ≤ 2n + 1, then the differential operator ∆ H,h is hypoelliptic of order a, where a = 2 if h = n, n + 1 and a = 4 if h = n, n + 1 with respect to group dilations. Then i) for j = 1, . . . , N h there exists

(31) K j = K 1j , . . . , K N h j , j = 1, . . . N h with K ij ∈ D ′ (H n ) ∩ E(H n \ {0}), i, j = 1, . . . , N ; ii) if a < Q, then the K ij 's are kernels of type a for i, j = 1, . . . , N h If a = Q, then the K ij 's satisfy the logarithmic estimate |K ij (p)| ≤ C(1 + | ln ρ(p)|) and hence belong to L 1 loc (H n ). Moreover, their hor- izontal derivatives W ℓ K ij , ℓ = 1, . . . , 2n, are kernels of type Q -1; iii) when α ∈ D(H n , R N h ), if we set (32) Kα := j α j * K 1j , . . . , j α j * K N h j , then ∆ H,h Kα = α. Moreover, if a < Q, also K∆ H,h α = α. iv) if a = Q, then for any α ∈ D(H n , R N h ) there exists β α := (β 1 , . . . , β N h ) ∈ R N h , such that K∆ H,h α -α = β α .
Remark 6.5. Coherently with formula (30), the operator K can be identified with an operator (still denoted by K) acting on smooth compactly supported differential forms in D(H n , E h 0 ). Proof of Theorem 1.3. The case h = 0 is well known ( [START_REF] Franchi | Sobolev and isoperimetric inequalities for degenerate metrics[END_REF], [START_REF] Capogna | The geometric Sobolev embedding for vector fields and the isoperimetric inequality[END_REF], [START_REF] Maheux | Analyse sur les boules d'un opérateur souselliptique[END_REF]). Suppose now h = n -1. In order to estimate the terms of (34), we have to estimate terms of the form (37)

G I,i , (d c Kφ) ℓ L 2 (H n ) = G I , Φ L 2 (H n ,h 1 )
, where Φ = (d c Kφ) ℓ W i . We can apply Theorem 4.2. Keeping in mind [START_REF] Capogna | The geometric Sobolev embedding for vector fields and the isoperimetric inequality[END_REF], we obtain

(38) f ℓ , (d c Kφ) ℓ L 2 (H n ) ≤ C f L 1 (H n ,E h+1 0 ) ∇ H d c Kφ L Q (H n ,E h+1 0 
) . On the other hand, ∇ H d c Kφ can be expressed as a sum of terms with components of the form φ j * W I Kij with d(I) = 2.

By Theorem 6.4, iv) and Proposition 6.2, ii) W I Kij are kernels of type 0, so that, by [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], Proposition 1.9 we have

(39) | f ℓ , (d c Kφ) ℓ L 2 (H n ) | ≤ C f L 1 (H n ,E h+1 0 ) φ L Q (H n ,E h 0 )
. The same argument can be carried out for all the components of f , yielding

(40) | f, d c Kφ L 2 (H n ,E h+1 0 ) | ≤ C f L 1 (H n ,E h+1 0 ) φ L Q (H n ,E h 0 )
. Suppose now h = n -1 then we have to estimate terms of the form

(41) (G Sym I ) i,j , (d c Kφ) ℓ L 2 (H n ) = G I , Φ L 2 (H n ,⊗ 2 h 1 ) , Φ = (d c Kφ) ℓ W i ⊗ W j + W j ⊗ W i ) ∈ Γ(H n , Sym (⊗ 2 h 1 )
). We can apply Theorem 4.3 and we obtain

(42) | f, d c Kφ L 2 (H n ,E n 0 ) | ≤ C f L 1 (H n ,E n 0 ) φ L Q (H n ,E n-1 0 
) . This achieve the estimate of the first term of (33) for all 1 < h < 2n, h = n, n + 1. 

  then we have d c (uα)(p) = I,k (P I,k u)(p)α k (p)ξ h+1 I (p). Hence we set σ(d c )(p)ᾱ := I,k ᾱj P I,k (p) ⊗ ξ h+1 I (p).

  2n, then we have d c (uα)(p) = I,k (P I,k u)(p)α k (p) ξ n+1 I (p). Hence we set σ(d c )(p)ᾱ := I,k ᾱk P I,k (p) ⊗ ξ n+1 I (p).

,

  ,k (e) = 0 I = 1, . . . , dim E h+1 0 since the ξ h+1 I 's are linearly independent. Thus eventually from[START_REF] Franchi | Sobolev and isoperimetric inequalities for degenerate metrics[END_REF] 

Proof of Theorem 5 . 1 .

 51 First of all, we notice that, by Corollary 5.5 and Proposition 5.6, both ker σ(d c )(e) (if h = n) and ker Σ(d c )(e) (if h = n) are the null space {0}, and hence both σ(d c )(e) and Σ(d c )(e) have a left inverseB h ∈ Hom (h 1 ⊗ (E h+1 0 ) e , (E h 0 ) e ) if h = n. and B n ∈ Hom (Sym (⊗ 2 h 1 ) ⊗ (E n+1 0 ) e , (E n 0 ) e ) if h = n.By the commutativity of the diagram[START_REF] Bourgain | New estimates for elliptic equations and Hodge type systems[END_REF], B h and B n can be identified with constant coefficient maps

and ( 21 )

 21 α = B n (Σ(d c )α) for all α ∈ Γ(E n 0

)F

  Suppose now d c α = 0. Then, writing the identity in coordinates, if I = 1, . . . , dim E h+1 0 I,k,i α k = 0, so that, if we denote by G I the horizontal vector field

( 28 )

 28 f * g|φ = g| v f * φ and f * g|φ = f |φ * v g for any test function φ.

Case 1 < 33 ),.By Theorem 5 . 1 ,.

 13351 h < 2n and h = n, n + 1. If u, φ ∈ D(H n , E h 0 ), we can write u, φ L 2 (H n ,E h 0 ) = u, ∆ H,h Kφ L 2 (H n ,E h 0 ) = u, (δ c d c + d c δ c )Kφ L 2 (H n ,E h 0 ) .(Consider now the first term in the previous sum,u, δ c d c Kφ L 2 (H n ,E h 0 ) = d c u, d c Kφ L 2 (H n ,E h+10) . If we write f := d c u, then d c f = 0. From now on, without loss of generality, for 1 ≤ h ≤ 2n + 1 we take an orthonormal basis of E h 0 , still denoted by {ξ hℓ ; ℓ = 1, . . . , dim E h 0 }. Thus, since f, d c Kφ ∈ E h+1 0 Kφ) ℓ ξ h+1 ℓ, and hence we can reduce ourselves to estimate[START_REF] Weil | Introduction à l'étude des variétés kählériennes[END_REF] f ℓ ,(d c Kφ) ℓ L 2 (H n ) for ℓ = 1, . . . , dim E h+1 0 if h = n -1 , each component f ℓ of f can be written as G I,i ,where the b ℓ i,I 's are real constants and for any I = 1, . . . , dim E h+2 0 the G I,i 's are the components of an horizontal vector fieldG I = i G I,i W i with (35) i W i G I,i = 0, I = 1, . . . , dim E h+20 On the other hand, for h = n-1, each component f ℓ of f , ℓ = 1, . . . , dim E n Here the b ℓ i,j,I 's are real constants and for any I = 1, . . . , dim E n+1 0 the (G Sym I ) i,j 's are the components of the symmetric part (see Proposition 3.1) of the 2-tensor G I = i G I,i,j W i ⊗ W j that satisfies (36) i,j W i W j G I,i,j = 0, I = 1, . . . , dim E n+1 0 .

1 0)

 1 (43) | u, δ c d c Kφ L 2 (H n ,E h 0 ) | ≤ C f L 1 (H n ,E h+1 0 ) φ L Q (H n ,E h 0 ) . Consider now the second term in (33) u, d c δ c Kφ L 2 (H n ,E h 0 ) = δ c u, δ c Kφ L 2 (H n ,E h-1 0 ) = g, δ c Kφ L 2 (H n ,E h-= * g, * δ c Kφ L 2 (H n ,E 2n+2-h 0 ) ,

  . . , X n and Y 1 , . . . , Y n . Coherently, from now on, we refer to X 1 , . . . , X n , Y 1 , . . . , Y n (identified with first order differential operators) as to the horizontal derivatives. Denoting by h 2 the linear span of T , the 2-step stratification of h is expressed by

A.B. and B.F. are supported by University of Bologna, funds for selected research topics, by GNAMPA of INdAM, Italy and by MAnET Marie Curie Initial Training Network. P.P. is supported by Agence Nationale de la Recherche, ANR-10-BLAN 0116.

where * denotes the Hodge duality. We notice now that from δ c u = g, by Hodge duality we have d c * u = * g. Hence d c ( * g) = 0, and thus, arguing precisely as above, we get

Combining ( 44) with (43), we get eventually

, and hence

) . This completes the proof of statement iii) of the theorem. Case h = 1, 2n. By Hodge duality we may restrict ourselves to the case h = 1. Again we write

In order to estimate the first term f, d c Kφ L 2 (H n ,E 1 0 ) , we repeat verbatim the arguments above for the corresponding term in the case h = n, n + 1. As for the second term, by Theorem 6.4, formula [START_REF] Van Schaftingen | Estimates for L 1 vector fields under higher-order differential conditions[END_REF], and keeping in mind that δ c is an operator of order 1 in the horizontal derivatives when acting on E 1 0 the quantity δ c Kφ can be written as a sum of terms such as φ j * W ℓ Kij , with ℓ = 1, . . . , 2n.

On the other hand,

Notice the W ℓ Kij 's and hence the v (W ℓ Kij )'s are kernels of type 1. Thus, by Theorem 6.10 in [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF],

. Combining this estimate with the one in (43), we get eventually

This completes the proof of statement ii) of the theorem. Case h = n, n + 1. By Hodge duality we may restrict ourselves to the case h = n.

If u, φ ∈ E n 0 are smooth compactly supported forms, then we can write

Consider now the term

Let us write f := d c u. Again, d c f = 0, and hence, as above, if

, and thus we can reduce ourselves to estimate (47)

By Theorem 5.1, each component f ℓ of f can be written as

where the b ℓ i,I 's are real constants and for any I = 1, . . . , dim E n+2 0 the G I,i 's are the components of an horizontal vector field

As in the previous cases, in order to estimate the terms of (47), we have to deal terms of the form

,

We can apply Theorem 4.2. Again keeping in mind [START_REF] Capogna | The geometric Sobolev embedding for vector fields and the isoperimetric inequality[END_REF], we obtain

) . On the other hand, ∇ H d c Kφ can be expressed as a sum of terms with components of the form

since the differential d c on n-forms has order 2 in the horizontal derivatives. By Theorem 6.4, iv) and Proposition 6.2, ii) W I Kij are kernels of type 1, so that, by [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], Proposition 1.11 we have

. The same argument can be carried out for all the components of f , yielding

. Consider now the second term in (46). We have

0 , and then we can repeat the arguments leading to (42) for f in the case h = n -1, obtaining

As above, ∇ H d c δ c Kφ can be expressed as a sum of terms with components of the form

0 is an operator of order 1 in the horizontal derivatives, as well as d c : E n-1 0 → E n 0 . By Theorem 6.4, iv) and Proposition 6.2, ii) W I Kij are kernels of type 1, so that, by [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], Proposition 1.11 we have

. Combining this estimate with the one in (52), we get eventually

, and hence

To achieve the proof of statement iv) of the theorem we have to consider separately the cases f = 0 and g = 0. Suppose h = n + 1 (i.e. g = 0). The proof for h = n (i.e. f = 0) follows by Hodge duality. In the case h = n + 1 identity (46) read as

Since d c f = 0, by Theorem 5.1 we can apply Theorem 4.2, and we get

by [START_REF] Folland | Subelliptic estimates and function spaces on nilpotent Lie groups[END_REF], Proposition 1.9, since ∇ H d c δ c d c K is a kernel of type 0. Then we can conclude by duality as of the proof of case iii), achieving the proof of statement iv) of the theorem that now is completely proved.

Final remarks

The estimates in Theorem 1.3 for n-forms and (n + 1)-forms can be reformulated in the spirit of the estimates proved in [START_REF] Baldi | Gagliardo-Nirenberg inequalities for horizontal vector fields in the Engel group and in the 7-dimensional quaternionic Heisenberg group[END_REF]. To state our result, we must recall preliminarily few definitions of the function spaces we need for our results.

If p, q ∈ [1, ∞], we define the space

We have:

Again if p, q ∈ [1, ∞], we can endow the vector space L p (H n ) + L q (H n ) with the norm

Analogous spaces of forms can be defined in the usual way.

The following characterization of (L p,q (H n )) * can be proved by standard arguments of functional analysis. Proposition 7.1. If p, q ∈ (1, ∞) and p ′ , q ′ are their conjugate exponents, then i)

for some C > 0 and for all φ

Using the function spaces defined above, we can reformulate Theorem 1.3 in the critical cases h = n as follows. Since a similar formulations lacks in [START_REF] Baldi | Sharp a priori estimates for div-curl systems in Heisenberg groups[END_REF], we state and prove the theorem also of n = 1. Theorem 7.2. Denote by (E * 0 , d c ) the Rumin's complex in H n , n ≥ 1.

Consider the system

) and for any u ∈ D(H 1 , E 2 0 ), respectively. Proof. By Hodge duality we may restrict ourselves to the case h = n.

If u, φ ∈ E n 0 are smooth compactly supported forms, then we can write

The estimate of the first term of the last line of ( 54) is already given in (52) and reads

Consider now the second term in the last line of (54). If n ≥ 2, we have

We notice now that * g is a d c -closed form in E n+2 0 . Then we can repeat the arguments of the proof of Theorem 1.3 and we get * g, * δ

As in the proof of Theorem 1.3, ∇ H δ c d c δ c Kφ can be expressed as a sum of terms with components of the form

0 is an operator of order 1 in the horizontal derivatives, as well as d c : E n-1 0 → E n 0 . By Theorem 6.4, iv) and Proposition 6.2, ii) W I Kij are kernels of type 0, so that, keeping in mind (57), by Proposition 1.9 we have g

If n = 1, we write instead

, where K is a kernel of type 1. By Hölder inequality and [START_REF] Folland | Hardy spaces on homogeneous groups[END_REF], Theorem 6.10,

To conclude the proof, if n > 1, combining (59) with ( 56) or (60), we get eventually

If n = 1 the same estimate holds with g L 1 replaced with g H 1 .

Indeed, if n > 1 and we replace (56) and ( 61) in (54), we obtain by duality (Proposition 7.1 -iv) )

) . Again, g L 1 must be replaced by g H 1 if n = 1. This completes the proof of the theorem.