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A discontinuous isoperimetric profile for a complete Riemannian

manifold

Stefano Nardulli and Pierre Pansu

April 9, 2015

ABSTRACT: The first known example of a complete Riemannian manifold whose isoperimetric
profile is discontinuous is given.

RESUMÉ : On construit le premier exemple connu d’ une variété riemannienne complète dont

le profil isopérimétrique est discontinu.

1 Introduction

1.1 The problem

Let M be a Riemannian manifold. We are concerned with the continuity of the isoperimetric
profile of M . Given 0 < v < vol(M), consider all domains, i.e. smooth compact codimension 0
submanifolds in M with volume v. Define IM (v) as the least upper bound of the boundary areas
of such domains. In this way, one gets a function IM : (0, vol(M)) → R+ called the isoperimetric
profile of M .

Question 1 When is the isoperimetric profile a continuous function ?

The answer is yes when M is compact, Lemme 6.2 of [Gal88]. S. Gallot’s proof uses techniques
of metric geometry. In the compact case, alternative proofs, based on the direct method of the
calculus of variations, can be found in books like [AFP00], [Mor09], [Mag12].

The latter argument has been extended to the case of complete manifolds with C2,α-bounded
geometry, see Theorem 1 of [FN15b] and Theorem 2.2 of [FN15a].
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If one assumes existence of isoperimetric regions of every volume, one can weaken bounded geometry
assumptions. It suffices to assume a lower bound on Ricci curvature and on the volumes of balls
of radius 1, see Theorem 4.1 [FN15b]. In our opinion, it remains an open question whether the
noncollapsing assumption (lower bound on the volumes of balls) can be removed or not, see Question
3 below.

The isoperimetric profile is continuous also when the volume of M is finite; a proof of this fact can
be found in Corollary 2.4 of [NR15].

When the ambient manifold is a non-compact homogeneous space, Hsiang showed that its isoperi-
metric profile is a non-decreasing and absolutely continuous function [[Hsi92], Lemma 3, Thm.
6].

In a recent paper, [Rit15], Manuel Ritoré showed that a complete Riemannian manifold possessing a
strictly convex Lipschitz continuous exhaustion function has continuous and nondecreasing isoperi-
metric profile. Hadamard manifolds and complete non-compact manifolds with strictly positive
sectional curvature belong to this class. This shows that earlier attempts to construct counterex-
amples using pieces of increasing negative curvature are doomed to fail. An example of a manifold
with density with discontinuous isoperimetric profile has been described by Adams, Morgan and
Nardulli in Prop. 2 of [AMN13].

For more informations about the literature on the continuity of the isoperimetric profile the reader
should consult the introduction of [Rit15] and references therein.

1.2 The result

Theorem 1 There exists a connected non compact 3-dimensional Riemannian manifold M such
that IM is a discontinuous function.

The proof is a modification of the treatment of Riemannian manifolds with density by Adams,
Morgan and Nardulli, an account of which can be found in Frank Morgan’s blog, [AMN13].

Start with a disjoint union of Riemannian manifolds N =
∐
nMn such that vol(Mn) = 1+τn where

τn > 0 tends to 0. Then IN (1 + τn) = 0. Assume that, for all n, IMn(1) = IMn(τn) ≥ 1. Then it is
not too hard to show that IN (1) ≥ 1. Connecting Mn to Mn+1 with a very thin tube produces a
connected Riemannian manifold M for which IN (1 + εn) tends to 0. Again, it is not too hard to
show that IM (1) > 0. Therefore IM is discontinuous.

Thus the key input is the sequence of Riemannian manifolds Mn with vol(Mn) bounded and IMn(τn)
bounded below. Adams, Morgan and Nardulli indulged themselves in introducing densities. They
took for Mn a tiny round sphere with a high constant density. Since volumes and boundary areas
rescale differently, one can achieve IMn(εn) ≥ 1. Instead, we use nilmanifolds equipped with metrics
which converge (up to rescaling) to a single Carnot-Carathéodory metric. The Carnot-Carathéodory
isoperimetric profile established in [Pan83] gives a uniform lower bound for the isoperimetric profiles
of such metrics.
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A similar construction certainly works in any dimension ≥ 3.

Question 2 Does there exist a 2-dimensional Riemannian manifold whose isoperimetric profile is
discontinuous?

Question 3 Does a manifold with Ricci curvature bounded below and admitting isoperimetric re-
gions in every volume, have a continuous isoperimetric profile?

2 Isoperimetry in nilmanifolds

2.1 Isoperimetry in the Heisenberg group

The Heisenberg group H is the group of real upper triangular unipotent 3× 3 matrices,

H = {

1 x z
0 1 y
0 0 1

 ; x, y, z ∈ R}.

Putting integer entries produces the discrete subgroup HZ ⊂ H. Let dx, dy, θ = dz − xdy be a
basis of left-invariant forms. Let

gε = dx2 + dy2 +
1

ε2
θ2.

This is a left-invariant Riemannian metric on H. As ε tends to 0, the distance dε associated to gε
converges to the Carnot-Carathéodory distance

dc(p, q) = inf{length(γ) ; γ(0) = p, γ(1) = q, γ∗θ = 0}.

• dc has Hausdorff dimension 4, with spherical 4-dimensional measure proportional to Haar
measure S4 = dxdydz.

• Smooth surfaces S in H have Hausdorff dimension 3, with spherical 3-dimensional measure
proportional to the measure denoted by S3 to be described soon (the proportionality constants
are universal and will be ignored in the sequel).

• Smooth curves which are transverse to the contact structure ker(θ) have Hausdorff dimension
2, with spherical 2-dimensional measure S2 given by integration of θ (up to sign).

• Smooth curves tangent to ker(θ) have Hausdorff dimension 1, with spherical 1-dimensional
measure S1 being length.

S3 is locally the product S1 ⊗ S2. Specifically, let d` denote a (locally defined away from points
where S is tangent to ker(θ)) unit 1-form on S whose kernel is orthogonal to the trace of ker(θ) on
the tangent plane to S. Then, up to a sign, S3 is obtained by integrating d` ∧ θ.
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The Heisenberg isoperimetric inequality ([Pan83]) states that for all smooth domains Ω ⊂ H,

S3(∂Ω) ≥ S4(Ω)3/4, (1)

up to a universal constant that we ignore again.

Here is an alternate description of S3. Let d areaε denote the area induced by Riemannian metric
gε. The 1-form θ restricts to a 1-form on S, we denote its gε-norm by |θ|S |ε. Then S3 has density
|θ|S |ε with respect to gε-area,

dS3 = |θ|S |εd areaε.

Since |θ|ε = ε, |θ|S |ε ≤ ε, therefore S3(S) ≤ ε areaε(S). On the other hand, the Riemannian volume

element of gε is 1
εdxdydz. This shows that the Heisenberg isoperimetric inequality (1) implies a

lower bound on the isoperimetric profile of (H, gε) for all ε > 0,

I(H,gε)(v) ≥ 1

ε1/4
v3/4. (2)

This is asymptotically sharp for large volumes, but not for small volumes, where the correct asymp-
totics is v2/3. Never mind, it is the dependance on ε which is most important here.

We shall not directly use inequality (2). Instead, we shall rely on inequality (1) to study the
Carnot-Carathéodory isoperimetric profile of a quotient of H. Only at the very end shall we return
to Riemannian geometry.

2.2 Nilmanifolds

H possesses group automorphisms δt(x, y, z) = (tx, ty, tz). Let Γt = δt(HZ) and Nt = Γt \H be the
quotient manifold. It inherits quotient metrics gε, yielding Riemannian nilmanifolds Nt,ε of total

volume equal to t4

ε . But is also inherits a Carnot-Carathéodory metric that depends only on t. Our
first goal is to show that the Carnot-Carathéodory isoperimetric profile of Nt satisfies an inequality
similar to (1). Note that δt induces a homothetic map of N1 onto Nt, so it suffices to work with
one single compact space N1. The volume of N1 is S4(N1) = 1.

Theorem 2 There exists a constant c such that the Carnot-Carathéodory isoperimetric profile of
N1 satisfies I(N1,dc)(v) ≥ c min{v, 1 − v}3/4. In other words, if Ω ⊂ N1 is a smooth domain of
volume less that 1/2,

S3(∂Ω) ≥ cS4(Ω)3/4.

The method consists in cutting domains of N1 into pieces that lift to covering spaces. Ultimately,
pieces lift to H where one can apply (1). This covers cases where volume is smaller than some
universal constant v0. To treat domains with volume ≥ v0, we apply a compactness result due to
[FSSC01] (see also [LR03]).
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2.3 Reduction to pillars

A first step is to cut domains into pieces called pillars that lift to a Z⊕Z covering space Z of N1.

Definition 1 Let ζ denote the center of HZ. Let us call pillar a subset of Z = ζ \ H whose
projection to H/[H,H] = R2 is contained in a unit square. Denote by PIZ the pillar profile of Z,
i.e.

PIZ(v) = inf{S3(∂P ) ; P a pillar, S4(P ) = v}.

Proposition 2 (Reduction to pillars) The pillar profile of Z bounds the profile of N1 from
below, with an error term,

I(N1,dc)(v) ≥ PIZ(v)− 4v.

Proof. The coordinate functions x and y on H pass to a quotient N1 → Z \R. For u = (s, s′) ∈
(Z \R)2, let

Gu = {p ∈ N1 ; x(p) = s or y(p) = s′}.

This is the union of two surfaces, each of which is a level set of one of the functions x or y. The
complement of Gu has a cyclic fundamental group that maps isomorphically onto ζ.

Let Ω be a domain in N1. By the coarea formula,

S4(Ω) =

∫
Z\R
S3(x−1(s) ∩ Ω) ds.

This coarea formula follows from the fact that the volume element (viewed as a 4-form) splits,

dS4 = dx ∧ dy ∧ θ = dx ∧ dS3,

since dy ∧ θ = dS3 along the fibers of x (one can take d` = dy globally).

The same inequality holds with x replaced with y. This shows that there exists u = (s, s′) ∈ (Z\R)2

such that

S3(x−1(s) ∩ Ω) ≤ S4(Ω), S3(y−1(s′) ∩ Ω) ≤ S4(Ω),

and thus

S3(Gu ∩ Ω) ≤ 2S4(Ω).

The complement Ω\Gu lifts to the cyclic covering space Z. Pick some lift. Its closure P is a pillar.
Indeed, on P , the real valued functions x and y take values in intervals of length 1. The boundary
of P consists of a part that isometrically and injectively maps to ∂Ω, and of a part that maps 2-1
to Gu ∩ Ω. Therefore

S3(∂P ) ≤ S3(∂Ω) + 2S3(Gu ∩ Ω) ≤ S3(∂Ω) + 4S4(Ω).

If S4(Ω) = v, this shows that

I(N1,dc)(v) ≥ PIZ(v)− 4v.
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2.4 Treatment of pillars

Proposition 3 (Treatment of pillars) The profile of H bounds the pillar profile of Z from below,
with an error term,

PIZ(v) ≥ IH(v)− 8v.

Proof. Let P ⊂ Z be a pillar. We can assume that its projection to R2 is contained in {0 ≤ x ≤
1}. Its inverse image P̃ in H is a ζ-invariant subset with small projection in R2. Again, we cut P̃
into logs of height 1 using level sets of the z function. This time, we split the volume element as

dS4 = dx ∧ dy ∧ dz = dz ∧ (dx ∧ dy) = dz ∧ 1

|x|
dS3 ≥ dz ∧ dS3.

We have used the expression dS3 = |x| dx dy for the measure induced on horizontal planes {z = s}.
On such surfaces, one can take d` = dx globally, whence dS3 = ±dx ∧ θ = |x| dx dy. The coarea
formula gives

S4(P ) = S4(P̃ ∩ {0 ≤ z ≤ 1})

=

∫ 1

0

(∫
P̃∩{z=s}

1

|x|
dS3

)
ds

≥
∫ 1

0
S3(P̃ ∩ {z = s}) ds.

There exists s ∈ [0, 1] such that

S3(P̃ ∩ {z = s}) ≤ S4(P ).

Set Ω′ = P̃ ∩ {s ≤ z ≤ s+ 1}. Then

S3(∂Ω′) ≤ S3(∂P ) + 2S4(P ).

If P has volume v, this leads to

PIZ(v) ≥ IH(v)− 2v.

2.5 Profile of (N1, dc)

Proposition 4 (Carnot-Carathéodory isoperimetric inequality for small volumes) If v ≤
12−4,

I(N1,dc)(v) ≥ 1

2
v3/4.

Proof. Combined with Propositions 2 and 3, the Heisenberg isoperimetric inequality (1) yields

I(N1,dc)(v) ≥ v3/4 − 4v − 2v = v3/4(1− 6 v1/4) ≥ 1

2
v3/4,

since v ≤ 12−4.
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2.6 Proof of Theorem 2

There is a notion of Carnot-Carathéodory perimeter, an appropriate topology for which S4 is
continuous and the perimeter (which coincides with S3 for smooth domains) lower semi-continuous,
and a compactness theorem for sets of bounded perimeter in a compact Carnot manifold, [FSSC01].
This implies that the Carnot-Carathéodory isoperimetric profile I(N1,dc) is positive on (0, 1) and
lower semi-continuous. Therefore, there exists η > 0 such that I(N1,dc) ≥ η on [12−4, 1− 12−4]. Set

c = min{12 , 2
3/4η}. Then I(N1,dc)(v) ≥ η = c(12)3/4 ≥ c v3/4 for every v ∈ [12−4, 12 ]. On the other

hand, Proposition 4 shows that I(N1,dc)(v) ≥ c v3/4 for all v ∈ [0, 12−4].

Note that the proof does not provide an effective constant c.

2.7 Riemannian profile

Corollary 3 Let Nt,ε denote the quotient (δt(HZ)) \H equipped with the Riemannian metric in-
duced by gε. The isoperimetric profile of Nt,ε satisfies

INt,ε(v) ≥ c

ε1/4
min{v, t

4

ε
− v}3/4.

Proof. The homothetic map N1 → Nt induced by the automorphism δt transports the inequality
of Theorem 2 to Nt without any change but the fact that S4(Nt) = t4 replaces 1. The Riemannian
volume element of Nt,ε is 1

εS
4, the Riemannian area induced on surfaces satisfies ε area ≥ S3. This

leads to the indicated dependence on ε in the isoperimetric profile of Nt,ε.

3 Proof of Theorem 1

3.1 The case of a disjoint union of nilmanifolds

Proposition 5 Let τn = 1
n , εn = τ3n and tn = τ

3/4
n (1 + τn)1/4. Let N =

∐
nNtn,εn. Then, for all

v ∈ [ 1
16 , 1], IN (v) ≥ c

8 , where c is the constant of Theorem 2.

Proof. By construction, vol(Ntn,εn) = 1 + τn. Let Ω be a domain in N with vol(Ω) = v. Write
Ω =

∐
n Ωn where Ωn ⊂ Ntn,εn has volume vn,

∑∞
n=1 vn = v.

If some vn satisfies vn ≥ 1
2(1 + τn), then

area(∂Ωn) ≥ c

ε
1/4
n

(1 + τn − vn)3/4

≥ c

ε
1/4
n

τ3/4n = c,

7



so
area(∂Ω) ≥ c (3)

in this case.

Otherwise, for all n ≥ 1,

area(∂Ωn) ≥ c

ε
1/4
n

v3/4n ≥ c v3/4n .

We use the concavity inequality

aα + bα ≥ (a+ b)α,

valid for all 0 ≤ α ≤ 1, a ≥ 0 and b ≥ 0. This gives

area(∂Ω) =

∞∑
n=1

area(∂Ωn)

≥ c
∞∑
n=1

v3/4n

≥ c

( ∞∑
n=1

vn

)3/4

= (
1

16
)3/4c =

c

8
.

3.2 Connecting manifolds

Proof. We construct a noncompact manifold that has the shape of an infinite pearl necklace,
adjusting suitable parameters carefully. Let 0 < τn < 1 be the sequence of positive real numbers
chosen in the proof of Proposition 5. Pick another sequence of volumes wn < 1, such that∑

n

wn <
1

2
, (4)

and a sequence of areas an > 0 such that ∑
n

an <
c

16
, (5)

where c is the constant of Theorem 2.

The manifolds Ntn,εn that we want to connect to obtain our counterexample M , are like in Proposi-
tion 5, in particular we retain here that V (Ntn,εn) = 1 + τn. Take two small disjoint balls Bn,1, Bn,2
inside Ntn,εn whose boundaries have total area ≤ an. Arrange that Bn,2 and Bn+1,1 be nearly
isometric. Put Ñn := Ntn,εn \

(
Bn,1∪̊Bn,2

)
.

Consider tubes or cylinders Tn of the form Tn := (S2(1)× [0, 1], gn), where the metrics gn are chosen
in such a way that V (gn) ≤ wn and they glue together into a smooth metric on the connected sum
Mn := Ñn#Tn where the gluing is done along in(S2(1)× {0}) ∼= ∂Bn,2. Now consider

(M, g) := M1#M2# · · ·#Mn#Mn+1# · · · (6)
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where Mn and Mn+1 are glued together along the boundaries in(S2(1) × {1}) ∼= ∂B(n+1),1, where
in : Tn →M is the isometric embedding associated to our construction.

We show that the right limit IM (1+) vanishes. Consider domains Dn := Ñn, we get V (Dn) =
1 + τn − ṽ′n−1 − ṽ′n = 1 + αn, with αn → 0, ε′n := A(∂Dn) = Ag(∂Bn,2∪̊∂Bn+1,1)→ 0. This implies
readily

0 ≤ lim
n→+∞

IM (1 + αn) ≤ lim
n→+∞

A(∂Dn) = 0. (7)

We show that IM (1) > 0. Let Ω be a domain in M such that V (Ω) = 1. Write Ω̃ :=
⋃̊

Ω̃n, where
Ω̃n := Ω ∩ Ñn. Then

V (Ω̃) ≥ 1−
∑
n

wn ≥
1

2
.

According to Proposition 5,

A(∂Ω̃) ≥ c

8
.

Since, for all n,

∂Ω̃n = ((∂Ω) ∩ Ñn)∪̊(Ω ∩ ∂Ñn),

A(∂Ω̃n)−A((∂Ω) ∩ Ñn) ≤ Ag(∂Bn,2∪̊∂Bn,1) ≤ an,

thus

A(∂Ω) ≥ A(∂Ω̃)−
∑
n

an ≥
c

8
− c

16
=

c

16
.

This show that IM (1) ≥ c
16 .

This concludes the proof of Theorem 1.
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[Rit15] Manuel Ritoré. Continuity of the isoperimetric profile of a complete Riemannian manifold
under sectional curvature conditions. arXiv:1503.07014, 2015.

Keywords : Isoperimetric inequality, Nilmanifold, Carnot-Carathéodory metric.
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