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Abstract

We obtain a sharp bound on the number of maximal torsion cosets in a subvariety
of the complex algebraic torus Gn

m.

Mathematics Subject Classification: 11G35 (14G25).

1 Introduction

Let Gnm be the complex algebraic torus. As an affine variety, we identify Gnm with the
Zariski open subset x1 · · ·xn 6= 0 of AnC with the usual multiplication

(x1, . . . , xn) · (y1, . . . , yn) = (x1y1, . . . , xnyn).

Therefore, a torsion point of Gnm is an n-tuple of roots of unity. Let V be a subvariety
of Gnm, we denote by Vtor the Zariski closure of the torsion points contained in V .

Motivated by the conjectures of Mordell and Manin-Mumford, Lang conjectured that
Vtor is a finite union of torsion cosets, i.e. translates by torsion points of algebraic subtori
of Gnm (see [Lan83, p.220]). This was proved by Ihara, Serre and Tate for dim(V ) = 1
(see [Lan83, Theorem 6.1]) and by Laurent for higher dimensions (see [Lau84, Théorème
2]). This conjecture was originally formulated in a more general setting, which was
proved by McQuillan [McQ95]. The following step is, then, to find an upper bound for
the number of torsion varieties in V .

We say that a torsion coset contained in V is maximal if it is maximal with respect
to the inclusion. It was proved by Zhang [Zha95] that, if V is defined over K by a set of
polynomials of degree at most d and height at most M , the number of maximal torsion
cosets in V and the degree of them is effectively bounded in terms of d, n, M and [K : Q].
Later, Bombieri and Zannier [BZ95] showed that both, the number of maximal torsion
cosets and the degree of their defining polynomials, can be bounded just in terms of n
and d.

∗Laboratoire de mathématiques Nicolas Oresme, CNRS UMR 6139, Université de Caen. BP 5186,
14032 Caen Cedex, France. This research was partially financed by the CNRS project PICS 6381
“Géométrie diophantienne et calcul formel”.
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Furthermore, Schmidt [Sch96] obtained an explicit upper bound for the number of
maximal torsion cosets in V , which was then improved with a result of Evertse [Eve99],
bounding the number of maximal torsion cosets by

(11d)n
2

(
n+ d
d

)3
(
n+d
d

)2

.

Meanwhile, Ruppert [Rup93] and Sarnak and Adams [SA94] presented algorithms
to determine the torsion subvariety of some variety V ⊂ Gnm. In particular, Ruppert’s
approach treats first the case dim(V ) = 1 where, given (d1, . . . , dn) the multi-degree
of V ⊂ (P1)n, he is able to bound the number of isolated torsion points in V by
22 max(di) min(di). Afterwards, he extends his algorithm to some specific varieties in
higher dimension, which leads him to conjecture that, given f ∈ Q[X1, . . . , Xn], the
number of isolated torsion points on V (f) ⊂ Gnm could be bounded by cnd1 · · · dn, where
cn is some constant depending only on n and the di’s are the partial degrees of f . This
conjecture followed from trying to generalize some occurences he observed for the case
n = 2 to general dimension.

Beukers and Smyth [BS02] reconsidered the problem for n = 2 from a similar point of
view to Ruppert’s one, being able to improve the bound in this case. Given f ∈ Q[X,Y ]
a polynomial, they bound the number of torsion points of V (f) by 22vol2(f), where
vol2(f) denotes the 2-volume of the Newton polytope of f . This leads Aliev and Smyth
to the following reformulation of the original conjecture of Ruppert in [AS12]:

Conjecture 1.1. Let f ∈ Q[X1, . . . , Xn], the number of isolated torsion points on the
hypersurface V (f) ⊂ Gnm is bounded by cn voln(f), where cn is a constant depending only
on n and voln(f) is the n-volume of the Newton polytope of f .

Aliev and Smyth [AS12] extended Beukers and Smyth’s algorithm to higher dimen-
sions and obtained a bound far from the conjecture. For f ∈ Q[X1, . . . , Xn] of degree d,
they bound the number of maximal torsion cosets in V by

c1(n)dc2(n),

where c1(n) = n
3
2

(2+n)5n and c2(n) = 1
16(49 · dn−2 − 4n− 9).

For sparse representations of polynomials, Leroux [Ler12] obtained an algorithm to
find the maximal torsion cosets in V . As a consequence, he is able to bound the number
of maximal torsion cosets in V in terms of the number of non-zero coefficients of the
defining polynomials of V . For dense polynomials the bound has similar order to the
one of Aliev and Smyth [AS12].

Another approach to this problem has been to conceive it as a particular case of the
study of the number of algebraic points of small height. That is because the torsion
points on V can be thought of as the points of height 0 on V . Thereby, some upper
bounds on the number of subvarieties of small height can be translated to our setting.
This is how Amoroso and Viada obtained the following bound (see [AV09, Corrolary
5.4]):
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Proposition 1.2. Let V be a subvariety of Gnm of codimension k and defined by poly-
nomials of degree at most δ. Let

θ = δ(200n5 log(n2δ))(n−k)n(n−1).

Then the number of maximal torsion cosets in V is bounded by θn.

First, note that δ can be replaced by the degree of V in the case that V is a hyper-
surface (as in the statement of the conjecture). This way, we can see that this bound is
close to the one conjectured by Ruppert, up to a logarithmic factor.

In this article we prove a relaxed conjecture following similar induction processes to
the ones introduced in [AV09]. Our main result is:

Theorem 1.3. Let V be a subvariety of Gnm of codimension k, defined by polynomials
of degree at most δ. Let

θ = ((2n− 1)(n− 1)(22n + 2n+1 − 2))n−kδ.

Then the number of maximal torsion cosets in V is bounded by θn.

As before, δ can be replaced by the degree of V in the case that V is a hypersurface
and we obtain the following:

Corollary 1.4. Let V ⊂ Gnm be a hypersurface of degree d. Then the number of isolated
torsion points in V is bounded by cnd

n, where cn is a constant depending only on n.

If f ∈ C[X1, . . . , Xn] is of degree d and V = V (f), we can bound voln(f) ≤ dn.
Hence, we observe that this result is close to proving the conjecture.

To discard the logarithmic error term, we reformulate the main theorems of Amoroso
and Viada in [AV09] so that they suit our particular case of torsion subvarieties.

In order to do that, we extend first the argument introduced by Beukers and Smyth
in [BS02] to a more algebraic setting. In Proposition 3.2 we get, for any irreducible
subvariety V of Gnm, another variety V ′ ⊂ Gnm with the same dimension and similar
degree, such that Vtor lies in the intersection V ∩ V ′ ( V . Moreover, this V ′ can be
obtained explicitly from our initial V .

Next, in Theorem 3.4, we use the Hilbert function to consider, instead of the subvari-
ety V ′, a hypersurface Z satisfying that Vtor ⊂ V ∩Z ( V . To do that, we rely on both,
an upper and a lower bound for the Hilbert function; being the upper bound a result
of Chardin [Cha89] and the lower bound a result of Chardin and Philippon [CP99]. By
using this bounds, we obtain Lemma 2.8, which serves as bridge between V ′ and Z and
is, therefore, the key element in our proof of Theorem 3.4.

Finally, we present two induction theorems, Theorem 4.1 and Theorem 4.2, which
are the equivalent of [AV09, Theorems 2.2 and 1.2] in our case. As a consequence of
Theorem 4.2, we deduce Theorem 1.3 and prove the conjecture.
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2 Basic results

2.1 Notation

We denote x ∈ Gnm as x = (x1, . . . , xn) and, in particular, 1 = (1, . . . , 1) represents the
identity element. Given x ∈ Gnm and λ = (λ1, . . . , λn) ∈ Zn we denote

xλ = (xλ11 , . . . , xλnn )

and, by abuse of notation, given λ ∈ Z we understand xλ as x(λ,...,λ). Moreover, given
S ⊂ Gnm any subset we denote

x · S = {x · y | y ∈ S}.

If the context is clear, we might write simply xS.
We call homomorphism an algebraic group homomorphism ϕ : Gn1

m → Gn2
m . For any

l ∈ Z, we define the multiplication by [l] as the following endomomorphism:

[l] : Gnm → Gnm
x 7→ xl.

We denote ζk as a primitive k-th root of unity, for any k ∈ N>0, and µk = {ζ ∈ Gm |
ζk = 1} as the subgroup of k-th roots of unity. In particular, we denote µ∞ = {ζ ∈
Gm | ζk = 1 for some k ∈ N} as the subgroup of roots of unity in Gm. Therefore, we
understand µn∞ ⊂ Gnm as the subgroup of the torsion points of Gnm, that is

µn∞ = {ξ ∈ Gnm | ξk = 1 for some k ∈ N>0}

and µnk = {ξ ∈ Gnm | ξk = 1} as the k-torsion points of Gnm.
By torsion coset we understand a subvariety ωH ⊂ Gnm, where H is an irreducible

algebraic subgroup of Gnm and ω a torsion point. Let V be a subvariety of Gnm, then we
say that a torsion coset ωH is maximal in V if ωH ⊂ V and it is not contained in any
other torsion coset in V . Observe that Vtor corresponds to the ensemble of torsion cosets
in V , hence we can write it

Vtor =
⋃

ωH⊂V
torsion coset

ωH.

In fact, it is enough to take the maximal torsion cosets in V in the index of the union.
Let V ⊂ Gnm. We say that V is minimally defined over K, if K is the minimal Galois

extension of Q such that V is defined over K; that is⋂
L|Q Galois

V defined over L

L.

We recall that if K is an abelian extension, by the Kronecker-Weber theorem we have
that K is contained in a cyclotomic extension of Q. In fact, there is a unique minimal
cyclotomic extension Q(ζN ) containing K (see [Nar04, Theorem 4.27(v)]). If N ≡ 2
(mod 4), then Q(ζN ) = Q(ζN/2). Therefore, we always choose N 6≡ 2 (mod 4).
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2.2 Algebraic subgroups

We understand by lattice a subgroup Λ of Zn. We denote Λ̃ = (Λ ⊗Z R) ∩ Zn and call
[Λ̃ : Λ] the index of Λ. We say that A is primitive if [Λ̃ : Λ] = 1. We define the algebraic
subgroup of Gnm associated to Λ as follows

HΛ = {x ∈ Gnm | xλ = 1, λ ∈ Λ}.

The following result allows us to understand the relation between lattices in Zn and
algebraic subgroups of Gnm.

Theorem 2.1. The map Λ 7→ HΛ is a bijectin between subgroups of Zn and algebraic
subgroups of Gnm. A subgroup HΛ is irreducible if and only if Λ is primitive. Moreover,
for any two subgroups Λ and Λ′ of Zn we have that HΛHΛ′ = HΛ∩Λ′.

Proof. See [BG06, Proposition 3.2.7 and Theorem 3.2.19].

Corollary 2.2. Let H be a subgroup of Gnm of dimension n − r, then there exists a
surjective homomorphism

ϕ : Gnm � Grm
such that Ker(ϕ) = H.

Proof. By Theorem 2.1, there exists a unique lattice Λ ⊂ Zn such that

H = HΛ = {x ∈ Gnm | xλ = 1, λ ∈ Λ}.

Take the primitive subgroup Λ⊥ = {x ∈ Zn | x · y = 0 for all y ∈ Λ}, so HΛ⊥ is
irreducible, that is HΛ⊥ ' Grm. By Theorem 2.1 we have that Gnm = H{0} = H · HΛ⊥

and ϕ can be obtained as the following composition of homomorphisms:

ϕ : Gnm = H ·HΛ⊥ � HΛ⊥
'−→ Grm.

Let V be a variety in Gnm, we define the stabilizer of V as

Stab(V ) = {ξ ∈ Gnm | ξV = V }.

In particular, Stab(V ) is an algebraic subgroup of Gnm. By means of Corollary 2.2 we
are able to identify, via a homomorphism, V and a variety with trivial stabilizer.

Corollary 2.3. Let V ⊂ Gnm be a variety. Then there exists a homomorphism ϕ : Gnm →
Grm such that r = codim(Stab(V )) and Ker(ϕ) = Stab(V ). Moreover, ϕ satisfies

(i) Stab(ϕ(V )) = {1};

(ii) ϕ−1(ϕ(V )) = V ;

(iii) ϕ−1(η)V = η0V , for every η ∈ Grm and for any η0 ∈ ϕ−1(η).

An extra remark should be made regarding the relation between the torsion cosets
and the stabilizer of V . For any torsion coset ωH in V , we have that Stab(V ) ·ωH is a
union torsion cosets in V . In particular, every maximal torsion coset in V has dimension
at least dim(Stab(V )).
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2.3 Essential degree and Hilbert function

Let V be a variety in Gnm. We define δ(V ) as the minimal degree δ such that V is the
intersection of hypersurfaces of degree at most δ. We also define δ0(V ) as the minimal
degree δ0 such that there exists an intersection X of hypersurfaces of degree at most δ0

such that any irreducible component of V is a component of X. As a direct consequence
of the definition, if V is equidimensional, we have the following inequalities

δ0(V ) ≤ δ(V ) ≤ deg(V ).

Let V be a subvariety of Gnm and let the closure of V in Pn be defined by the
homogeneous radical ideal I in Q [x]. For ν ∈ N, we denote by H(V ; ν) the Hilbert
function dim(Q[x]/I)ν .

The following upper bound for the Hilbert function, is a theorem of Chardin [Cha89].

Theorem 2.4. Let V ⊆ Gnm be an equidimensional variety of dimension d = n− k and
let ν ∈ N. Then

H(V ; ν) ≤
(
ν + d
d

)
deg(V ).

On the other hand, as a consequence of a result of Chardin and Phillipon [CP99,
Corollaire 3] on Castelnuovo’s regularity, we have the following lower bound for the
Hilbert function:

Theorem 2.5. Let V ⊆ Gnm be an equidimensional variety of dimension d = n− k and
m = k(δ0(V )− 1). Then, for any integer ν > m, we have

H(V ; ν) ≥
(
ν + d−m

d

)
deg(V ).

In order to use these results later, we need effective upper bounds for δ0(V ′) when
V ′ is a specific type of equidimensional variety. Let us recall first an easy lemma for δ.

Lemma 2.6. Let X1, . . . , Xt be subvarieties of Gnm. Then

δ(
t⋃
i=1

Xi) ≤
t∑
i=1

δ(Xi).

Proof. It is enough to prove it for t = 2. Let X1 be defined by the equations f1, . . . , fr
with deg(fi) ≤ δ(X1) and equivalently let X2 be defined g1, . . . , gs with deg(gi) ≤ δ(X2).
Then X1 ∪X2 is defined by the equations figj for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

To state a similar lemma for δ0, we must consider more specific varieties. The
following is a variation of [AV12, Lemma 2.5.].

Lemma 2.7. Let V be an irreducible subvariety of Gnm defined over K. Let T ⊂ µn∞ ×
Gal(K/Q) be a finite family with t elements. Then

δ0(
⋃

(g,φ)∈T

gV φ) ≤ tδ0(V ).
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Proof. We say that an irreducible variety W ⊂ Gnm is imbedded in a variety X ⊂ Gnm if
W ⊂ X but W is not an irreducible component of X.

By definition of δ0(V ), there exists a variety X such that V is an irreducible compo-
nent of X and δ0(V ) = δ(X).

Let G ⊂ µn∞×Gal(K/Q) be the group generated by T and let S = {(g, φ) ∈ G | gV φ

is imbedded in X}. Consider

X̃ = X ∩

 ⋂
(g,φ)∈S

g−1Xφ−1

 .

We have that V is an irreducible component of X̃ and δ(X̃) = δ(X) = δ0(V ). Moreover,
no gV φ is imbedded in X̃, for (g, φ) ∈ G. Assume by contradiction that there is a
gV φ imbedded in X̃. We are going to show that then (gn, φn) ∈ S for every n ∈
N>0; in particular, taking n = lcm(ord(g), ord(φ)) we will have (1, Id) ∈ S which is a
contradiction. Since X̃ ⊂ X, gV φ is imbedded in X and so (g, φ) ∈ S. By induction,
we suppose (gn, φn) ∈ S for some n ≥ 1. Then X̃ ⊂ g−nXφ−n

and so gV φ is imbedded
in g−nV φ−n

which implies (gn+1, φn+1) ∈ S.
Next we define

Y =
⋃

(g,φ)∈T

gX̃φ.

Then
⋃

(g,φ) gV
φ ⊂ Y and, by lemma 2.6, δ(Y ) ≤ tδ(X̃) = tδ0(V ). Moreover, no gV φ

is imbedded in Y , for (g, φ) ∈ T . Assume by contradiction that there is a (g, φ) ∈ T
such that gV φ is imbedded in Y . Then, there exists some (g0, φ0) ∈ T such that gV φ is

imbedded in g0X̃
φ0 . Thus g−1

0 gV φ−1
0 φ is imbedded in X̃ which contradicts the definition

of X̃ since (g−1
0 g, φ−1

0 φ) ∈ G.

The following lemma is a key ingredient in the proof of Theorem 3.4.

Lemma 2.8. Let V ⊆ Gnm be an irreducible variety of dimension d = n− k, minimally
defined over K. Let φ ∈ Gal(K/Q) and let e ∈ µn∞.

(a) If eV φ 6= V , then there exists a homogeneous polynomial F of degree at most
2k(2d+ 1)δ0(V ) such that F ≡ 0 in eV φ and F 6≡ 0 in V .

(b) If [2]−1(eV φ) 6= V , then there exists a homogeneous polynomial G of degree at most
2nk(2d+ 1)δ0(V ) such that G ≡ 0 in [2]−1(eV φ) and G 6≡ 0 in V .

Proof.

(a) Since V is an irreducible variety, eV φ is also irreducible and of the same degree.
Then, using Theorem 2.4 we get, for any ν ∈ N,

H(eV φ; ν) ≤
(
ν + d
d

)
deg(V ).
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On the other hand, let V ′ = V ∪eV φ. This is d-equidimensional of degree 2 deg(V ).
Thereby using Theorem 2.5 we have, for any ν > m,

H(V ′; ν) ≥
(
ν + d−m

d

)
2 deg(V ),

where m = k(δ0(V ′)− 1). By Lemma 2.7, m ≤ 2kδ0(V ).

Taking ν = m(2d+ 1) we obtain:(
ν + d
d

)(
ν + d−m

d

)−1

≤
(

1 +
m

ν −m

)d
=

(
1 +

1

2d

)d
≤ e1/2 < 2.

Hence, H(eV φ; ν) < H(V ′; ν).

This means that there exists a homogeneous polynomial F of degree ν such that
F ≡ 0 on eV φ and F 6≡ 0 on V ′ = eV φ ∪ V , in particular F 6≡ 0 on V . Moreover,
deg(F ) = ν ≤ 2k(2d+ 1)δ0(V ), which proves (a).

(b) Let W = [2]−1(eV φ). Since W is d-equidimensional of degree 2k deg(V ), by using
Theorem 2.4 we get, for any ν ∈ N,

H(W ; ν) ≤
(
ν + d
d

)
2k deg(V ).

On the other hand, let E = {e0 ∈ µn∞ | e2
0 ∈ Stab(V )} and let W ′ = E · V . This

variety is also d-equidimensional and of degree 2r deg(V ), for some k < r ≤ n,
that is because E/Stab(V ) ' µr2 (see Corollary 2.3, r = codim(Stab(V )) and
E = ϕ−1(µr2)). Thereby, using Proposition 2.5 we have, for any ν > m,

H(W ′; ν) ≥
(
ν + d−m

d

)
2r deg(V ),

where m = k(δ0(W ′)− 1). By Lemma 2.7, m ≤ 2nkδ0(V ).

Taking ν = m(2d+ 1), we obtain:(
ν + d
d

)(
ν + d−m

d

)−1

≤ e1/2 < 2r−k.

Hence, H(W ; ν) < H(W ′, ν).

This means that there exists a homogeneous polynomial G̃ of degree ν such that
G̃ ≡ 0 on W = [2]−1(eV φ) and G̃ 6≡ 0 on W ′ = E · V , in particular there exists
e0 ∈ E such that G̃ 6≡ 0 on e0V .

Let G(x) = G̃(e−1
0 x). We have that G ≡ 0 on e0[2]−1(eV ). By definition of E,

e0 ∈ Stab([2]−1(eV )). Hence, G ≡ 0 on [2]−1(eV ). We also have that G 6≡ 0 on
e2

0V . Since e2
0 ∈ Stab(V ), that isG 6≡ 0 on V . Moreover, deg(G) = ν ≤ 2nk(2d+1),

which proves (b).
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3 Algebraic interpolation

We generalize [BS02, Lemma 1] to general dimension n and to any abelian extension of
Q with the following result.

Lemma 3.1. Let V ⊂ Gnm be a variety defined over Q(ζN ), with N 6≡ 2 (mod 4), and
let ω ∈ V be a torsion point.

1. If 4 - N , then one of the following is true:

(a) there exists η ∈ µn2 \ {1} such that η · ω ∈ V ; or

(b) there exists η ∈ µn2 such that η · ω2 ∈ V σ, where σ ∈ Gal(Q(ζN )/Q) maps
ζN 7→ ζ2

N .

2. If N = 4N ′, then one of the following is true:

(c) there exists η ∈ µn2 \ {1} such that η · ω ∈ V ; or

(d) there exists η ∈ µn2 such that η · ω ∈ V τ , where τ ∈ Gal(Q(ζN )/Q) maps

ζN 7→ ζ1+2N ′

N .

Note first that the case K = Q is included in case 1, corresponding to N = 1 (and
so σ is the identity).

Proof. Let l be the order of ω, in particular ω ∈ Q(ζl).

1. Let M = lcm(N, l). We distinguish 3 cases.

(i) If l = 4l′, then M = 4M ′. We have gcd(1 + 2M ′,M) = 1 and thus we can
take τ ∈ Gal(Q(ζM )/Q) mapping ζM 7→ ζ1+2M ′

M . Since 2M ′ ≡ 2l′ (mod l), we

have that τ maps ζl 7→ ζ1+2l′

l . On the other hand, 2M ′ ≡ 0 (mod N) because
N is odd (in fact N | M ′), therefore τ maps ζN 7→ ζN . Hence V τ = V and
ω1+2l′ ∈ V . Therefore (a) holds choosing η = ω2l′ ∈ µn2 \ {1}.

(ii) If l = 2l′ with 2 - l′, then M = 2M ′ with 2 -M ′. We have gcd(2 +M ′,M) =
1 and thus we can extend σ to a Galois automorphism in Gal(Q(ζM )/Q),
mapping ζM 7→ ζ2+M ′

M (this extends σ because N is odd and so N | M ′).
Since M ′ ≡ l′ (mod l), we have that σ maps ζl 7→ ζ2+l′

l . Hence ω2+l′ ∈ V σ.

Therefore (b) holds choosing η = ωl
′ ∈ µn2 \ {1}.

(iii) If 2 - l, then 2 - M and σ can be extended to a Galois automorphism in
Gal(Q(ζM )/Q) mapping ζM 7→ ζ2

M . In particular, σ maps ζl 7→ ζ2
l , hence

ω2 ∈ V σ. Therefore (b) holds chosing η = 1.

2. Let M = 4M ′ = lcm(N, l) and τ̃ be an automorphism in Gal(Q(ζM )/Q) mapping
ζ 7→ ζ2M ′+1

M . We distinguish 2 cases.

(i) If N | 2M ′, then l - 2M ′ (otherwise, we would have lcm(N, l) = 2M ′). Since
2M ′ ≡ 2l′ (mod l), we have that τ̃ maps ζl 7→ ζ1+2l′

l . On the other hand,

2M ′ ≡ 0 (mod N), therefore τ̃ maps ζN 7→ ζN . Hence V τ̃ = V and ω1+2M ′ ∈
V . Therefore (c) holds choosing η = ω2l′ ∈ µn2 \ {1}.

9



(ii) If N - 2M ′, then 2N ′ ≡ 2M ′ (mod N). So, we have that τ̃ maps ζN 7→ ζ1+2N ′

N

and thus τ̃|Q(ζN ) = τ . Therefore (d) holds choosing η = ω2M ′ ∈ µn2 .

As a consequence of this lemma, for any irreducible variety V we can find another
variety V ′ containing the torsion subvariety of V but not containing V .

Proposition 3.2. Let V ⊂ Gnm be an irreducible variety, minimally defined over K, of
dimension d = n − k, Vtor 6= V and let ϕ : Gnm → Grm be a homomorphism such that
Stab(V ) = Ker(ϕ), k < r ≤ n, where r is the codimension of Stab(V ) (which exists by
Corollary 2.2).

1. If K is abelian and Q(ζN ) is a cyclotomic extension of K, with 4 - N , then

Vtor ⊂ V ′ =
⋃

η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

[2]−1(ϕ−1(η)V σ),

where σ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ2
N , and V ′ ∩ V ( V .

2. If K is abelian and Q(ζN ) is its minimal cyclotomic extension, with N = 4N ′, then

Vtor ⊂ V ′ =
⋃

η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

(ϕ−1(η)V τ ),

where τ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ1+2N ′

N , and V ′ ∩ V ( V .

3. If K is not abelian, then Vtor ⊂ V ∩ V ς ( V , for any ς ∈ Gal(K/Qab ∩ K) such
that ς 6= Id.

Note that the V ′ in the proposition are finite unions of varieties. That is because,
using Corollary 2.3(iii), it suffices to take, for each η ∈ µr2, just one preimage η0 ∈ ϕ−1(η)
instead of the the whole ϕ−1(η) in the definition of V ′.

Proof.

1. Let Vtor = {ω′ ∈ V | ω′ torsion point}, therefore, it is enough to see that Vtor ⊂ V ′
to prove Vtor ⊂ V ′. To show that, we take ω′ ∈ S, then ϕ(ω′) is a torsion point
in ϕ(V ). Since ϕ(V ) is defined over Q(ζN ), with N odd, we can apply point 1 in
Lemma 3.1 to ϕ(V ), hence one of the following is true:

(a) There exists η ∈ µr2 \ {1} such that ϕ(ω′) ∈ ηϕ(V ), hence ω′ ∈ ϕ−1(η)V .
Moreover, by definition of ϕ we have that ϕ−1(η) 6∈ Stab(V ) and therefore
(ϕ−1(η)V ) ∩ V ( V .
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(b) There exists η ∈ µr2 such that ϕ(ω′)2 ∈ ηϕ(V )σ, then ω′ ∈ [2]−1(ϕ−1(η)V σ).
Moreover, we have that [2]−1(ϕ−1(η)V σ)∩V ( V . To prove that, assume V ⊂
[2]−1(ϕ−1(η)V σ), hence, since ϕ−1(η0) ∈ Stab([2]−1(ϕ−1(η)V σ) for every
η0 ∈ µr2, we have ⋃

η0∈µr2

ϕ−1(η0)V ⊂ [2]−1(ϕ−1(η)V σ).

Since ϕ−1(µr2) ∩ Stab(V ) = {1} (see (a) above) and all the translates of V
have the same stabilizer, we have that that deg(

⋃
ϕ−1(η0)V ) = 2r deg(V ).

On the other hand, deg([2]−1(ϕ−1(η)V σ)) = 2k deg(V ) (see [Hin88, Lemme
6(i)]) and since k < r, this leads to a contradiction.

Thereby, ω′ ∈ V ′ for every ω′ ∈ Vtor and thus Vtor ⊂ V ′. Moreover, V ′ ∩ V ( V .

2. The proof follows similar to the previous one, using point 2 in Lemma 3.1. Note
that, in this case, we need the minimality of N to guarantee that V τ 6= V and, as
a consequence, that V ∩ V ′ 6= V .

3. Since every torsion coset is defined over Qab, it is invariant by ς. Hence, for every
torsion coset ωH ⊂ V , we have that ωH ⊂ V ς and V 6= V ς , due to the minimality
of K.

Remark 3.3. We can consider K = C as the field of definition of V . Then it follows
equivalently to the case when K is not abelian to prove that

Vtor ⊂ V ∩ V ς ( V ,

for any ς ∈ Gal(C/Qab) such that ς 6= Id.

The following theorem is a specialization of [AV09, Theorem 1.2] to torsion subva-
rieties. Keeping the notation of the proposition above, note that ϕ−1(η)2 lies in the
stabilizer of V , for any η ∈ µr∞. This is a fundamental so that we can use Lemma 2.8 in
the proof of the following theorem.

Theorem 3.4. Let V ⊂ Gnm be an irreducible variety of dimension d = n− k and not a
torsion coset. Let

θ0 = θ0(V ) = k(22n + 2n+1 − 2)(2d+ 1)δ0(V ).

Then Vtor is contained in a hypersurface Z of degree at most θ0, which does not contain
V ; i.e. Vtor ⊂ V ∩ Z  V .

Proof. Let V be minimally defined over K. To prove this theorem, we distinguish three
cases, according to Proposition 3.2.

11



1. If K is abelian and Q(ζN ) is a cyclotomic extension of K, with 4 - N , then by point
1 in Proposition 3.2 we have that

Vtor ⊂ V ′ =

 ⋃
η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

[2]−1(ϕ−1(η)V σ)

 ,

where σ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ2
N and V ∩ V ′ ( V .

To prove the theorem we find, for each component of V ′, a hypersurface containing
it, but not containing V . To conclude, it is enough to take Z as the union of these
hypersurfaces and the only thing left to check is the degree of Z.

For any η ∈ µr2 \ {1}, by setting e = ϕ−1(η) and φ = Id, we can use (a) of Lemma
2.8 and we obtain a homogeneous polynomial Fη of degree at most 2k(2d+1)δ0(V )
such that Fη ≡ 0 on ϕ−1(η)V and Fη 6≡ 0 on V .

On the other hand, for any η ∈ µr2, by setting e = ϕ−1(η) and φ = σ, we can use
(b) of Lemma 2.8 and we obtain a homogeneous polynomial Gη of degree at most
2nk(d+ 1)δ0(V ) such that Gη ≡ 0 on [2]−1(ϕ−1(η)V ) and Gη 6≡ 0 on V .

Therefore, if we take

Z = V

 ∏
η∈µr2\{1}

Fη ·
∏
η∈µr2

Gη

 ,

we have

deg(Z) ≤

 ∑
η∈µr2\{1}

2k(2d+ 1)δ0(V )

+

∑
η∈µr2

2nk(2d+ 1)δ0(V )

 ≤ θ0

and Vtor ⊂ V ∩ V ′ ⊂ V ∩ Z ( V .

2. If K is abelian and Q(ζN ) is its minimal cyclotomic extension, with N = 4N ′, then
by point 2 in Proposition 3.2 we have

Vtor ⊂ V ′ =

 ⋃
η∈µr2\{1}

(ϕ−1(η)V ) ∪
⋃
η∈µr2

(ϕ−1(η)V τ )

 ,

where τ ∈ Gal(Q(ζN )/Q), mapping ζN 7→ ζ1+2N ′

N and V ∩ V ′ ( V . We proceed as
before.

For any η ∈ µr2 \ {1}, by setting e = ϕ−1(η) and φ = Id, we can use (a) of Lemma
2.8 and we obtain a homogeneous polynomial Fη of degree at most 2k(2d+1)δ0(V )
such that Fη ≡ 0 on ϕ−1(η)V and Fη 6≡ 0 on V .

On the other hand, for any η ∈ µr2, by setting e = ϕ−1(η) and φ = τ , we can use
again (a) of Lemma 2.8 and we obtain a homogeneous polynomial F ′η of degree at
most 2k(2d+ 1)δ0(V ) such that F ′η ≡ 0 on ϕ−1(η)V τ and F ′η 6≡ 0 on V .
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Therefore, if we take

Z = V

 ∏
η∈µr2\{1}

Fη ·
∏
η∈µr2

F ′η

 ,

we have

deg(Z) ≤

 ∑
η∈µr2\{1}

2k(2d+ 1)δ0(V )

+

∑
η∈µr2

2k(2d+ 1)δ0(V )

 ≤ θ0

and Vtor ⊂ V ∩ V ′ ⊂ V ∩ Z ( V .

3. If K is not abelian, by point 3 in Proposition 3.2, we have that Vtor ⊂ V ∩ V ς for
any ς ∈ Gal(K/Qab ∩K) such that ς 6= Id.

By setting e = 1 and φ = ς we can use (a) in Lemma 2.8 and we obtain a
homogeneous polynomial F of degree at most 2k(2d + 1)δ0(V ) such that F ≡ 0
on V ς and F 6≡ 0 on V . Therefore, if we take Z = V (F ), then we have that
deg(Z) ≤ θ0 and Vtor ⊂ V ∩ V ς ⊂ V ∩ Z ( V .

If V is not defined over an extension of Q, using Remark 3.3 it follows analogous to
point 3 that the theorem also holds in this case.

4 Induction theorems

The following theorems correspond to Theorem 2.2 and Theorem 1.2 in [AV09]. The
steps followed in both proofs are analogous to the ones in the proofs of Amoroso and
Viada. For the convenience of the reader, we reproduce the proofs.

Theorem 4.1. Let V0 ⊂ V1 subvarieties of Gnm of codimension k0 and k1 respectively
and V0 irreducible. Let

θ = θ(V1) = ((2n− 1)k0(22n + 2n+1 − 2))k0−k1+1δ(V1).

Then either

(a) there exists a torsion coset B such that V0 ⊆ B ⊆ V1; or

(b) there exists a hypersurface Z of degree at most θ such that V0 * Z and V0,tor ⊆ Z.

Proof. We assume the statement is false, that is

(a’) V0 is not contained in any torsion coset B ⊂ V1; and

(b’) for every hypersurface Z satisfying V0,tor ⊂ Z, we also have thatV0 ⊂ Z.
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We define, for r = 0, . . . , k0 − k1 + 1,

Dr = ((2n− 1)k0(22n + 2n+1 − 2))rδ(V1),

and we build a chain of varieties

X0 = V1 ⊇ · · · ⊇ Xk0−k1+1

such that, for every r = 0, . . . , k0 − k1 + 1, the following holds:

(i) V0 ⊆ Xr,

(ii) each irreducible component of Xr containing V0 has codimension at least r + k1,
and

(iii) δ(Xr) ≤ Dr.

If this holds for r = k0− k1 + 1, we arrive to a contradiction (because we would have
a component of Xr of codimension at least k0 + 1 containing V0).

We build the chain by recursion:

• For r = 0, X0 = V1 satisfies the properties.

• For r + 1 > 1, we assume we have already constructed Xr. Let W1, . . . ,Wt be the
irreducible components of Xr such that

V0 ⊂Wj ⇔ 1 ≤ j ≤ s.

The property (i) guaranties s > 0 and, together with property (ii), says r + k1 ≤
codim(Wj) ≤ k0 for 1 ≤ j ≤ s.
For every j = 1, . . . , s we have δ0(Wj) ≤ δ(Xr) ≤ Dr ≤ θ and V0 ⊆ Wj ⊂ V1,
with codim(Wj) = k. Hence, by hypothesis (a’), Wj is not a torsion coset and
we can apply Theorem 4.1 to Wj . Let Zj be the hypersurface of degree at most
(2d + 1)k(22k + 2k+1 − 2)δ0(Wj) ≤ (2n − 1)k0(22k0 + 2k0+1 − 2)Dr = Dr+1 such
that Wj,tor ⊆ Wj ∩ Zj  Wj . Since V0 ⊆ Wj , V0,tor ⊆ Wj,tor ⊂ Zj and, together
with the fact that deg(Zj) ≤ Dr+1 ≤ θ, hypothesis (b’) guaranties V0 ⊂ Zj .
So

V0 ⊂
s⋂
j=1

Zj ,

and we define

Xr+1 = X ∩
s⋂
j=1

Zj .

In particular, V0 ⊆ Xr+1 and property (i) is satisfied. Moreover, property (iii) is
also satisfied, because

δ(Xr+1) = max{δ(Xr), degZ1, . . . ,degZs} ≤ max{Dr, Dr+1} = Dr+1.
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By taking W ′j = Wj ∩ Z1 ∩ · · · ∩ Zs for every j = 1, . . . , t we have

Xr+1 = W ′1 ∪ · · · ∪W ′s ∪W ′s+1 ∪W ′t .

For j = 1, . . . , s, we have that every irreducible component of W ′j has codimension
at least codim(Wj) + 1 ≥ r + k1 + 1; and for j = s + 1, . . . , t V0 6⊂ Wj and thus
V0 is not contained in any irreducible component of W ′j . This shows that property
(ii) is satisfied.

Theorem 4.2. Let V ⊂ Gnm be a variety of dimension d = n− k > 0, and let

θ = θ(V ) = ((2n− 1)(n− 1)(22n + 2n+1 − 2))n−kδ(V ).

Let
Vtor = Gk ∪ · · · ∪Gn,

where Gj is the reunion of the maximal torsion cosets in V of codimension j (possibly
empty). Then, for r = k, . . . , n,

r∑
i=k

θr−i deg(Gi) ≤ θr.

Proof. Let V = Xk ∪ · · · ∪ Xn, where Xj is the (n − j)-equidimensional part of V for
every j. We build the family Gk, . . . , Gn of the statement recursively.

Claim. For every r = k, . . . , n there exist equidimensional varieties Gk, . . . , Gr−1

and X ′r of codimension k, . . . , r respectively, such that

(i) for j = k, . . . , r − 1, the variety Gj is a finite union of torsion cosets;

(ii) Vtor ⊆ Gk ∪ · · · ∪Gr−1 ∪X ′r ∪Xr+1 ∪ · · · ∪Xn; and

(iii)
∑r−1

i=k θ
r−i deg(Gi) + deg(X ′r) ≤

∑r
i=k θ

r−i deg(Xi).

If the claim holds for r = n, we take Gn = X ′n. By assertion (ii) of our claim,
Vtor ⊂ Gk ∪ · · · ∪Gn. Moreover, assertion (ii) also guaranties that Gr ⊂ X ′r which, using
assertion (iii), implies that

r∑
i=k

θr−i deg(Gi) ≤
r∑
i=k

θr−i deg(Xi)

A result of Philippon [Phi95, Corollaire 5] (with m = n and S = Pn) shows that, for
θ ≥ δ(V ), we have

r∑
i=k

θr−i deg(Xi) ≤ θr,

which gives the inequality of the statement.
It remains to proof the claim. We build the family as follows.
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• For r = k, we take X ′k = Xk and the claim holds.

• For k < r + 1 ≤ n, we assume we have already a family Gk, . . . , Gr−1, X
′
r which

satisties the claim. If X ′r has a component which is imbedded in Gk, . . . , Gr−1 or
a component such that does not intersect Vtor, we descart it (this won’t have any
effect on the veracity of our claim). Next, let

X ′r = Gr ∪W1 ∪ · · · ∪Ws

be the decomposition of X ′r such that Gr is the union of all torsion cosets B which
are components of X ′r, and W1, . . . ,Ws are the rest of irreducible components of
X ′r.

For every j = 1, . . . , s, Wj satisfies the following.

Remark. There does not exist any torsion coset B such that Wj ⊆ B ⊆ V .

Proof. If a torsion coset B as such exists, B ⊂ Vtor and codim(B) ≤ r. Therefore

Wj ⊆ B ⊆ Gk ∪ · · · ∪Gr,

which contradicts the definition of Gr or the fact that no component of X ′r is
imbedded in Gk ∪ · · · ∪Gr−1.

We apply Theorem 4.1 to V0 = Wj and V1 = V , where k0 = r ≤ n− 1 and k1 = k.
Conclusion (a) of the theorem cannot be true, due to the previous remark; hence
there exists a hypersurface Zj of degree at most θ such that Wj,tor ⊂Wj∩Zj  Wj .
Krull’s Hauptschatz implies that Wj ∩ Zj is either empty or a equidimensional
variety of codimension r + 1. That allows us to define

X ′r+1 = Xr+1 ∪
s⋃
j=1

(Wj ∩ Zj).

By construction, properties (i) and (ii) of our claim are satisfied for r+1. Moreover,
by Bézout’s theorem, the following inequality holds

deg(X ′r+1) ≤ θ

 s∑
j=1

deg(Wj)

+ deg(Xr+1).

Since X ′r = Gr ∪W1 ∪ · · · ∪Ws, we obtain

deg(X ′r+1) ≤ θ
(
deg(X ′r)− deg(Gr)

)
+ deg(Xr+1)
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and then, adding
∑r

i=k θ
r+1−i deg(Gi) to both sides of the inequality,

r∑
i=k

θr+1−i deg(Gi) + deg(X ′r+1) ≤
r∑
i=k

θr+1−i deg(Gi)

+θ(deg(X ′r)− deg(Gr)) + deg(Xr+1)

= θ

(
r−1∑
i=k

θr−i deg(Gi) + deg(X ′r)

)

+ deg(Xr+1).

By the induction, we have
∑r−1

i=k θ
r−i deg(Gi) + deg(X ′r) ≤

∑r
i=k θ

r−i deg(Xi),
therefore

θ

(
r∑
i=k

θr−i deg(Gi) + deg(X ′r)

)
+ deg(Xr+1) ≤

r+1∑
i=k

θr+1−i deg(Xi),

proving that (iii) of our claim is satisfied for r + 1.

5 Conclusion

Theorem 1.3 follows naturally from Theorem 4.2. Observe that the number of maximal
torsion cosets in V is bounded by the degree of Vtor and deg(Vtor) =

∑n
i=k deg(Gi).

Moreover, we have that

n∑
i=k

deg(Gi) ≤
n∑
i=k

θn−1 deg(Gi) ≤ θn

and we can bound the number of torsion cosets in V by θn, proving Theorem 1.3. We
obtain Corollary 1.4 as a particular case of this result.

Corollary 1.4. Let V be a hypersurface in Gnm, then the number of maximal torsion
cosets in V is bounded by

cn deg(V )n,

where cn = ((2n− 1)(n− 1)(2n + 2n+1 − 2))n(n−1).

From the inequality in Theorem 4.2, we obtain also the following result:

Corollary 5.1. Let V be a subvariety of Gnm of codimension k and let

θ = ((2n− 1)(n− 1)(22n + 2n+1 − 2))n−kδ(V ).

The number of maximal torsion cosets in V of codimension r is bounded by θr.
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Proof. First observe that Gr in Theorem 4.2 is the union of the maximal torsion cosets
in V of codimension r. Hence, it is enough to show that deg(Gr) ≤ θr to prove the
statement. By Theorem 4.2 we have that

∑r
i=k θ

r−k deg(Gi) ≤ θr and, in particular,
deg(Gr) ≤ θr.

Remark. Following the theorems presented by Amoroso and Viada [AV09], we could
obtain, for each maximal torsion coset ωH in V , δ0(H) ≤ θ. However, we have the
following sharper bound:

δ(H) ≤ nδ(V ),

which is a result of Bombieri and Gubler [BG06, Theorem 3.3.8].

Remark. In Theorem 1.3 we could give a more precise bound, depending on the field
of definition of our variety V . To understand this, first observe that the varieties V ′ we
obtain in Proposition 3.2 are defined over the same field as V . Hence, in Theorem 3.4
we could consider changing the definition of θ0, depending on the field of definition of
V .

In the case that V is not defined over Qab, Theorem 3.4 remains true for

θ0 = 2k(2d+ 1)δ0(V ).

Using this definition of θ0 in the induction theorems, we can improve the bound in
Theorem 1.3 for this case. Hence, if V is not defined over Qab, the number of maximal
torsion cosets in V is bounded by θn, where

θ = (2(2n− 1)(n− 1))n−kδ(V ).

In the case that V is defined over Qab, this does not change significantly our bound
since the order of n in the constant would remain essentially the same.

5.1 Example

We present a final example to show that, in Corollary 1.4, the exponent of d is optimal
and the constant cn must depend on n. To do this, we need first a result of Conway and
Jones on vanishing sums of roots of unity. Let us define for m ∈ N>0:

Ψ(m) := 2 +
∑
p|m

p prime

(p− 2).

Then we have:

Theorem 5.2 ([CJ76]). Let ξ1, . . . , ξN be N roots of unity. Let a1, . . . , aN ∈ Z such
that S = a1ξ1 + . . . + aNξN = 0 and minimal (i.e. there are no non-trivial vanishing
subsums of S). Let

m = lcm(ord(ξ2/ξ1), . . . , ord(ξN/ξ1)).

Then m is squarefree and Ψ(m) ≤ N .
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Example. First of all, let p1, . . . , pn be n different primes such that pi > 2n for all i =
1, . . . , n. In particular, we will have that Ψ(pjpk) > 2n for every different j, k = 1, . . . , n.
Let W be the variety defined by

g(X1, . . . , Xn) = ζp1 + · · ·+ ζpn +X1 + . . .+Xn.

We claim that, if ω ∈Wtor, then

{ω1, . . . , ωn} = {−ζp1 , . . . ,−ζpn}.

Proof. Take ω ∈ µn∞ such that g(ω) = 0 and consider

S = g(ω) = ζp1 + · · ·+ ζpn + ω1 + · · ·+ ωn.

Let S = S1 + · · ·+St be a decomposition of S in minimal subsums, such that Si = 0
for every i = 1, . . . , r. If, up to reordering, t = n and Si = ζpi + ωi, we are done.

Suppose that this is not the case. Hence, there exists a minimal vanishing non-trivial
subsum S′ with at least three elements. Without loss of generality, we can assume that
S′ has ζpj and ζpk as summands, for some different j, k = 1, . . . , n. Taking m′ as in
Theorem 5.2, we have that pjpk | m′ and so Ψ(m′) ≥ Ψ(pjpk) > 2n. On the other
hand, since S′ is a minimal sum with at most 2n summands and Theorem 5.2 affirms
Ψ(m′) ≤ 2n which contradicts the fact that Ψ(m′) > 2n. Therefore, a vanishing subsum
as S′ does not exist and our claim is proved.

Since our claim holds, we have

Wtor = {ω ∈ µn∞ | {ω1, . . . , ωn} = {−ζp1 , . . . ,−ζpn}} .

So Wtor = Wtor is a discrete ensemble with n! elements.
It is enough to take V = [d]−1(W ), which is the hypersurface in Gnm defined by

f(X1, . . . , Xn) = ζp1 + · · ·+ ζpn +Xd
1 + . . .+Xd

n.

Then, we have that Vtor = [d]−1(Wtor) which is the following discrete ensemble:

Vtor =
{
ω ∈ Gnm | {ωd1 , . . . , ωdn} = {−ζp1 , . . . ,−ζpn}

}
.

Hence, the number of isolated torsion points in V is n!dn. In this case this is, in fact,
the number of maximal torsion cosets in V .
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