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UNIFORMLY ACCURATE TIME-SPLITTING SCHEMES FOR
NLS IN THE SEMICLASSICAL LIMIT

PHILIPPE CHARTIER, LOÏC LE TREUST, AND FLORIAN MÉHATS

Abstract. We construct new numerical methods for the nonlinear Schrödinger
equation in the semiclassical limit. We introduce time-splitting schemes for a
phase-amplitude reformulation of the equation where the dimensionless Planck
constant is not a singular parameter anymore. Our methods have an accuracy
which is spectral in space, of second or fourth-order in time, and independent
of the Planck constant before the formation of caustics. The scheme of second-
order preserves exactly the L2 norm of the solution, as the flow of the nonlinear
Schrödinger equation does. In passing, we introduce a new time-splitting method
for the eikonal equation, whose precision is spectral in space and of second or
fourth-order in time.

1. Introduction

1.1. Motivation. We consider the solution Ψε : R+ × Rd → C, d ≥ 1 of the
following nonlinear Schrödinger (NLS) equation:

iε∂tΨ
ε = −ε

2

2
∆Ψε + |Ψε|2Ψε (1.1)

where ε > 0 is the semiclassical parameter. The initial datum is assumed to be of
the form

Ψε(0, ·) = A0(·)eiS0(·)/ε, (1.2)
with

‖A0‖L2(Rd) = 1.

Note that the L2 norm, the energy and the momentum of Ψε(0, ·) are preserved by
the flow of equation (1.1) whenever Ψε(0, ·) ∈ H1(Rd), i.e.

Mass:
d

dt
‖Ψε(t, ·)‖2L2(Rd) = 0,

Energy:
d

dt

∫
Rd

(
ε2|∇Ψε(t, x)|2 + |Ψε(t, x)|4

)
dx = 0,

Momentum:
d

dt
ε Im

∫
Rd

Ψε(t, x)∇Ψε(t, x)dx = 0.

(1.3)

Equation (1.1) appears in several domains of physics. In particular, it has been
widely used for the description of the behavior of Bose-Einstein condensates as well
as for the study of the propagation of lasers (see [31] for a detailed presentation of the
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physical context). In the semiclassical regime where the rescaled Planck constant
ε is small, an asymptotic study of this equation provides relevant informations to
describe the observables of Ψε through the laws of hydrodynamics. We refer to [10]
for a detailed presentation of the semiclassical analysis of the NLS equation and to
[24] for a review of both theoretical and numerical issues.

Generally speaking, numerical methods for equation (1.1) exhibit an error of the
form

O
(

∆tp + ∆xq

εr

)
(1.4)

where ∆t and ∆x are the time and space steps and p, q, r > 0. Hence, in order to
get a prescribed accuracy, one has to keep the ratios ∆t/εr/p and ∆x/εr/q small
and constant. In practice, these constraints soon become impossible to satisfy as
ε→ 0.

In this paper, we are interested in numerical schemes that are Uniformly Accurate
(UA) with respect to ε. In other words, we look for methods that provide, for fixed
time and space meshes, approximate solutions whose accuracy does not degrade as
ε goes to 0, i.e. such that r = 0 in (1.4).

In the spirit of the WKB techniques (Wentzel, Kramers, Brillouin), we decompose
Ψε as the product of a slowly varying amplitude and a fast oscillating factor

Ψε(t, ·) = Aε(t, ·)eiSε(t,·)/ε. (1.5)

From this point onwards, various choices are possible, depending for instance on
whether Aε is complex or not. In [21], taking Aε ∈ C, the following system of
equations was considered

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = 0, (1.6a)

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
(1.6b)

with
Sε(0, ·) = S0(·) and Aε(0, ·) = A0(·)

and its analysis was performed with the tools of symmetrizable quasilinear hyper-
bolic systems. Under appropriate regularity assumptions, when ε→ 0, Aε ∈ C and
Sε ∈ R converge to the solutions A0 and S0 of

∂tS
0 +
|∇S0|2

2
+ |A0|2 = 0, (1.7a)

∂tA
0 +∇S0 · ∇A0 +

A0

2
∆S0 = 0. (1.7b)

Let us note that (ρ, v) = (|A0|2,∇S0) is solution of the following system of com-
pressible Euler equations:

∂tv + v · ∇v +∇ρ = 0, (1.8a)
∂tρ+ div(ρv) = 0. (1.8b)

Remark 1.1. The simplest way to relate the semiclassical limit of equation (1.1)
to hydrodynamic equations is to use the Madelung transform [27]

Ψε(t, ·) =
√
ρε(t, ·)eiSε(t,·)/ε (1.9)
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which amounts to choosing Aε ∈ R+. Nevertheless, with this formulation, problems
occur in the presence of vacuum, i.e. whenever ρε vanishes, from both analytical
and numerical points of view [16, 12].

An important difficulty raised by formulation (1.6) comes from the formation
of caustics in finite time, see [10]. As a matter of fact, the solution of (1.6) may
cease to be regular even if Ψε is globally well-defined for ε > 0. To overcome this
difficulty, Besse, Carles and Méhats [6] have introduced an equivalent system of
equations with an asymptotically vanishing viscosity term in the eikonal equation
(1.6a). This allows to get global existence for ε > 0 at least in the one-dimensional
case. With these additional terms, (1.6) is now replaced by

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = ε2∆Sε, (1.10a)

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε (1.10b)

where
Sε(0, x) = S0(x) and Aε(0, x) = A0(x), x ∈ Rd.

Let us emphasize that both systems (1.6) and (1.10) are equivalent to the original
equation (1.1) in the following sense: as long as the solution (Sε, Aε) of (1.6) (resp.
(1.10)) is smooth, the function Ψε defined by (1.5) solves (1.1).

Remark 1.2. If we consider the WKB-ansatz (1.5), the invariants (1.3) become

Mass:
d

dt
‖Aε‖2L2(Rd) = 0,

Energy:
d

dt

∫
Rd

(
|ε∇Aε + iAε∇Sε|2 + |Aε|4

)
dx = 0,

Momentum:
d

dt
Im

∫
Rd

Aε (ε∇Aε + iAε∇Sε) dx = 0.

(1.11)

Remark 1.3. The Cole-Hopf transformation [20, Section 4.4.1]

wε = exp

(
− S

ε

2ε2

)
− 1

transforms (1.10a) into

∂tw
ε − |A

ε|2
2ε2

(wε + 1) = ε2∆wε.

for which the regularizing effect of the viscosity term becomes more apparent.

Since in (1.10), ε does not appear as a singular parameter anymore, this formu-
lation is a good candidate upon which building UA schemes.

1.2. Existence, uniqueness and uniform boundedness results. Equation (1.1)
has been widely studied and existence and uniqueness results can be found for in-
stance in [15].

The first existence and uniqueness result for the solutions of (1.6) has been ob-
tained by Grenier [21] using a reformulation of the problem in terms of symmetriz-
able quasilinear hyperbolic systems. Later [6], his proof has been adapted to (1.10).
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Theorem 1.4 (Grenier, Besse-Carles-Méhats). Let εmax > 0. Assume that (S0, A0)
belongs to Hs+1(Rd) ×Hs(Rd) where s > d/2 + 1. Then, there exist T > 0, inde-
pendent of ε ∈ (0, εmax] and a unique solution

(Sε, Aε) ∈ C([0, T ];Hs+1(Rd)×Hs(Rd))

of system of equations (1.6), resp. (1.10). Moreover, (Sε, Aε) is bounded in

C([0, T ];Hs+1(Rd)×Hs(Rd))

uniformly in ε and

Ψε(t, ·) = Aε(t, ·)eiSε(t,·)/ε

is the unique solution of (1.1) with the initial datum (1.2).

Remark 1.5. Besse et al. [6] also proved that in the one-dimensional case, the
solution of (1.10) is global in time under the assumptions of Theorem 1.4 and that
(Sε, Aε) is globally uniformly bounded.

1.3. State of the art. Many numerical schemes have been introduced to approxi-
mate the solutions of (1.1): finite difference methods [33, 17, 1, 25], splitting meth-
ods [29, 32, 5, 26, 19, 18], relaxation schemes [4] and symplectic methods [30].
Nevertheless, none of these schemes is Uniformly Accurate (UA) with respect to
ε. In particular, for the time-splitting method in the linear case, it is enough to
keep the ratios ∆x/ε and ∆tp/ε small enough to get a fixed precision on the wave
function, where p is the order of the scheme [18, 2]. In the nonlinear framework,
numerical experiments [19, 13, 3] suggest that more restrictive conditions have to
be imposed after the appearance of the first caustics in (1.7). We refer to [19] for a
theoretical study of the local error estimates for the semiclassical NLS equation.

However, as far as the observables (density, current, . . . ) are concerned, the
situation is a little bit different. Bao, Jin, and Markowich [2] proved, using the
Wigner transform, that the splitting method for the linear case is UA in time but
not in space. More precisely, to get a prescribed accuracy on the observables,
the quantities ∆x/ε and ∆t have to be chosen small enough. These authors also
performed extensive numerical simulations in both linear [2] and nonlinear [3] cases.
Later on, Carles [11] studied the nonlinear case from a theoretical point of view.
In particular, he proved that the same conclusion persists before the caustics for
Hartree type nonlinearities and in the weakly nonlinear geometric optics case, i.e.
when the nonlinearity is of the form εf(|Ψε|2)Ψε instead of f(|Ψε|2)Ψε.

As mentioned above, the main advantage of the WKB reformulations over (1.1)
stems from the fact that the semiclassical parameter ε does not give rise to singular
perturbations any longer. Hence, numerical schemes based on these systems of
equations are more likely to be UA, at least prior to the appearance of caustics.

Previous attempts usingWKB formulations suffer from several drawbacks, namely,
either the presence of vacuum for the Madelung equation used in [16], or the oc-
curence of singularities in finite time for fixed ε > 0 in (1.6). To overcome this
difficulty, UA schemes based on formulation (1.10) have been introduced in [6],
taking advantage of the underlying hyperbolic structure and of the regularization
properties of the parabolic term. Nevertheless, these schemes are built upon finite
differences methods, are thus subject to CFL stability conditions and are of low
order in time and space.
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In this paper, in contrast with [6], we shall consider time-splitting methods for
(1.10). In the next sections, it will become clear that splitting method indeed possess
several advantages:
(i) they do not suffer from stability restrictions on the time step;
(ii) they are easy to implement;
(iii) high-order of convergence in time can be attained as well as spectral conver-

gence in space.
Note that the main difficulty to get high-order schemes comes from the fact that

(1.10) contains Schrödinger as well as parabolic terms: we postpone the discussion
of this point to the beginning of Section 3.

As a by-product, we also derive a new numerical scheme based on splitting tech-
niques to approximate the solution of the Hamilton-Jacobi (eikonal) equation

∂tS +
|∇S|2

2
= 0

based on the Cole-Hopf transform.
Finally, let us mention that we have chosen to focus here on the semiclassical

regime of (1.1), referred to as supercritical (see [10]). Nevertheless, our approach is
also relevant in other semiclassical regimes: either the linear Schrödinger equation
with a given potential, or the weakly nonlinear geometric optics, where |Ψε|2Ψε is
replaced with ε|Ψε|2Ψε.

The outline of the paper is as follows. In Section 2, we introduce numerical
schemes of order one and two in time that preserve exactly the L2 norm. In Section
3, we present the time-splitting strategy that gives rise to schemes of high order
in time. In Section 4, we present extensive numerical experiments comparing our
methods to the Strang splitting method studied in [2, 3].

2. Second-order numerical scheme

The UA scheme that we now introduce is built upon splitting techniques (see for
instance [28] for a general exposition). The first building block is the resolution of
the eikonal equation. In the sequel, h denotes the time step.

2.1. The eikonal equation. Let us remind that the Cole-Hopf transformation

wε = exp

(
− S

ε

2ε2

)
− 1

ensures that solving

∂tS
ε +
|∇Sε|2

2
= ε2∆Sε, Sε(0, ·) = S0(·), (2.1)

is equivalent to solving the heat equation

∂tw
ε = ε2∆wε, wε(0, ·) = exp

(
−S0(·)

2ε2

)
− 1, (2.2)

(see Remark 1.3).
Due to the limitations of the floating-point representation, it is completely inac-

curate to solve (2.1) using (2.2) for small values of ε. To overcome this difficulty,
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we split the nonviscous eikonal equation

∂tS +
|∇S|2

2
= 0, S(0, ·) = S0(·), (2.3)

into two subequations, at each time step; the parabolic term ε2∆S will be dealt
with separately. The key idea is to allow S to be a complex-valued function despite
the fact that the solutions of equations (1.6a), (1.10a), (2.1) and (2.3) take their
values in R.
First flow: let us define φ1

h as the exact flow at time h ∈ R of equation

∂tS +
∇S · ∇S

2
− i∆S = 0 (2.4)

where ∇S ·∇S =
∑d

k=1(∂kS)2. This equation can be solved thanks to the following
modified Cole-Hopf transformation

w = exp

(
iS

2

)
− 1

leading to

i∂tw = −∆w, w(0, ·) = exp

(
iS(0, ·)

2

)
− 1, (2.5)

solved in the Fourier space and

S(h, ·)− S(0, ·) = −2i log

(
1 +

w(h, ·)− w(0, ·)
w(0, ·) + 1

)
.

Remark 2.1. This formula is well-defined whenever∥∥∥∥w(h, ·)− w(0, ·)
w(0, ·) + 1

∥∥∥∥
L∞

< 1,

a condition ensured as soon as h is small enough.

Second flow: φ2
h is the exact flow at time h ∈ R of the free Schrödinger equation

∂tS + i∆S = 0. (2.6)

We are now able to define time-splitting schemes for equation (2.3). In particular,
the Lie-Trotter splitting formula,

Reφ1
h ◦ φ2

h (2.7)

gives us an approximation of first-order in time of the solution of (2.3) (which is
real-valued) while the Strang splitting formula

Reφ1
h/2 ◦ φ2

h ◦ φ1
h/2 (2.8)

provides a second-order method.
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2.2. Numerical schemes for system of equations (1.10). We are now in posi-
tion to introduce our numerical schemes. To this aim, we split system (1.10)

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = ε2∆Sε,

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε,

into four subsystems.
First flow: Let us define ϕ1

h as the approximate flow at time h ∈ R of the system
of equations:

∂tS +
|∇S|2

2
= 0, (2.9a)

∂tA+∇S · ∇A+
A

2
∆S =

i∆A

2
. (2.9b)

The eikonal equation (2.9a) is solved according to Sec. 2.1. Equation (2.9b) is dealt
with by noticing that w = A exp (iS) satisfies the free Schrödinger equation

i∂tw = −1

2
∆w.

Second flow: ϕ2
h is the exact flow at time h ∈ R of

∂tS = 0, (2.10a)

∂tA =
i (ε− 1) ∆A

2
(2.10b)

solved in the Fourier space.
Third flow: ϕ3

h is the exact flow at time h ∈ R of

∂tS = −|A|2, (2.11a)
∂tA = 0. (2.11b)

Fourth flow: ϕ4
h is the exact flow at time h ∈ R+ of

∂tS = ε2∆S, (2.12a)
∂tA = −iεA∆S. (2.12b)

Equation (2.12a) is solved in the Fourier space and the solution of (2.12b) is

A(h, ·) = exp
(
−iε−1(S(h, ·)− S(0, ·))

)
A(0, ·).

Remark that ϕ4
h gathers the terms of (1.10) which are not in (1.6) and can thus be

viewed as a regularizing flow.

Remark 2.2. Let us stress that ϕ4
h is not defined for h such that Reh < 0. As a

matter of fact, the propagator ez∆ is well-defined, in the distributional sense, if and
only if Re(z) ≥ 0.

We consider now the following methods for (1.10)

ϕ1
h ◦ ϕ2

h ◦ ϕ3
h ◦ ϕ4

h (2.13)

and
ϕ1
h/2 ◦ ϕ2

h/2 ◦ ϕ3
h/2 ◦ ϕ4

h ◦ ϕ3
h/2 ◦ ϕ2

h/2 ◦ ϕ1
h/2. (2.14)
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Standard results on splitting schemes [22] straightforwardly lead to the following
local error estimates, inducing respectively global orders one and two for (2.13) and
(2.14).

Proposition 2.3. Assume that (A0, S0) ∈ Hs(Rd) ×Hs+1(Rd) for a large enough
s. Then, the following local error estimates hold true:

‖ϕ1
h ◦ ϕ2

h ◦ ϕ3
h ◦ ϕ4

h(S0, A0)− (Sε(h, ·), Aε(h, ·))‖L2 ≤ Ch2

‖ϕ1
h/2 ◦ ϕ2

h/2 ◦ ϕ3
h/2 ◦ ϕ4

h ◦ ϕ3
h/2 ◦ ϕ2

h/2 ◦ ϕ1
h/2(S0, A0)− (Sε(h, ·), Aε(h, ·))‖L2 ≤ Ch3

where C does not depend on ε ∈ [0, εmax] and (Sε, Aε) is the solution of system
(1.10).

Remark 2.4. It is worth mentioning that both schemes preserve exactly the L2

norm of A since all ϕ1
h, ϕ

2
h, ϕ

3
h and ϕ4

h do so.

3. Fourth-order numerical scheme

The splitting of (1.10) into the four flows (2.9), (2.10), (2.11), (2.12) proposed in
the previous section is incompatible with splitting methods of order higher than 2
with real-valued coefficients. Indeed, it is known that such methods involve at least
one negative time step for each part of the splitting (see for instance [7]). Therefore,
we cannot built such a scheme for (1.10) because of its time irreversibility.

To circumvent this difficulty, it is possible to use splitting methods with complex
coefficients [14, 8, 9, 23]. Let us point out the main restrictions on the coefficients
in order for the methods to be well-defined. For obvious consistency reasons, if a
flow ϕh is used with complex coefficients, then both ϕαh and ϕβh with Reα > 0
and Imβ < 0 will appear. Hence, the flows ϕ1

h of (2.9) and ϕ2
h of (2.10) containing

Schrödinger type terms have to be integrated with only real-valued coefficients,
otherwise some parts of the splitting would be ill-posed. Moreover, ϕ4

h of (2.12)
contains parabolic terms and it should be used with coefficients with nonnegative
real part. In this section, we introduce a four-flow complex splitting method taking
into account all these constraints.

The main remaining problem originates from the non-analytic character of the
nonlinearity appearing in the flow ϕ3

h of (2.11). To overcome it, we split the real
and imaginary part of Aε as in [8].

Although we content ourselves in the sequel with a fourth-order scheme, let us
emphasize that the strategy adopted here is amenable to higher orders.

3.1. The new splitting scheme. We commence from the original system (1.10)

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = ε2∆Sε,

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε
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and rewrite it (following the steps exposed in [8]) in term of the unknowns Aε1 =
ReAε, Aε2 = ImAε and Sε:

∂tS
ε +
|∇Sε|2

2
+ (Aε1)2 + (Aε2)2 = ε2∆Sε, (3.1a)(

∂t +∇Sε · ∇+
∆Sε

2

)(
Aε1
Aε2

)
= −iεσ2

(
∆

2
−∆Sε

)(
Aε1
Aε2

)
(3.1b)

in order for the nonlinearity (Aε1)2 + (Aε2)2 to be an analytic function of Aε1 and Aε2.
The matrix σ2 is here the second Pauli matrix

σ2 =

(
0 −i
i 0

)
,

so that Pσ2P = σ3 with

σ3 =

(
1 0
0 −1

)
and P =

1√
2

(
1 −i
i −1

)
=

1√
2

(σ2 + σ3) . (3.2)

Let

V ε =

(
vε1
vε2

)
= P

(
Aε1
Aε2

)
.

System (3.1) becomes

∂tS
ε +
|∇Sε|2

2
− 2ivε1v

ε
2 = ε2∆Sε, (3.3a)(

∂t +∇Sε · ∇+
∆Sε

2

)
V ε = −iεσ3

(
∆

2
−∆Sε

)
V ε. (3.3b)

We are now in position to define a four-flow splitting which is compatible with
complex coefficients.
First flow: Let us define ϕ̃1

h as the approximate flow at time h ∈ R of:

∂tS +
∇S · ∇S

2
= 0, (3.4a)

∂tV +∇S · ∇V +
∆S

2
V =

i∆V

2
. (3.4b)

To solve (3.4a), we use the following fourth-order time-splitting from [34]

φ1
α1h ◦ φ2

α2h ◦ φ1
α3h ◦ φ2

α4h ◦ φ1
α5h ◦ φ2

α6h ◦ φ1
α7h, (3.5)

with coefficients α1, . . . α7 defined by

α1 = α7 =
1

2(2− 21/3)
, α3 = α5 = 0.5− α1,

α2 = α6 =
1

2− 21/3
, α4 = 1− 2α2

(3.6)

and where the numerical flows φ1
h and φ2

h are those introduced in Sec. 2.1. To solve
(3.4b), we proceed as for (2.9b).
Second flow: ϕ̃2

h is the exact flow at time h ∈ R of

∂tS = 0, (3.7a)

∂tV = − i (εσ3 + σ0) ∆V

2
(3.7b)

solved in the Fourier space. Here σ0 denotes the identity matrix.
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Third flow: ϕ̃3
h is the exact flow at time h ∈ R of

∂tS = 2iv1v2, (3.8a)
∂tV = 0. (3.8b)

Fourth flow: ϕ̃4
h is the exact flow at time h ∈ {z ∈ C, Re z ≥ 0} of

∂tS = ε2∆S, (3.9a)
∂tV = iεσ3V∆S. (3.9b)

We will see below that in the complex splitting method that we use, the coefficients
related to ϕ̃4

h are complex so that S, v1 and v2 are complex-valued functions.

3.2. Splitting scheme of fourth-order for system (1.10). We define below a
complex splitting method whose coefficients related to ϕ̃4

h have positive real part
whereas those associated with ϕ̃1

h and ϕ̃2
h are real-valued.

The simplest way to get a fourth-order time-splitting scheme for four flows is to
compose several times a fourth-order time-splitting for two flows: using the same
time-splitting scheme as in (3.5), we define the following fourth-order schemes (for
h ∈ R):

ϕ̃12
h = ϕ̃2

α1h ◦ ϕ̃1
α2h ◦ ϕ̃2

α3h ◦ ϕ̃1
α4h ◦ ϕ̃2

α5h ◦ ϕ̃1
α6h ◦ ϕ̃2

α7h

for the system of equations

∂tS +
∇S · ∇S

2
= 0,

∂tV +∇S · ∇V +
∆S

2
V = −iεσ3

∆V

2
.

and

ϕ̃123
h = ϕ̃12

α1h ◦ ϕ̃3
α2h ◦ ϕ̃12

α3h ◦ ϕ̃3
α4h ◦ ϕ̃12

α5h ◦ ϕ̃3
α6h ◦ ϕ̃12

α7h,

for the system of equations

∂tS +
∇S · ∇S

2
− 2iv1v2 = 0,

∂tV +∇S · ∇V +
∆S

2
V = −iεσ3

∆V

2
.

The coefficients α1, . . . , α7 are defined by (3.6). Since ϕ̃4
h is not reversible, we cannot

use the scheme (3.5) anymore to define our four-flow method, given that α3, α4 and
α5 are negative. To avoid this problem, we use a complex splitting method of Blanes
et al. [8]:

ϕ̃1234
h = P̃

(
ϕ̃4
β1h ◦ ϕ̃123

β2h ◦ ϕ̃4
β3h ◦ ϕ̃123

β4h ◦ ϕ̃4
β5h ◦ ϕ̃123

β6h ◦ ϕ̃4
β7h ◦ ϕ̃123

β8h ◦ ϕ̃4
β9h

)
P̃ (3.10)

where

P̃ =

(
1 0
0 P

)
,
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P is defined in (3.2) and

β1 = β9 = 0.060078275263542357774− 0.060314841253378523039i,

β2 = β8 = 0.18596881959910913140,

β3 = β7 = 0.27021183913361078161 + 0.15290393229116195895i,

β4 = β6 = 0.5− β2 = 0.31403118040089086860,

β5 = 1− 2β1 − 2β3 = 0.33941977120569372122− 0.18517818207556687181i.

Observe that all the coefficients β1, β3, β5, β7 and β9 for the irreversible flow ϕ̃4
h

have a positive real part and all the coefficients β2, β4, β6 and β8 for the flow ϕ̃123
h

containing all the Schrödinger terms are real-valued.
Following [8], we state without proof the following proposition.

Proposition 3.1. Assume that (A0, S0) ∈ Hs(Rd) ×Hs+1(Rd) for a large enough
s. Then, the following error bound holds true

‖ϕ̃1234
h (S0,ReA0, ImA0)− (Sε(h, ·),ReAε(h, ·), ImAε(h, ·))‖L2 ≤ Ch5

where C does not depend on ε ∈ [0, εmax] and (Sε, Aε) is the solution of system of
equations (1.10).

Let us remark that since Sε takes complex values, the L2 norm of Aε is not exactly
conserved by the flows ϕ̃1

h and ϕ̃4
h. We stress that the function Sε is not projected

on the set of real-valued functions after each flow, as it was done in Section 2, since
it would reduce the order of convergence.

4. Numerical experiments

In this part, we illustrate the behavior of the schemes (2.14) and (3.10) introduced
in Sections 2 and 3 and compare their properties to those of the Strang splitting
method [3] for (1.1). As mentioned in the introduction, quadratic observables have
some peculiarities for this problem. For this reason, the convergence properties of
the different schemes will be illustrated separately, on the one hand for the functions
Sε, Aε (resp. Ψε for the Strang splitting scheme) and, on the other hand, for the
density ρε = |Aε|2 (resp. ρε = |Ψε|2). We restrict ourselves to the one-dimensional
periodic setting in which the equations studied remain unchanged.

We consider the following initial data:
A0(x) = sin(x), S0(x) = sin(x)/2,

Ψε(0, ·) = A0(·)eiS0(·)/ε,
(4.1)

where x ∈ T = R/2πZ, for which caustics appear numerically at time Tc = 0.5. In
our simulations, the semiclassical parameter ε varies from 1 to 2−12.

The numerical solutions (Sε, Aε), resp. Ψε, are compared to corresponding refer-
ence solutions (Sεref , A

ε
ref ), resp. Ψε

ref , which, in the absence of analytical solutions,
are respectively obtained thanks to our fourth order splitting method (3.10) and
thanks to a splitting scheme of order 4 for (1.1) (see [34, 3]), with very small time
and space steps. More precisely, to compute (Sεref , A

ε
ref ), we have taken Nx = 28

and h = 2−13Tf , and to compute Ψε
ref , in order to fit with the constraints on the

time step and on the space step

h� ε and ∆x� ε,
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the space interval [0, 2π] is discretized with Nx = 215 points and the time step is
h = 2−18Tf .

The various errors that are represented on the figures below are defined as follows:

errρε(T ) =
‖ρεref (T )− ρε(T )‖L1

‖ρεref (T )‖L1

, errΨε(T ) =
‖Ψε

ref (T )−Ψε(T )‖L2

‖ψεref (T )‖L2

,

and

err(Sε,Aε)(T ) =

(
‖Sεref (T )− Sε(T )‖2L2 + ‖Aεref (T )−Aε(T )‖2L2

‖Sεref (T )‖2
L2 + ‖Aεref (T )‖2

L2

)1/2

,

where

‖u‖L1 = ∆x

Nx−1∑
k=0

|uk|, ‖u‖L2 =

√√√√∆x

Nx−1∑
k=0

|uk|2,

and ρεref (T ) = |Ψε
ref (T )|2. As far as the Strang splitting scheme is concerned,

ρε(T ) = |Ψε(T )|2 whereas ρε(T ) = |Aε(T )|2 for our methods.
We first study qualitatively the dynamics, in order to guess what is the time of

appearance of the caustics. Figures 1a and 1b represent the density |Aε|2 and the
phase Sε at times Tf = 0.1, 0.3, 0.5, 0.6 for ε = 2−5. The caustics appear around
t = 0.5. At time t = 0.6, oscillations at other scales than those of the phase can be
observed in |Aε|2 whereas Sε ceases to be smooth. These figures are obtained by
using our scheme (2.14) with Nx = 211 and Nt = Tf/h = 213.

Let us now illustrate the behavior of the Strang splitting scheme for (1.1) at time
Tf = 0.1 i.e. before the caustics. On Figures 2 and 3, errors on ρε and Ψε with
respect to the time step h, for fixed Nx = 29, are represented and on Figures 4 to 5,
errors with respect to ∆x, for fixed Nt = h/Tf = 215, are represented. Regarding
the observable ρε = |Ψε|2, 2a, 2b, 4a and 4b corroborate the fact that the error
behaves as

O
(
h2 + Cε,N∆xN

)
where N > 0 and Cε,N → +∞ as ε → 0 [2, 3, 11]. This is in agreement with
the results obtained by Carles [11] in the weakly nonlinear case before the caustics;
however, our simulations suggest that this behavior persists in the supercritical case.
If we observe the wave function, the situation is completely different: the Strang
splitting scheme is not UA any more when h→ 0. Figures 3a, 3b, 5a and 5b indeed
suggest that the error of Ψε behaves like

O
(
h2

ε
+ Cε,N∆xN

)
where N > 0 and Cε,N → +∞ as ε→ 0.

Let us now focus on the experiments performed with our second and fourth-order
methods, in the same situation. We start with the second-order scheme (2.14).
Figures 6 and 7 represent the errors on ρε and (Sε, Aε) w.r.t. the time step h
for a fixed Nx = 27. Figures 8 and 9 represent the errors w.r.t. ∆x for fixed
Nt = h/Tf = 213. All these figures illustrate the fact that our scheme is UA with
respect to ε, for the quadratic observables as well as for the whole unknown (Sε, Aε)
itself. Figures 6 and 7 show that (2.14) is uniformly of order 2 in time, whereas
Figures 8 and 9 show that the convergence is uniformly spectral in space.
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Figures 10 to 13 illustrate the behavior of our fourth-order scheme (3.10) at
Tf = 0.1: here again, it appears that, before the caustics, our method is UA with
an order 4 in time and with spectral in space accuracy.

Finally, let us explore the behavior of the splitting methods after caustics, by
observing the error on the density ρε. Figures 14, 15, 16 and 17 present the same
simulations as Figures 2, 4, 6 and 8, except that the final time is now Tf = 0.6, i.e.
we illustrate the behaviors of Strang splitting method and of scheme (2.14) after the
caustics. In that case, it appears that none of these methods is UA, neither in h,
nor in ∆x, with respect to ε. Concerning the Strang splitting scheme, this behavior
was already reported in [13, 24]. Notice that, although it is not UA any longer, our
scheme (2.14) still has second-order accuracy in time and spectral accuracy in space
(with ε-dependent constants). Recall that the same scheme written on (1.6) would
not be usable in the same situation, since Sε ceases to be regular for ε > 0, after
the formation of caustics.

References
[1] G. D. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J.

Numer. Anal., 13 (1993), pp. 115–124.
[2] W. Bao, S. Jin, and P. A. Markowich, On time-splitting spectral approximations for the

Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175 (2002), pp. 487–524.
[3] W. Bao, S. Jin, and P. A. Markowich, Numerical study of time-splitting spectral dis-

cretizations of nonlinear Schrödinger equations in the semiclassical regimes, SIAM J. Sci.
Comput., 25 (2003), pp. 27–64.

[4] C. Besse, Relaxation scheme for time dependent nonlinear Schrödinger equations, in Mathe-
matical and numerical aspects of wave propagation (Santiago de Compostela, 2000), SIAM,
Philadelphia, PA, 2000, pp. 605–609.

[5] C. Besse, B. Bidégaray, and S. Descombes, Order estimates in time of splitting meth-
ods for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 40 (2002), pp. 26–40
(electronic).

[6] C. Besse, R. Carles, and F. Méhats, An asymptotic preserving scheme based on a new
formulation for nls in the semiclassical limit, Multiscale Modeling and Simulation, 11 (2013),
pp. 1228–1260.

[7] S. Blanes and F. Casas, On the necessity of negative coefficients for operator splitting
schemes of order higher than two, Appl. Numer. Math., 54 (2005), pp. 23–37.

[8] S. Blanes, F. Casas, P. Chartier, and A. Murua, Splitting meth-
ods with complex coefficients for some classes of evolution equations, Preprint:
http://www.irisa.fr/ipso/fichiers/BCCM11.pdf, (2011).

[9] , Optimized high-order splitting methods for some classes of parabolic equations, Math.
Comp., 82 (2013), pp. 1559–1576.

[10] R. Carles, Semi-classical analysis for nonlinear Schrödinger equations, World Scientific,
2008.

[11] , On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-
classical limit, SIAM J. Numer. Anal., 51 (2013), pp. 3232–3258.

[12] R. Carles, R. Danchin, and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Non-
linearity, 25 (2012), pp. 2843–2873.

[13] R. Carles and L. Gosse, Numerical aspects of nonlinear Schrödinger equations in the
presence of caustics, Math. Models Methods Appl. Sci., 17 (2007), pp. 1531–1553.

[14] F. Castella, P. Chartier, S. Descombes, and G. Vilmart, Splitting methods with
complex times for parabolic equations, BIT, 49 (2009), pp. 487–508.

[15] T. Cazenave, Semilinear Schrödinger equations, vol. 10, AMS Bookstore, 2003.
[16] P. Degond, S. Gallego, and F. Méhats, An asymptotic preserving scheme for the

Schrödinger equation in the semiclassical limit, C. R. Math. Acad. Sci. Paris, 345 (2007),
pp. 531–536.



14 P. CHARTIER, L. LE TREUST, AND F. MÉHATS

[17] M. Delfour, M. Fortin, and G. Payre, Finite-difference solutions of a nonlinear
Schrödinger equation, J. Comput. Phys., 44 (1981), pp. 277–288.

[18] S. Descombes and M. Thalhammer, An exact local error representation of exponential
operator splitting methods for evolutionary problems and applications to linear Schrödinger
equations in the semi-classical regime, BIT, 50 (2010), pp. 729–749.

[19] , The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters:
a compact local error representation and application to nonlinear Schrödinger equations in the
semiclassical regime, IMA J. Numer. Anal., 33 (2013), pp. 722–745.

[20] L. C. Evans, Partial differential equations, Providence, Rhode Land: American Mathematical
Society, 1998.

[21] E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc.
Amer. Math. Soc., 126 (1998), pp. 523–530.

[22] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31
of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010. Structure-
preserving algorithms for ordinary differential equations, Reprint of the second (2006) edition.

[23] E. Hansen and A. Ostermann, High order splitting methods for analytic semigroups exist,
BIT, 49 (2009), pp. 527–542.

[24] S. Jin, P. Markowich, and C. Sparber, Mathematical and computational methods for
semiclassical Schrödinger equations, Acta Numer., 20 (2011), pp. 121–209.

[25] O. Karakashian, G. D. Akrivis, and V. A. Dougalis, On optimal order error estimates
for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 30 (1993), pp. 377–400.

[26] C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger
equations, Math. Comp., 77 (2008), pp. 2141–2153.

[27] E. Madelung, Quanten theorie in hydrodynamischer form, Zeit. F. Physik, 40 (1927),
pp. 322–326.

[28] R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002),
pp. 341–434.

[29] D. Pathria and J. L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equations,
J. Comput. Phys., 87 (1990), pp. 108–125.

[30] J. M. Sanz-Serna and J. G. Verwer, Conservative and nonconservative schemes for the
solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal., 6 (1986), pp. 25–42.

[31] C. Sulem and P.-L. Sulem, The nonlinear Schrödinger equation, vol. 139 of Applied Math-
ematical Sciences, Springer-Verlag, New York, 1999. Self-focusing and wave collapse.

[32] J. A. C. Weideman and B. M. Herbst, Split-step methods for the solution of the nonlinear
Schrödinger equation, SIAM J. Numer. Anal., 23 (1986), pp. 485–507.

[33] L. Wu, Dufort-Frankel-type methods for linear and nonlinear Schrödinger equations, SIAM
J. Numer. Anal., 33 (1996), pp. 1526–1533.

[34] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990),
pp. 262–268.

E-mail address: Philippe.Chartier@inria.fr

INRIA Rennes, IRMAR and ENS Rennes, IPSO Project Team, Campus de Beaulieu,
F-35042 Rennes

E-mail address: loic.letreust@univ-rennes1.fr

IRMAR, Université de Rennes 1 and INRIA, IPSO Project

E-mail address: florian.mehats@univ-rennes1.fr

IRMAR, Université de Rennes 1 and INRIA, IPSO Project



15

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

x

|A
ε
|2

 

 

Tf = 0.1
Tf = 0.3
Tf = 0.5
Tf = 0.6
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Figure 1. Evolution of the density and of the phase
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Figure 2. Error on the density ρε for the Strang splitting scheme
for (1.1) before the caustics: dependence on ε and on the time step
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Figure 3. Error on the wave function Ψε for the Strang splitting
scheme for (1.1) before the caustics: dependence on ε and on the
time step h.
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Figure 5. Error on the wave function Ψε for the Strang splitting
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Figure 6. Error on the density ρε for the splitting scheme (2.14)
of order 2 before the caustics: dependence on ε and on h.



18 P. CHARTIER, L. LE TREUST, AND F. MÉHATS

10
−4

10
−3

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

h

E
rr
o
r

 

 

ε = 2−12

ε = 2−10

ε = 2−8

ε = 2−6

ε = 2−4

ε = 2−2

ε = 2−0

Slope 2

(a) err(Sε,Aε)(Tf = 0.1) w.r.t h, Nx = 27

10
−3

10
−2

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

ε

E
rr
o
r

 

 
Nt =1024
Nt =512
Nt =256
Nt =128
Nt =64
Nt =32
Nt =16
Nt =8
Nt =4
Nt =2

(b) err(Sε,Aε)(Tf = 0.1) w.r.t ε, Nx = 27

Figure 7. Error on (Sε, Aε) for the splitting scheme (2.14) of order
2 before the caustics: dependence on ε and on h.
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Figure 8. Error on the density ρε for the splitting scheme (2.14)
of order 2 before the caustics: dependence on ε and on ∆x.
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Figure 9. Error on (Sε, Aε) for the splitting scheme (2.14) of order
2 before the caustics: dependence on ε and on ∆x.
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Figure 10. Error on the density ρε for the splitting scheme (3.10)
of order 4 before the caustics: dependence on ε and on h.
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Figure 11. Error on (Sε, Aε) for the splitting scheme (3.10) of order
4 before the caustics: dependence on ε and on h.
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Figure 12. Error on ρε for the splitting scheme (3.10) of order 4
before the caustics: dependence on ε and on ∆x.
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Figure 13. Error on (Sε, Aε) for the splitting scheme (3.10) of order
4 before the caustics: dependence on ε and on ∆x.
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Figure 14. Error on ρε for the Strang splitting scheme for (1.1)
after the caustics, dependence on ε and on h.
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Figure 15. Error on ρε for the Strang splitting scheme for (1.1)
after the caustics, dependence on ε and on ∆x.
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Figure 16. Error on ρε for the splitting scheme (2.14) of order 2
after the caustics, dependence on ε and on h.
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Figure 17. Error on ρε for the splitting scheme (2.14) of order 2
after the caustics, dependence on ε and on ∆x.


