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UNIFORMLY ACCURATE TIME-SPLITTING METHODS FOR
THE SEMICLASSICAL SCHRÖDINGER EQUATION

PART 1 : CONSTRUCTION OF THE SCHEMES AND
SIMULATIONS

PHILIPPE CHARTIER, LOÏC LE TREUST, AND FLORIAN MÉHATS

Abstract. This article is devoted to the construction of new numerical methods
for the semiclassical Schrödinger equation. A phase-amplitude reformulation of
the equation is described where the Planck constant ε is not a singular parameter.
This allows to build splitting schemes whose accuracy is spectral in space, of up
to fourth order in time, and independent of ε before the caustics. The second-
order method additionally preserves the L2-norm of the solution just as the exact
flow does. In this first part of the paper, we introduce the basic splitting scheme
in the nonlinear case, reveal our strategy for constructing higher-order methods,
and illustrate their properties with simulations. In the second part, we shall
prove a uniform convergence result for the first-order splitting scheme applied to
the linear Schrödinger equation with a potential.

1. Introduction

In this paper, we are concerned with the numerical approximation of the solution
Ψε : R+ × Rd → C, d ≥ 1, of the nonlinear Schrödinger (NLS) equation

iε∂tΨ
ε = −ε

2

2
∆Ψε + |Ψε|2Ψε, (1.1)

where ε > 0 is the so-called semiclassical parameter. The initial datum is assumed
to be of the form

Ψε(0, ·) = A0(·)eiS0(·)/ε such that ‖A0‖L2(Rd) = 1. (1.2)

Note that the L2-norm, the energy and the momentum of Ψε(0, ·), namely

Mass: ‖Ψε(t, ·)‖2L2(Rd), (1.3)

Energy:
∫
Rd

(
ε2|∇Ψε(t, x)|2 + |Ψε(t, x)|4

)
dx, (1.4)

Momentum: ε Im

∫
Rd

Ψε(t, x)∇Ψε(t, x)dx, (1.5)

are all preserved by the flow of (1.1), whenever Ψε(0, ·) ∈ H1(Rd).
Owing to its numerous occurrences in a vast number of domains of applications

in physics, equation (1.1) has been widely studied: existence and uniqueness results
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can be found for instance in [15]. In particular, it has been frequently used for the
description of Bose-Einstein condensates, as well as for the study of the propagation
of laser beams (see [30] for a detailed presentation of the physical context). In the
semiclassical regime where the rescaled Planck constant ε is small, its asymptotic
study allows for an appropriate description of the observables of Ψε through the
laws of hydrodynamics. We refer to [10] for a detailed presentation of the semiclas-
sical analysis of the NLS equation and to [23] for a review of both theoretical and
numerical issues.

1.1. Motivation. Generally speaking, numerical methods for equation (1.1) ex-
hibit an error of size ∆tp/εr + ∆xq/εs, where ∆t and ∆x are the time and space
steps and p, q, r, s strictly positive numbers. For time-splitting methods in the linear
case for instance, the error on the wave function behaves like ∆x/ε+ ∆tp/ε [2, 18],
while in the nonlinear framework, numerical experiments [3, 13, 19] suggest larger
values of r and s after the appearance of caustics1. Even if we content ourselves
with observables in the linear case2, the error of a splitting method of Bao, Jin, and
Markowich [2] grows like ∆x/ε+ ∆tp. Now, achieving a fixed accuracy for varying
values of ε requires to keep both ratios ∆t/εr/p and ∆x/εs/q constant, and becomes
prohibitively costly when ε → 0. Our aim, in this article, is thus to develop new
numerical schemes that are Uniformly Accurate (UA) w.r.t. ε, i.e. whose accuracy
does not deteriorate for vanishing ε. In other words, schemes for which r, s = 0. This
seems highly desirable as all available methods with the exception of [6], namely
finite difference methods [1, 17, 24, 32], splitting methods [5, 18, 19, 25, 28, 31],
relaxation schemes [4] and symplectic methods [29] fail to be UA.

It is the belief of the authors that, prior to the construction of UA-schemes, it is
necessary to reformulate (1.1) as in [6] and we now describe how this can be done.

1.2. Reformulation of the problem. In the spirit of theWentzel-Kramers-Brillouin
(WKB) techniques, we decompose Ψε as the product of a slowly varying amplitude
and a fast oscillating factor3

Ψε(t, ·) = Aε(t, ·)eiSε(t,·)/ε. (1.7)

From this point onwards, various choices are possible, depending on whether Aε is
complex or not4: taking Aε ∈ C leads to the following system [21]

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = 0, (1.8a)

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
(1.8b)

1We refer to [19] for a study of local error estimates for the semiclassical NLS equation.
2These authors performed extensive numerical tests in both linear and nonlinear cases [2, 3].
3Considering the WKB-ansatz (1.7) transforms the invariants (1.3) into respectively

‖Aε‖2L2(Rd),

∫
Rd

(
|ε∇Aε + iAε∇Sε|2 + |Aε|4

)
dx and Im

∫
Rd

Aε (ε∇Aε + iAε∇Sε) dx. (1.6)

4The Madelung transform [26] relates the semiclassical limit of (1.1) to hydrodynamic equations

Ψε(t, ·) =
√
ρε(t, ·)eiS

ε(t,·)/ε

and amounts to choosing Aε ∈ R+. However, this formulation leads to both analytical and
numerical difficulties in the presence of vacuum, i.e. whenever ρε vanishes [12, 16].
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with Sε(0, ·) = S0(·) and Aε(0, ·) = A0(·), whose analysis leans on symmetrizable
quasilinear hyperbolic systems (the first existence and uniqueness result has been
obtained by Grenier [21]). Under appropriate smoothness assumptions, (Aε, Sε) ∈
C× R converges when ε→ 0 to the solution (A0, S0) of

∂tS
0 +
|∇S0|2

2
+ |A0|2 = 0, (1.9a)

∂tA
0 +∇S0 · ∇A0 +

A0

2
∆S0 = 0. (1.9b)

Notice that (ρ, v) = (|A0|2,∇S0) is then solution of the compressible Euler system

∂tv + v · ∇v +∇ρ = 0, (1.10a)
∂tρ+ div(ρv) = 0. (1.10b)

Now, an important drawback of (1.8) stems from the formation of caustics in finite
time [10]: the solution of (1.8) may indeed cease to be smooth even though Ψε is
globally well-defined for ε > 0. In order to obtain global existence for ε > 0 (at least
in the 1D-case), Besse, Carles and Méhats [6] suggested an alternative formulation
by introducing an asymptotically-vanishing viscosity term in the eikonal equation
(1.8a). Therein, system (1.8) is replaced by

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = ε2∆Sε, (1.11a)

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε (1.11b)

where Sε(0, x) = S0(x), Aε(0, x) = A0(x) and where x ∈ Rd. Let us emphasize that
both (1.8) and (1.11) are equivalent to (1.1) in the following sense: as long as the
solution (Sε, Aε) of (1.8) (resp. (1.11)) is smooth, the function Ψε defined by (1.7)
solves (1.1). The following existence and uniqueness result given from [21, 6] is thus
perfectly satisfactory for our purpose.

Theorem 1.1 (Grenier, Besse-Carles-Méhats5). Let εmax > 0. Assume that (S0, A0)
belongs to Hs+2(Rd) ×Hs(Rd) where s > d/2 + 1. Then, there exist T > 0, inde-
pendent of ε ∈ (0, εmax] and a unique solution

(Sε, Aε) ∈ C([0, T ];Hs+2(Rd)×Hs(Rd))
of system of equations (1.8), resp. (1.11). Moreover, (Sε, Aε) is bounded in

C([0, T ];Hs+2(Rd)×Hs(Rd))
uniformly in ε and Ψε(t, ·) = Aε(t, ·)eiSε(t,·)/ε is the unique solution of (1.1) with
the initial datum (1.2).

The main advantage of the WKB reformulation (1.11) over (1.1) is apparent: the
semiclassical parameter ε does not give rise to singular perturbations6. Hence, it

5Besse et al. [6] also proved that in the one-dimensional case, the solution of (1.11) is global in
time under the assumptions of Theorem 1.1 and that (Sε, Aε) is globally uniformly bounded.

6The Cole-Hopf transformation [20, Section 4.4.1]

wε = exp

(
− S

ε

2ε2

)
− 1 (1.12)

transforms (1.11a) into ∂tw
ε − |A

ε|2
2ε2

(wε + 1) = ε2∆wε for which the regularizing effect of the
viscosity term becomes arguably more apparent.
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constitutes a good basis for the development of UA schemes (at least prior to the
appearance of caustics), as witnessed by the methods introduced later in this paper.

1.3. Content of the paper. First and only (up to our knowledge) UA schemes are
based on the formulation (1.11) introduced in [6]. Nevertheless, these schemes are
still subject to CFL stability conditions and are of low order in time and space. In
this paper, we consider, in lieu of finite differences as in [6], time-splitting methods,
for they enjoy the following favorable features:
(i) they do not suffer from stability restrictions on the time step;
(ii) they are easy to implement;
(iii) they can be composed to attain high-order of convergence in time while re-

maining spectrally convergent in space.
The third point requires further explanation: standard compositions (for orders
higher or equal to 3) are inappropriate here, as they necessarily involve negative
coefficients [7]. At the same time, parabolic terms prevent the corresponding equa-
tions from being solved backward in time. Negative coefficients are thus forbidden.
To bypass this apparent contradiction, it has become customary to resort to com-
plex coefficients with positive real parts [8, 9, 14, 22]. Now, the situation is here
rendered even more involved by the presence of Schrödinger terms, which are in-
compatible with complex coefficients. The way out will consist in distributing the
real and complex coefficients to the different parts of the splitting in a clever way.
The strategy will be discussed thoroughly in Section 3.

The outline of the remaining of the paper is as follows. In Section 2, we will
introduce first and second order (in time) splitting schemes, preserving exactly the
L2-norm, and in Section 4, we will present extensive numerical experiments com-
paring our methods to the Strang splitting method studied in [2, 3]. The analysis of
the uniform order of convergence of the splitting scheme is postponed to Part 2 of
this work and, given the technicality of the proofs, will be envisaged only for order
one and for the linear Schrödinger equation with a potential.

2. Second-order numerical scheme

The UA scheme that we now introduce is built upon splitting techniques (see for
instance [27] for a general exposition). The first building block is the resolution of
the eikonal equation. In the sequel, h denotes the time step.

2.1. The eikonal equation. In this section, we introduce two numerical schemes
for equation (5.1).

2.1.1. A semi-Lagrangian scheme for the eikonal equation. Let us rewrite equation
(5.1)

∂tS +H(∇S) = 0,

where H(p) = |p|2/2. Thanks to the method of characteristics, we get for x0 ∈ Rd
and h ≥ 0 small enough that

S(h, x(h, x0)) = S(0, x0) + h
|p(h, x0)|2

2
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where (x, p) solves the Hamilton equation, (see [20, Section 3.2])
∂hx(h, x0) = ∂pH(p(h, x0)) = p(h, x),

∂hp(h, x0) = −∂xH(p(h, x0)) = 0

with x(0, x0) = x0 and p(0, x0) = ∇S(0, x0), i.e

x(h, x0) = x0 + h∇S(0, x0) and p(h, x0) = ∇S(0, x0).

Hence, defining implicitly for any x ∈ Rd, the function y(h, x) = Γ(x, h, y(h, x))
where

Γ(x, h, y(h, x)) = x− h∇S(0, y(h, x)),

we get

S(h, x) = S(0, y(h, x)) + h
|∇S(0, y(h, x))|2

2
.

Let us define
y1(h, x) = Γ(x, h, x),

y2(h, x) = Γ(x, h,Γ(x, h, x)).

and for i = 1, 2,

Si(h, x) = S(0, x− h∇S(0, yi(h, x))) + h
|∇S(0, yi(h, x))|2

2
.

After long but straightforward calculations, we can prove that S1 and S2 define
methods of order 2 and 4 in time respectively that do not suffer from CFL restric-
tions.

Remark 2.1. The authors think that yk(h, x) = Γ(x, h, yk−1(h, x)) gives rise to a
method of order 2k in time.

In the case where the space is also discretized, the functions S(0, ·) and ∇S(0, ·)
are interpolated thanks to the discrete Fourier transform.

Most of the numerical schemes introduced for equation (5.1) (ENO and WENO
type or semi-lagrangian methods) are designed to deal with low regularity solutions.
In general, their precisions is of low order in time and space and the procedure to
get high order schemes is very involved. The finite difference methods even suffer
from CFL restrictions.

The methods we introduced are of spectral precision in space and can be of any
order in time. This can be achieved in our case since we deal with regular solutions.

2.1.2. A splitting scheme for the eikonal equation. Let us remind that the Cole-Hopf
transformation

wε = exp

(
− S

ε

2ε2

)
− 1

ensures that solving

∂tS
ε +
|∇Sε|2

2
= ε2∆Sε, Sε(0, ·) = S0(·), (2.1)

is equivalent to solving the heat equation

∂tw
ε = ε2∆wε, wε(0, ·) = exp

(
−S0(·)

2ε2

)
− 1, (2.2)

(see Remark 1.12).
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Due to the limitations of the floating-point representation, it is completely inac-
curate to solve (2.1) using (2.2) for small values of ε. To overcome this difficulty,
we split the nonviscous eikonal equation (5.1) into two subequations, at each time
step; the parabolic term ε2∆S will be dealt with separately. The key idea is to allow
S to be a complex-valued function despite the fact that the solutions of equations
(1.8a), (1.11a), (2.1) and (5.1) take their values in R.
First flow: let us define φ1

h as the exact flow at time h ∈ R of equation

∂tS +
∇S · ∇S

2
− i∆S = 0 (2.3)

where ∇S ·∇S =
∑d

k=1(∂kS)2. This equation can be solved thanks to the following
modified Cole-Hopf transformation

w = exp

(
iS

2

)
− 1

leading to

i∂tw = −∆w, w(0, ·) = exp

(
iS(0, ·)

2

)
− 1, (2.4)

solved in the Fourier space and

S(h, ·)− S(0, ·) = −2i log

(
1 +

w(h, ·)− w(0, ·)
w(0, ·) + 1

)
.

Remark 2.2. This formula is well-defined whenever∥∥∥∥w(h, ·)− w(0, ·)
w(0, ·) + 1

∥∥∥∥
L∞

< 1,

a condition ensured as soon as h is small enough.

Second flow: φ2
h is the exact flow at time h ∈ R of the free Schrödinger equation

∂tS + i∆S = 0. (2.5)

We are now able to define time-splitting schemes for equation (5.1). In particular,
the Lie-Trotter splitting formula,

Reφ1
h ◦ φ2

h (2.6)

gives us an approximation of first-order in time of the solution of (5.1) (which is
real-valued) while the Strang splitting formula

Reφ1
h/2 ◦ φ2

h ◦ φ1
h/2 (2.7)

provides a second-order method.

2.2. Numerical schemes for system of equations (1.11). We are now in posi-
tion to introduce our numerical schemes. To this aim, we split system (1.11)

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = ε2∆Sε,

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε,

into four subsystems.
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First flow: Let us define ϕ1
h as the approximate flow at time h ∈ R of the system

of equations:

∂tS +
|∇S|2

2
= 0, (2.8a)

∂tA+∇S · ∇A+
A

2
∆S =

i∆A

2
. (2.8b)

The eikonal equation (2.8a) is solved according to Sec. 2.1. Equation (2.8b) is dealt
with by noticing that w = A exp (iS) satisfies the free Schrödinger equation

i∂tw = −1

2
∆w.

Second flow: ϕ2
h is the exact flow at time h ∈ R of

∂tS = 0, (2.9a)

∂tA =
i (ε− 1) ∆A

2
(2.9b)

solved in the Fourier space.
Third flow: ϕ3

h is the exact flow at time h ∈ R of

∂tS = −|A|2, (2.10a)
∂tA = 0. (2.10b)

Fourth flow: ϕ4
h is the exact flow at time h ∈ R+ of

∂tS = ε2∆S, (2.11a)
∂tA = −iεA∆S. (2.11b)

Equation (2.11a) is solved in the Fourier space and the solution of (2.11b) is

A(h, ·) = exp
(
−iε−1(S(h, ·)− S(0, ·))

)
A(0, ·).

Remark that ϕ4
h gathers the terms of (1.11) which are not in (1.8) and can thus be

viewed as a regularizing flow.

Remark 2.3. Let us stress that ϕ4
h is not defined for h such that Reh < 0. As a

matter of fact, the propagator ez∆ is well-defined, in the distributional sense, if and
only if Re(z) ≥ 0.

We consider now the following methods for (1.11)

ϕ1
h ◦ ϕ2

h ◦ ϕ3
h ◦ ϕ4

h (2.12)

and
ϕ1
h/2 ◦ ϕ2

h/2 ◦ ϕ3
h/2 ◦ ϕ4

h ◦ ϕ3
h/2 ◦ ϕ2

h/2 ◦ ϕ1
h/2. (2.13)

Remark 2.4. It is worth mentioning that both schemes preserve exactly the L2

norm of A since all ϕ1
h, ϕ

2
h, ϕ

3
h and ϕ4

h do so.
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3. Fourth-order numerical scheme

The splitting of (1.11) into the four flows (2.8), (2.9), (2.10), (2.11) proposed in
the previous section is incompatible with splitting methods of order higher than 2
with real-valued coefficients. Indeed, it is known that such methods involve at least
one negative time step for each part of the splitting (see for instance [7]). Therefore,
we cannot built such a scheme for (1.11) because of its time irreversibility.

To circumvent this difficulty, it is possible to use splitting methods with complex
coefficients [14, 8, 9, 22]. Let us point out the main restrictions on the coefficients
in order for the methods to be well-defined. For obvious consistency reasons, if a
flow ϕh is used with complex coefficients, then both ϕαh and ϕβh with Reα > 0
and Imβ < 0 will appear. Hence, the flows ϕ1

h of (2.8) and ϕ2
h of (2.9) containing

Schrödinger type terms have to be integrated with only real-valued coefficients,
otherwise some parts of the splitting would be ill-posed. Moreover, ϕ4

h of (2.11)
contains parabolic terms and it should be used with coefficients with nonnegative
real part. In this section, we introduce a four-flow complex splitting method taking
into account all these constraints.

The main remaining problem originates from the non-analytic character of the
nonlinearity appearing in the flow ϕ3

h of (2.10). To overcome it, we split the real
and imaginary parts of Aε as in [8].

Although we content ourselves in the sequel with a fourth-order scheme, let us
emphasize that the strategy adopted here is amenable to higher orders.

3.1. The new splitting scheme. We commence from the original system (1.11)

∂tS
ε +
|∇Sε|2

2
+ |Aε|2 = ε2∆Sε,

∂tA
ε +∇Sε · ∇Aε +

Aε

2
∆Sε =

iε∆Aε

2
− iεAε∆Sε

and rewrite it (following the steps exposed in [8]) in term of the unknowns Aε1 =
ReAε, Aε2 = ImAε and Sε:

∂tS
ε +
|∇Sε|2

2
+ (Aε1)2 + (Aε2)2 = ε2∆Sε, (3.1a)(

∂t +∇Sε · ∇+
∆Sε

2

)(
Aε1
Aε2

)
= −iεσ2

(
∆

2
−∆Sε

)(
Aε1
Aε2

)
(3.1b)

in order for the nonlinearity (Aε1)2 + (Aε2)2 to be an analytic function of Aε1 and Aε2.
The matrix σ2 is here the second Pauli matrix

σ2 =

(
0 −i
i 0

)
,

so that Pσ2P = σ3 with

σ3 =

(
1 0
0 −1

)
and P =

1√
2

(
1 −i
i −1

)
=

1√
2

(σ2 + σ3) . (3.2)

Let

V ε =

(
vε1
vε2

)
= P

(
Aε1
Aε2

)
.
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System (3.1) becomes

∂tS
ε +
|∇Sε|2

2
− 2ivε1v

ε
2 = ε2∆Sε, (3.3a)(

∂t +∇Sε · ∇+
∆Sε

2

)
V ε = −iεσ3

(
∆

2
−∆Sε

)
V ε. (3.3b)

We are now in position to define a four-flow splitting which is compatible with
complex coefficients.

First flow: Let us define ϕ̃1
h as the approximate flow at time h ∈ R of:

∂tS +
∇S · ∇S

2
= 0, (3.4a)

∂tV +∇S · ∇V +
∆S

2
V =

i∆V

2
. (3.4b)

To solve (3.4a), we use either the semi-lagrangian method of order 4 of Section 2.1.1
or the following fourth-order time-splitting from [33]

φ1
α1h ◦ φ2

α2h ◦ φ1
α3h ◦ φ2

α4h ◦ φ1
α5h ◦ φ2

α6h ◦ φ1
α7h, (3.5)

with coefficients α1, . . . α7 defined by

α1 = α7 =
1

2(2− 21/3)
, α3 = α5 = 0.5− α1,

α2 = α6 =
1

2− 21/3
, α4 = 1− 2α2

(3.6)

and where the numerical flows φ1
h and φ2

h are those introduced in Sec. 2.1.2. To
solve (3.4b), we proceed as for (2.8b).

Second flow: ϕ̃2
h is the exact flow at time h ∈ R of

∂tS = 0, (3.7a)

∂tV = − i (εσ3 + σ0) ∆V

2
(3.7b)

solved in the Fourier space. Here σ0 denotes the identity matrix.

Third flow: ϕ̃3
h is the exact flow at time h ∈ R of

∂tS = 2iv1v2, (3.8a)
∂tV = 0. (3.8b)

Fourth flow: ϕ̃4
h is the exact flow at time h ∈ {z ∈ C, Re z ≥ 0} of

∂tS = ε2∆S, (3.9a)
∂tV = iεσ3V∆S. (3.9b)

We will see below that in the complex splitting method that we use, the coefficients
related to ϕ̃4

h are complex so that S, v1 and v2 are complex-valued functions.
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3.2. Splitting scheme of fourth-order for system (1.11). We define below a
complex splitting method whose coefficients related to ϕ̃4

h have positive real part
whereas those associated with ϕ̃1

h and ϕ̃2
h are real-valued.

The simplest way to get a fourth-order time-splitting scheme for four flows is to
compose several times a fourth-order time-splitting for two flows: using the same
time-splitting scheme as in (3.5), we define the following fourth-order schemes (for
h ∈ R):

ϕ̃12
h = ϕ̃2

α1h ◦ ϕ̃1
α2h ◦ ϕ̃2

α3h ◦ ϕ̃1
α4h ◦ ϕ̃2

α5h ◦ ϕ̃1
α6h ◦ ϕ̃2

α7h

for the system of equations

∂tS +
∇S · ∇S

2
= 0,

∂tV +∇S · ∇V +
∆S

2
V = −iεσ3

∆V

2
.

and
ϕ̃123
h = ϕ̃12

α1h ◦ ϕ̃3
α2h ◦ ϕ̃12

α3h ◦ ϕ̃3
α4h ◦ ϕ̃12

α5h ◦ ϕ̃3
α6h ◦ ϕ̃12

α7h,

for the system of equations

∂tS +
∇S · ∇S

2
− 2iv1v2 = 0,

∂tV +∇S · ∇V +
∆S

2
V = −iεσ3

∆V

2
.

The coefficients α1, . . . , α7 are defined by (3.6). Since ϕ̃4
h is not reversible, we cannot

use the scheme (3.5) anymore to define our four-flow method, given that α3, α4 and
α5 are negative. To avoid this problem, we use a complex splitting method of Blanes
et al. [8]:

ϕ̃1234
h = P̃

(
ϕ̃4
β1h ◦ ϕ̃123

β2h ◦ ϕ̃4
β3h ◦ ϕ̃123

β4h ◦ ϕ̃4
β5h ◦ ϕ̃123

β6h ◦ ϕ̃4
β7h ◦ ϕ̃123

β8h ◦ ϕ̃4
β9h

)
P̃ (3.10)

where
P̃ =

(
1 0
0 P

)
,

P is defined in (3.2) and

β1 = β9 = 0.060078275263542357774− 0.060314841253378523039i,

β2 = β8 = 0.18596881959910913140,

β3 = β7 = 0.27021183913361078161 + 0.15290393229116195895i,

β4 = β6 = 0.5− β2 = 0.31403118040089086860,

β5 = 1− 2β1 − 2β3 = 0.33941977120569372122− 0.18517818207556687181i.

Observe that all the coefficients β1, β3, β5, β7 and β9 for the irreversible flow ϕ̃4
h

have a positive real part and all the coefficients β2, β4, β6 and β8 for the flow ϕ̃123
h

containing all the Schrödinger terms are real-valued.
Following [8], we state without proof the following proposition.

Proposition 3.1. Assume that (A0, S0) ∈ Hs(Rd) ×Hs+2(Rd) for a large enough
s. Then, the following error bound holds true

‖ϕ̃1234
h (S0,ReA0, ImA0)− (Sε(h, ·),ReAε(h, ·), ImAε(h, ·))‖L2 ≤ Ch5

where C does not depend on ε ∈ [0, εmax] and (Sε, Aε) is the solution of system of
equations (1.11).
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Let us remark that since Sε takes complex values, the L2 norm of Aε is not exactly
conserved by the flows ϕ̃1

h and ϕ̃4
h. We stress that the function Sε is not projected

on the set of real-valued functions after each flow, as it was done in Section 2.1.2,
since it would reduce the order of convergence.

4. Numerical experiments

In this part, we illustrate the behavior of the schemes (2.13) and (3.10) introduced
in Sections 2 and 3 and compare their properties to those of the Strang splitting
method [3] for (1.1). As mentioned in the introduction, quadratic observables have
some peculiarities for this problem. For this reason, the convergence properties of
the different schemes will be illustrated separately, on the one hand for the functions
Sε, Aε (resp. Ψε for the Strang splitting scheme) and, on the other hand, for the
density ρε = |Aε|2 (resp. ρε = |Ψε|2). We restrict ourselves to the one-dimensional
periodic setting in which the equations studied remain unchanged.

We consider the following initial data:
A0(x) = sin(x), S0(x) = sin(x)/2,

Ψε(0, ·) = A0(·)eiS0(·)/ε,
(4.1)

where x ∈ T = R/2πZ, for which caustics appear numerically at time Tc = 0.5. In
our simulations, the semiclassical parameter ε varies from 1 to 2−12.

The numerical solutions (Sε, Aε), resp. Ψε, are compared to corresponding refer-
ence solutions (Sεref , A

ε
ref ), resp. Ψε

ref , which, in the absence of analytical solutions,
are respectively obtained thanks to our fourth order splitting method (3.10) and
thanks to a splitting scheme of order 4 for (1.1) (see [33, 3]), with very small time
and space steps. More precisely, to compute (Sεref , A

ε
ref ), we have taken Nx = 28

and h = 2−13Tf , and to compute Ψε
ref , in order to fit with the constraints on the

time step and on the space step

h� ε and ∆x� ε,

the space interval [0, 2π] is discretized with Nx = 215 points and the time step is
h = 2−18Tf .

The various errors that are represented on the figures below are defined as follows:

errρε(T ) =
‖ρεref (T )− ρε(T )‖L1

‖ρεref (T )‖L1

, errΨε(T ) =
‖Ψε

ref (T )−Ψε(T )‖L2

‖ψεref (T )‖L2

,

and

err(Sε,Aε)(T ) =

(
‖Sεref (T )− Sε(T )‖2L2 + ‖Aεref (T )−Aε(T )‖2L2

‖Sεref (T )‖2
L2 + ‖Aεref (T )‖2

L2

)1/2

,

where

‖u‖L1 = ∆x

Nx−1∑
k=0

|uk|, ‖u‖L2 =

√√√√∆x

Nx−1∑
k=0

|uk|2,

and ρεref (T ) = |Ψε
ref (T )|2. As far as the Strang splitting scheme is concerned,

ρε(T ) = |Ψε(T )|2 whereas ρε(T ) = |Aε(T )|2 for our methods.
We first study qualitatively the dynamics, in order to guess what is the time of

appearance of the caustics. Figures 1a and 1b represent the density |Aε|2 and the
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phase Sε at times Tf = 0.1, 0.3, 0.5, 0.6 for ε = 2−5. The caustics appear around
t = 0.5. At time t = 0.6, oscillations at other scales than those of the phase can be
observed in |Aε|2 whereas Sε ceases to be smooth. These figures are obtained by
using our scheme (2.13) with Nx = 211 and Nt = Tf/h = 213.

Let us now illustrate the behavior of the Strang splitting scheme for (1.1) at time
Tf = 0.1 i.e. before the caustics. On Figures 2 and 3, errors on ρε and Ψε with
respect to the time step h, for fixed Nx = 29, are represented and on Figures 4 to 5,
errors with respect to ∆x, for fixed Nt = h/Tf = 215, are represented. Regarding
the observable ρε = |Ψε|2, 2a, 2b, 4a and 4b corroborate the fact that the error
behaves as

O
(
h2 + Cε,N∆xN

)
where N > 0 and Cε,N → +∞ as ε → 0 [2, 3, 11]. This is in agreement with
the results obtained by Carles [11] in the weakly nonlinear case before the caustics;
however, our simulations suggest that this behavior persists in the supercritical case.
If we observe the wave function, the situation is completely different: the Strang
splitting scheme is not UA any more when h→ 0. Figures 3a, 3b, 5a and 5b indeed
suggest that the error of Ψε behaves like

O
(
h2

ε
+ Cε,N∆xN

)
where N > 0 and Cε,N → +∞ as ε→ 0.

Let us now focus on the experiments performed with our second and fourth-order
methods, in the same situation. We start with the second-order scheme (2.13).
Figures 6 and 7 represent the errors on ρε and (Sε, Aε) w.r.t. the time step h
for a fixed Nx = 27. Figures 8 and 9 represent the errors w.r.t. ∆x for fixed
Nt = h/Tf = 213. All these figures illustrate the fact that our scheme is UA with
respect to ε, for the quadratic observables as well as for the whole unknown (Sε, Aε)
itself. Figures 6 and 7 show that (2.13) is uniformly of order 2 in time, whereas
Figures 8 and 9 show that the convergence is uniformly spectral in space.

Figures 10 to 13 illustrate the behavior of our fourth-order scheme (3.10) at
Tf = 0.1: here again, it appears that, before the caustics, our method is UA with
an order 4 in time and with spectral in space accuracy.

Finally, let us explore the behavior of the splitting methods after caustics, by
observing the error on the density ρε. Figures 14, 15, 16 and 17 present the same
simulations as Figures 2, 4, 6 and 8, except that the final time is now Tf = 0.6, i.e.
we illustrate the behaviors of Strang splitting method and of scheme (2.13) after the
caustics. In that case, it appears that none of these methods is UA, neither in h,
nor in ∆x, with respect to ε. Concerning the Strang splitting scheme, this behavior
was already reported in [13, 23]. Notice that, although it is not UA any longer, our
scheme (2.13) still has second-order accuracy in time and spectral accuracy in space
(with ε-dependent constants). Recall that the same scheme written on (1.8) would
not be usable in the same situation, since Sε ceases to be regular for ε > 0, after
the formation of caustics.

All the experiments have been performed with the methods of both Sections 2.1.1
and 2.1.2 for the eikonal equation (5.1) but we just present here the graphs obtained
with the semi-lagrangian methods of Section 2.1.1.
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5. Final remarks

Let us emphasize that, as a by-product, we have also derived a new numerical
scheme based on splitting techniques to approximate the solution of the Hamilton-
Jacobi (eikonal) equation

∂tS +
|∇S|2

2
= 0 (5.1)

based on the Cole-Hopf transform. Finally, it is interesting to mention that, al-
though we have chosen to focus here on the supercritical regime of (1.1) (see [10]),
our approach is also relevant in other semiclassical regimes, whether the linear
Schrödinger equation with a given potential, or the weakly nonlinear geometric
optics, where |Ψε|2Ψε is replaced with ε|Ψε|2Ψε.
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Figure 2. Error on the density ρε for the Strang splitting scheme
for (1.1) before the caustics: dependence on ε and on the time step
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time step h.
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Figure 4. Error on the density ρε for the Strang splitting scheme
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Figure 5. Error on the wave function Ψε for the Strang splitting
scheme for (1.1) before the caustics: dependence on ε and on ∆x.
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Figure 7. Error on (Sε, Aε) for the splitting scheme (2.13) of order
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Figure 8. Error on the density ρε for the splitting scheme (2.13)
of order 2 before the caustics: dependence on ε and on ∆x.
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Figure 9. Error on (Sε, Aε) for the splitting scheme (2.13) of order
2 before the caustics: dependence on ε and on ∆x.
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Figure 10. Error on the density ρε for the splitting scheme (3.10)
of order 4 before the caustics: dependence on ε and on h.
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Figure 11. Error on (Sε, Aε) for the splitting scheme (3.10) of order
4 before the caustics: dependence on ε and on h.

10
−1

10
−12

10
−10

10
−8

10
−6

10
−4

∆x

Er
ro
r

 

 

ε = 2−12

ε = 2−10

ε = 2−8

ε = 2−6

ε = 2−4

ε = 2−2

ε = 2−0

(a) errρε(Tf = 0.1) w.r.t ∆x, Nt = 210

10
−3

10
−2

10
−1

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

ε

Er
ro
r

 

 

Nx =128

Nx =64

Nx =32

Nx =16

Nx =8

(b) errρε(Tf = 0.1) w.r.t ε, Nt = 210
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Figure 13. Error on (Sε, Aε) for the splitting scheme (3.10) of order
4 before the caustics: dependence on ε and on ∆x.
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Figure 14. Error on ρε for the Strang splitting scheme for (1.1)
after the caustics, dependence on ε and on h.
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Figure 15. Error on ρε for the Strang splitting scheme for (1.1)
after the caustics, dependence on ε and on ∆x.
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Figure 16. Error on ρε for the splitting scheme (2.13) of order 2
after the caustics, dependence on ε and on h.
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Figure 17. Error on ρε for the splitting scheme (2.13) of order 2
after the caustics, dependence on ε and on ∆x.


