
Relational Graph Models, Taylor Expansion
and Extensionality

Giulio Manzonetto1,2 Domenico Ruoppolo1,3

Laboratoire LIPN, CNRS UMR7030 Université Paris 13

Abstract

We define the class of relational graph models and study the induced order- and equational- theories. Using
the Taylor expansion, we show that all λ-terms with the same Böhm tree are equated in any relational
graph model. If the model is moreover extensional and satisfies a technical condition, then its order-theory
coincides with Morris’s observational pre-order. Finally, we introduce an extensional version of the Taylor
expansion, then prove that two λ-terms have the same extensional Taylor expansion exactly when they are
equivalent in Morris’s sense.

Keywords: lambda calculus, linear logic, differential nets, extensional Böhm trees, Taylor expansion.

Introduction

An important problem in the theory of programming languages is to determine when

two programs are equivalent. For λ-calculus, it has become standard to regard two

programs M and N as equivalent when they are contextually equivalent with respect

to some fixed set O of observables. This means that we can plug either M or N into

any context C(−), i.e. any program with a hole, without noticing any difference in

the global behaviour: C(M) reduces to an observable in O exactly when C(N) does.

Two notable examples are ≡hnf and Morris’s equivalence ≡nf [19] obtained by

taking as observables the head normal forms and the β-normal forms, respectively.

Working with these definitions is difficult because of the quantification over all

possible contexts. However, researchers have found alternative characterisations of

these program equivalences based on syntactic trees or denotational models.

For instance, two programs are equivalent with respect to ≡hnf whenever they

have the same Nakajima tree [20] or, equivalently, when their interpretations coin-

1 This work is partly supported by ANR JCJC Project Coquas 12JS0200601.
2 Email: giulio.manzonetto@lipn.univ-paris13.fr
3 Email: domenico.ruoppolo@lipn.univ-paris13.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 308 (2014) 245–272

1571-0661/© 2014 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2014.10.014

mailto:giulio.manzonetto@lipn.univ-paris13.fr
mailto:domenico.ruoppolo@lipn.univ-paris13.fr
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2014.10.014
http://dx.doi.org/10.1016/j.entcs.2014.10.014
http://www.sciencedirect.com

cide in Scott’s model D∞ [23]. Similarly, ≡nf is captured by extensional Böhm trees

[15] and Coppo, Dezani and Zacchi’s filter model Dcdz [7].

The idea behind Böhm trees, and their extensional versions, is to extract the

computational content of a program by representing its output as a possibly infinite

tree — the continuity of this representation allows to infer properties of the whole

tree by studying its finite approximants. For this reason Böhm-like trees and con-

tinuous models relied to them via approximation theorems constituted for over forty

years the main tools to reason about the behaviour of a program. A limitation of

these methods is that they abstract away from the execution process and overlook

quantitative aspects such as the time, space, or energy consumed by a computation.

The present paper fits in a wider research programme whose aim is to rebuild

the traditional theory of program approximations, by replacing it with a mathemat-

ical model of resource consumption. The starting point is [10], where Ehrhard and

Regnier propose to analyse the behaviour of a program via its Taylor expansion,

which is a generally infinite series of “resource approximants”. Such approximants

are terms of a resource calculus corresponding to a finitary fragment of the differen-

tial λ-calculus [8]. Each resource approximant t of a λ-term M captures a particular

choice of the number of times M must call its sub-routines during its execution.

Both the differential λ-calculus and the Taylor expansion can be naturally in-

terpreted in the relational semantics of linear logic [17]. The first author et al. built

a relational model Dω living in such a semantics [6] and proved, using standard

techniques, that the induced equality is exactly ≡hnf [16], just like for Scott’s model

D∞ [13]. In this paper we provide syntactical and denotational methods based on

Taylor expansion that allow to characterise Morris’s equivalence ≡nf .

First, we introduce the class of relational graph models (rgms) of λ-calculus,

which are the relational analogous of graph models [3], and describe them as non-

idempotent intersection type systems [21]. This class is general enough to encom-

pass all relational models individually introduced in the literature [6,14], including

Dω (while Scott’s D∞ cannot be a graph model since it is extensional). We then

show that: (i) all rgms satisfy an approximation theorem for resource approximants

(Theorem 3.10); (ii) in any rgm preserving the polarities of its “empty type” ω, β-

normalisable λ-terms can be easily characterized (Lemma 4.3). As a consequence, we

get that all extensional rgms preserving ω-polarities induce as order-theory Morris’s

observational pre-order, and hence ≡nf as equality (Corollary 4.6). As an instance,

we provide the rgm D� generated by �→ � � � where � is the only atom. It should

be compared with the aforementioned filter model Dcdz, which has the same theory

but is more complicated since it has two non-trivially ordered atoms ϕ� ≤ ϕ� and

is generated by two equations ϕ� � ϕ� → ϕ� and ϕ� � ϕ� → ϕ�.

Finally, we provide a notion of extensional Taylor expansion characterising, like

extensional Böhm trees, Morris’s equivalence while keeping the quantitative infor-

mation. Intuitively, the extensional Taylor expansion of a λ-term is the η-normal

form of its resource approximants. The definition is tricky because the η-reduction is

meaningless on a single resource approximant — one should look at the whole series

of approximants to decide whether an element should reduce or not. Our solution is

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272246

to define a labeling as a global operation on the series of approximants, and then a

local η-reduction on labeled terms. Two programs are then ≡nf -equivalent exactly

when they have the same extensional Taylor expansion (Theorem 5.17). We leave

for future works a characterisation of Morris’s preorder based on Taylor expansion.

Basic notations and conventions. We let N denote the set of natural numbers.

Given a set A, P(A) (resp. Pf(A)) is the set of all (resp. finite) subsets of A and

Mf(A) is the set of all finite multisets over A. Finite multisets are represented as

unordered lists m = [α1, . . . , αn] with repetitions, [] being the empty multiset.

Given a reduction →r we write �r (=r) for its transitive and reflexive (and

symmetric) closure. A term t has an r-normal form nfr(t), if t �r nfr(t) �→r.

N.B. Unless otherwise stated, throughout the paper we suppose that all operators

F : A→ B are extended to P(A) in the natural way: F (a) = {F (α) | α ∈ a}.

1 Lambda Calculus and Böhm Trees

We will generally use the notation of Barendregt’s classic work [2] for λ-calculus.

Let us fix an infinite set Var of variables. The set Λ of λ-terms is defined by:

Λ : M,N,P ::= x | λx.M | MN for all x ∈ Var.

The set fv(M) of free variables of M and the α-conversion are defined as usual, see

[2, Ch. 1§2]. A λ-term M is closed if fv(M) = ∅. We denote by Λo the set of closed

λ-terms. From now on, λ-terms will be considered up to α-conversion.

Given two λ-terms M,N we denote by M{N/x} the capture-free substitution of

N for all free occurrences of x in M . The β- and η-reductions are given for granted.

Concerning specific λ-terms, we fix the identity I = λx.x, its η-expansion 1 =

λxy.xy, the paradigmatic looping term Ω = ΔΔ where Δ = λx.xx, Turing’s fixpoint

combinator Θ = λf.ΘfΘf where Θf = λx.f(xx) and J = Θ(λzxy.x(zy)) a term

reducing to an infinite η-expansion of I.

A λ-term M is called solvable if it has a head normal form (hnf, for short), that

is if M �β λx1 . . . xn.yN1 · · ·Nk (for n, k ≥ 0); otherwise M is called unsolvable.

Given a context C(−), i.e. a λ-term with a hole denoted by (−), we write C(M)

for the λ-term obtained from C by substituting M for the hole possibly with capture

of free variables in M . Given O ⊆ Λ, the O-observational pre-order is defined by:

M �O N ⇐⇒ ∀C(−) . C(M) �β M ′ ∈ O entails C(N) �β N ′ ∈ O.

The induced equivalence M ≡O N is defined as M �O N and N �O M . To obtain

Morris’s pre-order �nf and equivalence ≡nf just take as O the set of β-nfs [19].

The Böhm tree BT(M) of a λ-termM is defined coinductively: ifM is unsolvable

then BT(M) = ⊥; if M is solvable, then M �β λx1 . . . xn.yN1 · · ·Nk and

BT(M) = λx1 . . . xn.y

BT(N1) · · · BT(Nk)

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 247

Such a definition is sound in the sense that M =β N entails BT(M) = BT(N).

Examples of Böhm trees are: BT(I) = I, BT(1) = 1, BT(Δ) = Δ, BT(Ω) = ⊥,
BT(λx.yΩ) = λx.y BT(J) = λxz0.x BT(Θ) = λf.f

⊥ λz1.z0 f

λz2.z1 f

Given two Böhm trees T, T ′ we set T ≤⊥ T ′ if and only if T results from T ′ by
replacing some subtrees with ⊥. The set N of finite approximants is the set of

λ-terms possibly containing ⊥ inductively defined as follows: ⊥ ∈ N ; if ai ∈ N for

i = 1, . . . , n then λ	x.ya1 · · · an ∈ N . Hereafter we will confuse finite Böhm trees

with normal approximants. Notice that the set of all finite approximants of a Böhm

tree T , given by T ∗ = {a ∈ N | a ≤⊥T}, is an ideal with respect to ≤⊥ [1, §2.3].
A λ-theory is any congruence on Λ containing =β . A λ-theory is: extensional if

it contains =η; sensible if it equates all unsolvables. We denote by: λβη the least

extensional λ-theory; B the λ-theory equating all λ-terms having the same Böhm

tree; Bη the least λ-theory containing B and λβη ; H+ (resp. H∗) the λ-theory

characterizing ≡nf (resp. ≡hnf). From [2, Thm. 17.4.16] we get B � Bη � H+ � H∗.

2 Resource Calculus and Taylor Expansion

We briefly recall Ehrhard’s resource calculus [9], using the syntax proposed by Tran-

quilli in [24]. We are considering here the promotion-free fragment of [24].

Syntax. The set Λr of resource terms and the set Λb of bags are defined by:

Λr : s, t ::= x | λx.t | tb Λb : b ::= [s1, . . . , sn] where n ≥ 0. (1)

Resource terms are in functional position, while bags are in argument position

and represent unordered lists of resource terms. Intuitively, in a term of shape

t[s1, . . . , sn] each si is a linear resource, that is t cannot duplicate nor erase it.

We will deal with bags as if they were multisets presented in multiplicative

notation: 1 is the empty bag and b1 · b2 is the multiset union of b1 and b2.

We use the power notation [sk] for the bag [s, . . . , s] containing k copies of s.

The α-equivalence and the set fv(t) of free variables of t are defined as for the

ordinary λ-calculus. Resource terms and bags are considered up to α-equivalence.

As a syntactic sugar, we extend all the constructors of the grammar (1) as

pointwise operations on (possibly infinite) sets of resource terms or bags. That is,

given T ⊆ Λr and B,B′ ⊆ Λb we use the following notations: λx.T = {λx.t | t ∈ T},
TB = {tb | t ∈ T, b ∈ B}, [T] = {[t] | t ∈ T} and B · B′ = {b · b′ | b ∈ B, b′ ∈ B′}.

Observe that, in the particular case of empty set, we get λx.∅ = ∅, t∅ = ∅,
∅b = ∅, [∅] = ∅ and ∅ · b = ∅. Hence, ∅ annihilates any resource term or bag.

This kind of meta-syntactic notation is discussed thoroughly in [10].

Reductions. Given a relation →r⊆ Λr ×Pf(Λ
r) its context closure is the least

relation in Pf(Λ
r)× Pf(Λ

r) such that, when t→r T, we have:

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272248

λx.t→r λx.T, tb→r Tb, s([t] · b)→r s([T] · b), {t} ∪ S→r T ∪ S.

We say that t ∈ Λr is in r-normal form if there is no T such that t →r T. When

→r is confluent, nfr(t) ∈ Pf(Λ
r) denotes the unique r-normal form of t, if it exists.

The degree of x in t, written degx(t), is the number of free occurrences of x in t.

A β-redex is a resource term of the shape (λx.t)[s1, . . . , sk] and its contractum is a

finite set of resource terms: when degx(t) = k, it is the set of all possible resource

terms obtained by linearly replacing each free occurrence of x in t by exactly one of

the si’s; otherwise, when degx(t) �= k, it is just ∅.
Formally, we define →β as the context closure of:

(λx.t)[s1, . . . , sk]→β

⎧⎨⎩
⋃

p∈Sk
t{sp(1)/x1, . . . , sp(k)/xk} if degx(t) = k,

∅ otherwise.

where Sk is the group of permutations of {1, . . . , k} and x1, . . . , xn is an arbitrary

enumeration of the free occurrences of x in t. Note that β-reduction is strongly

normalizing (SN, for short) on Pf(Λ
r), since whenever t →β T the size of t is

strictly bigger than the size of each resource term in T. Moreover, β-reduction is

weakly confluent, and therefore confluent by Newman’s lemma.

Theorem 2.1 The β-reduction is strongly normalizing and confluent on Pf(Λ
r).

In the resource calculus there is no sensible notion of η-reduction on Pf(Λ
r).

Taylor expansion. The Taylor expansion of a λ-term, as defined in [8,10], is a

translation developing every λ-calculus application as an infinite series of resource

applications with rational coefficients. For our purpose it is enough to consider a

simplified version T (−) : Λ → P(Λr) corresponding to the support 4 of the actual

Taylor expansion; that is, we consider possibly infinite sets of resource λ-terms.

Definition 2.2 The Taylor expansion T (M) ⊆ Λr of a λ-term M is defined by:

T (x) = x, T (λx.M) = λx.T (M), T (MN) = T (M)Mf(T (N)).

The Taylor expansion is extended to finite approximants in N by setting T (⊥) = ∅,
and to Böhm trees T by setting T (T) =

⋃
{T (a) | a ∈ T ∗}.

Some examples of Taylor expansions of ordinary λ-terms are:

T (I) = {I}, T (Δ) = {λx.x[xn] | n ≥ 0}, T (λy.xyy) = {λy.x[yn][yk] | n, k ≥ 0},

4 I.e., the set of those resource terms appearing in the series with a non-zero coefficient.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 249

T (Ω) = {(λx.x[xn0])[λx.x[xn1], . . . , λx.x[xnk]] | k, n0, . . . , nk ≥ 0},

T (Θ) = {λf.(λx.f [x[xn1], . . . , x[xnk]])[λx.f [x[xn1,1], . . . , x[xn1,k1]], . . . ,

λx.f [x[xnh,1], . . . , x[xnh,kh]]] | k, ni, h, ni,j ≥ 0},

T (J) = {t[λzxy.x[z[yn1,1], . . . , z[yn1,k1]], . . . ,

λzxy.x[z[ynh,1], . . . , z[ynh,kh]]] | t ∈ T (Θ), h, ki, ni,j ≥ 0}.
From the examples above it is clear that if a λ-term M has a β-redex, then there are

resource terms t ∈ T (M) having β-redexes too. However, by Theorem 2.1, each t has

a unique β-nf and we can always compute nfβ(T (M)) =
⋃
{nfβ(t) | t ∈ T (M)}. For

instance: T (I), T (Δ) and T (λy.xyy) are already β-normal, while nfβ(T (Ω)) = ∅.

Lemma 2.3 Let a ∈ N and M ∈ Λ, then T (a) ⊆ T (BT(M)) entails a ∈ BT(M)∗.

The following results proved in [9] show the strong relationship between the

Böhm tree of a λ-term, and its Taylor expansion.

Theorem 2.4 For every λ-term M , nfβ(T (M)) = T (BT(M)).

Corollary 2.5 For all M,N ∈ Λ, BT(M) = BT(N) iff nfβ(T (M)) = nfβ(T (N)).

Using Theorem 2.4, we can easily calculate further examples:

nfβ(T (Θ)) = {λf.f1, λf.f [(f1)n], λf.f [f [(f1)n1], . . . , f [(f1)nk]], . . . },
nfβ(T (J)) = {λxz0.x1, λxz0.x[(λz1.z01)n], . . . }.

3 Relational Graph Models and Intersection Types

In this section we introduce the class of relational graph models (rgm, for short);

some examples of such models were individually studied in [14].

3.1 Relational Graph Models

We call rgms relational because they are (linear) reflexive objects in the ccc

MRel [6], the Kleisli category of Rel with respect to the comonadMf(−). In MRel

the objects are all the sets, a morphism f ∈ MRel(A,B) is any relation between

Mf(A) and B, and the exponential object A⇒ B is given byMf(A)×B. Any func-

tion f : A→ B can be sent to f † ∈MRel(A,B) by setting f † = {([a], f(a)) | a ∈ A}.

Definition 3.1 A relational graph model D = (D, i) is given by an infinite set D

and a total injection i :Mf(D)×D → D. D is extensional when i is bijective.

Every rgm D = (D, i) induces a reflexive object (D, i†, (i−1)†), i.e. D ⇒ D � D

since i†; (i−1)† = IdD⇒D. When D is moreover extensional we also have (i−1)† ; i† =
idD. These reflexive objects are all linear in the sense of [17] and live in a differential

ccc, they are therefore sound models of the resource calculus as well (Theorem 3.8).

Rgms, just like the regular ones [3], can be built by performing the free comple-

tion of a partial pair. A partial pair A is a pair (A, j) where A is a non-empty set

of elements (called atoms) and j : Mf(A) × A → A is a partial injection. We say

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272250

that A is extensional when j is a bijection between dom(j) and A. Wlog., we will

only consider partial pairs A whose underlying set A does not contain any pair.

Definition 3.2 The completion A of a partial pair A is the pair (A, j) defined as:

A =
⋃

n∈NAn, where A0 = A and An+1 = ((Mf(An) × An) − dom(j)) ∪ A ; the

function j is given by j(a, α) = j(a, α) if (a, α) ∈ dom(j), j(a, α) = (a, α) otherwise.

Note that, for every rgm D we have D = D (up to isomorphism).

Proposition 3.3 If A is a partial pair, then A is an rgm. When A is extensional,

also A is extensional.

Proof The proof of the fact that A is an rgm is analogous to the one for regular

graph models [3]. It is easy to check that when j is bijective, also j is. �

Example 3.4 We define the relational analogues of:

• Engeler’s model [11]: E = (N, ∅), first defined in [14],

• Scott’s model [23]: Dω = ({ε}, {([], ε) �→ ε}), first defined (up to iso) in [6],

• Coppo, Dezani and Zacchi’s model [7]: D� = ({�}, {([�], �) �→ �}).
Notice that Dω and D� are extensional, while E is not.

3.2 Non-Idempotent Intersection Type Systems

As discussed thoroughly in [21], the choice of presenting a relational model as a

reflexive object or as a non-idempotent intersection type system is more a matter

of taste rather than a technical decision. Here we provide the latter presentation.

Let A be a partial pair and D be its completion. The set TD of types and the

set ID of non-idempotent intersections are defined by mutual induction (for α ∈ A):

TD : σ, τ ::= α | μ→ σ ID : μ, ν ::= ω | σ | σ ∧ μ

Note that types are (unary) intersections while the converse does not hold; indeed

intersections may only appear at the left-hand side of an arrow. Thus ω is not a type,

it denotes the empty intersection and is therefore its neutral element (μ ∧ ω = μ).

Accordingly, we write ∧n
i=1σn for σ1 ∧ · · · ∧ σn when n ≥ 1, and for ω when n = 0.

Types will be considered up to associativity and commutativity of ∧ and neutrality

of ω, while we assume that the intersection is not idempotent, that is σ ∧ σ �= σ.

Every σ ∈ TD (μ ∈ ID) corresponds to an element σ• of D (μ• ofMf(D)) defined

as α• = α, (μ→ τ)• = i(μ•, τ•) and (σ1∧· · ·∧σn)• = [σ•
1, ..., σ

•
n]. Hence, the model

D induces a congruence on the intersection types: σ �D τ if and only if σ• = τ•.

An environment is a map Γ : Var → ID such that dom(Γ) = {x | Γ(x) �= ω} is

finite. We write x1 : μ1, . . . , xn : μn for the environment Γ such that Γ(xi) = μi and

Γ(y) = ω for all y /∈ 	x. The environment mapping all variables to ω is denoted by

∅, or just omitted as in Example 3.6. The intersection Γ1 ∧ Γ2 and the equivalence

Γ1 �D Γ2 of two environments are defined pointwise; note that Γ ∧ ∅ = Γ.

Definition 3.5 The interpretation of M ∈ Λ (or M ∈ N) in D is defined as:

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 251

x : σ �D x : σ
var

Γ, x : μ �D M : σ

Γ �D λx.M : μ→ σ
lam

Γ �D M : τ σ �D τ
Γ �D M : σ

eq

Γ0 �D M : ∧n
i=1σi → τ Γi �D N : σi for i = 1, . . . , n

Γ0 ∧ (∧n
i=1Γi) �D MN : τ

app

(a) Non-idempotent intersection type system for Λ and N .

Γ0 �D t : ∧n
i=1σi → τ Γi �D si : σi for i = 1, . . . , n

Γ0 ∧ (∧n
i=1Γi) �D t[s1, . . . , sn] : τ

app′

(b) Non-idempotent intersection type system for Λr.

Figure 1: The intersection type systems for Λ, N and Λ
r
. The other rules for

typing Λr are analogous to (var), (lam), (eq) of Figure 1(a) and are omitted.

�M�D = {(Γ, σ) | Γ �D M : σ}, where the type system �D is given in Fig. 1(a).

The definition of �t�D for t ∈ Λr is analogous, using the rules of Fig. 1(b). Note that

�D also works for terms in N : ⊥ is not typable, but e.g. �D λx.x⊥ : (ω → τ)→ τ .

Example 3.6 Let D be any rgm. Then we have: �I�D = {σ | σ � τ → τ, τ ∈ TD},
�1�D = {σ | σ � (μ → τ) → μ → τ, τ ∈ TD, μ ∈ ID}, �J�D = {σ | σ � (ω → τ) →
ω → τ, τ ∈ TD}, �λx.xΩ�D = {σ | σ � (ω → τ)→ τ, τ ∈ TD}, �Ω�D = ∅. It follows
that �I� = �1� in both Dω and D�, but �I�Dω = �J�Dω , while � ∈ �I�D� − �J�D� .

When D is clear from the context we simply write �, � and �−�. Note that

Γ �M : σ implies dom(Γ) ⊆ fv(M) and Γ′ �M : σ′ for Γ � Γ′ and σ � σ′ [21].

Theorem 3.7 (Inversion Lemma, cf. [21]) Let D be an rgm.

(i) Γ � x : σ entails Γ = x : τ for τ � σ,

(ii) Γ � λx.M : σ if and only if Γ, x : μ �M : τ for some μ→ τ � σ,

(iii) Γ �MN : σ entails that Γ = Γ0∧(∧n
i=1Γi) for some n ≥ 0, Γ0 �M : ∧n

i=1σi →
σ and Γi � N : σi.

For resource λ-terms an analogous statement holds, where (iii) is replaced with:

(iii’) Γ � t[s1, . . . , sn] : σ entails Γ = Γ0∧(∧n
i=1Γi), Γ0 � t : ∧n

i=1σi → σ and Γi � si : σi.

Theorem 3.8 Let D be an rgm, then for Λ and Λr:

(i) Substitution lemma, subject reduction and subject expansion hold in �D.
(ii) The interpretation �−�D is sound with respect to =β.

Proof (i) is proved in [21] for Λ and in [17] for relational models of Λr.

(ii) follows from (i). �

The λ-theory and the order theory induced by D are given by Th(D) =

{(M,N) | �M� = �N�} and Th≤(D) = {(M,N) | �M� ⊆ �N�}, respectively. We

write D |= M = N if (M,N) ∈ Th(D), and D |= M ≤ N if (M,N) ∈ Th≤(D).

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272252

A model D is O-inequationally fully abstract when D |= M ≤ N if and only if

M �O N , and O-fully abstract when D |= M = N if and only if M ≡O N .

Lemma 3.9 If D is an extensional rgm, then λβη ⊆ Th(D).

Proof The equivalence between Γ � M : σ and Γ � λx.Mx : σ when x /∈ fv(M)

follows by induction on σ using the fact that α � μ→ τ for every atomic type α.�

As a consequence, the λ-theories induced by rgms and by regular graph models

are different, since no graph model is extensional. For instance, the λ-theory of Dω,

the relational analogue of Scott’s D∞, is H� [16]. That is Dω is hnf-fully abstract.

While approximation theorems for Böhm trees and idempotent intersection type

systems are usually proved through reducibility techniques, the following one for

Taylor expansion and rgms can be proved by induction on the type derivation using

the subject reduction (Theorem 3.8) and the SN of Λr (Theorem 2.1).

Theorem 3.10 (Approximation Theorem) Let M be a λ-term. Then

Γ �M : σ if and only if there exists t ∈ T (M) such that Γ � t : σ.

Therefore �M� = �T (M)�.

Corollary 3.11 For all rgms D we have that B ⊆ Th(D). In particular Th(D) is

sensible and �M�D = ∅ for all unsolvable λ-terms M .

Proof From Theorem 3.10 we have �M� = �T (M)� =
⋃

t∈T (M)�t�. By subject

reduction for Λr (Theorem 3.8) this is equal to
⋃

t∈T (M)�nfβ(t)�, which is equal to⋃
t∈T (BT(M))�t� = �T (BT(M))�, by Theorem 2.4. Therefore, whenever BT(M) =

BT(N) we get �M� = �T (BT(M))� = �T (BT(N))� = �N�. �

4 Full Abstraction for Morris’s Observational Preorder

This section is devoted to show that every extensional rgm D satisfying the condition

of Definition 4.1 — in particular D� — is (inequationally) fully abstract with respect

to Morris’s pre-order �nf . Rather than working directly with �nf , and building

separating contexts, we use Levy’s notion of extensional Böhm tree

BTe(M) = {nfη(a) | a ∈ BT(M ′)∗, M ′ �η M}.

Indeed, it is well known that M �nf N exactly when BTe(M) ⊆ BTe(N) [12]

and that two λ-terms have the same extensional Böhm tree when their Böhm trees

are equal up to (possibly infinitely many) η-expansions of finite depth. These trees

are therefore different from Nakajima trees: for instance I ∈ BTe(I)− BTe(J).

Examples of extensional Böhm trees are: BTe(1) = BTe(I),

BTe(I) = {⊥, I, λxz0.x⊥, λxz0.x(λz1.z0(λz2.z1⊥)), . . . }, BTe(J) = BTe(I)− {I},
BTe(λy.xyy) = {⊥, x⊥, λy.xyy, λy.xy⊥, . . . },BTe(xΩ) = BTe(λy.xyy)−{λy.xyy}.

Given a polarity p ∈ {+,−}, we define inductively for all types σ the relations

ω ∈p σ and ω ∈¬p σ, where ¬p is the opposite polarity, as: (i) ω ∈− μ → τ if

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 253

μ = ω; (ii) if ω ∈p τ then ω ∈p μ→ τ ; (iii) if ω ∈¬p τ then ω ∈p τ ∧ μ→ τ ′. When

ω ∈+ σ (ω ∈− σ) we say that ω occurs positively (negatively) in σ. We write ω /∈+ σ

(ω /∈− σ) if ω does not occur positively (negatively) in σ. These notions extend to

intersections in the obvious way, for instance ω ∈pσ1 ∧ · · · ∧σn if ω ∈pσi for some i.

Definition 4.1 An rgm D preserves ω-polarities whenever ω ∈p σ and σ � τ entail

ω ∈p τ , for all σ, τ ∈ TD and p ∈ {+,−}.

For instance E and D� preserve ω-polarities, while Dω does not because ω ∈+

(ω → ε)→ ε � ε→ ε but ω /∈+ ε→ ε. Note that, if an rgm D preserve ω-polarities,

then we also have that ω /∈p σ and σ � τ entail ω /∈p τ (where p ∈ {+,−}).

Proposition 4.2 Let A be a partial pair such that, for all m ∈Mf(A) and α ∈ A,

(m,α) ∈ dom(j) entails that m �= []. Then A preserves ω-polarities.

Lemma 4.3 Let M ∈ Λ. The following are equivalent:

(i) M has a normal form,

(ii) there is a ∈ BT(M)∗ that does not contain ⊥,
(iii) there is t ∈ nfβ(T (M)) that does not contain the empty bag 1,

(iv) in every rgm D preserving ω-polarities, Γ �D M : σ for some environment Γ

and type σ such that ω /∈+ σ and ω /∈− Γ (that is ω /∈− Γ(x) for all x ∈ Var).

Proof [Sketch] (i ⇐⇒ ii) is trivial and (ii ⇐⇒ iii) follows from Theorem 2.4.

(iii ⇒ iv) One proves by induction on the β-normal t that Γ � t : σ holds for

some Γ, σ such that ω /∈− Γ and ω /∈+ σ. Then one concludes by subject expansion

for Λr and the approximation theorem (Theorem 3.10).

(iv ⇒ iii) By the approximation theorem and subject reduction for Λr there is

t ∈ nfβT (M) such that Γ � t : σ is derivable for some Γ, σ satisfying ω /∈− Γ and

ω /∈+ σ. Then, using Theorem 3.7 and the preservation of ω-polarities, one proves

by induction on the structure of normal form of t that it does not contain 1. �

Notice that in the model Dω, which does not preserve ω-polarities, the above

lemma does not hold. For instance, ω /∈+ ε→ ε ∈ �J�Dω , but J is not normalizing.

In Coppo, Dezani and Zacchi’s model Dcdz presented in [7], there is an atomic

type ϕ� (resp. ϕ�) characterizing the terms having a β-nf (resp. persistent β-nf).

In the model D� the type � captures those λ-terms M ∈ Λo having a normal

form that is “linear”. A λ-term M is called linear whenever: (i) every y ∈ fv(M)

occurs once in M ; (ii) every subterm λx.N of M is such that x occurs once in N .

Lemma 4.4 Let M ∈ Λ and Γ = x1 : �, . . . , xn : �. Then Γ �D� M : � if and only

if M has a linear β-normal form and fv(nfβ(M)) = dom(Γ).

We now prove the main results of the section.

Theorem 4.5 Let D be an extensional rgm preserving ω-polarities. The following

are equivalent (for M,N ∈ Λo):

(i) D |= M ≤ N ,

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272254

(ii) M �nf N ,

(iii) BTe(M) ⊆ BTe(N).

Proof (i⇒ ii) Suppose �M� ⊆ �N� and consider a context C(−) such that C(M)

has a normal form. By Lemma 4.3 there is σ ∈ �C(M)� such that ω /∈+ σ. Since �−�

is contextual we have �C(M)� ⊆ �C(N)�, therefore σ ∈ �C(N)� and, by applying

Lemma 4.3 again, we conclude that C(N) has a normal form.

(ii ⇐⇒ iii) See Hyland’s original paper [12], or [22] for a cleaner proof.

(iii⇒ i) We have: �M� = ∪M ′�ηM �M ′� by Lemma 3.9

= ∪M ′�ηM �T (M ′)� by Theorem 3.10

= ∪M ′�ηM �nfβT (M ′)� by Theorem 3.8(ii) for Λr

= ∪M ′�ηM �BT(M ′)∗� by Theorem 2.4

= ∪M ′�ηM �nfηBT(M ′)∗� by Lemma 3.9

= �BTe(M)� by definition of BTe(M).

Thus BTe(M) ⊆ BTe(N) entails �M� = �BTe(M)� ⊆ �BTe(N)� = �N�. �

Corollary 4.6 (Full abstraction) Every extensional rgm D respecting ω-polari-

ties has order-theory Th≤(D) = {(M,N) | M �nf N} and λ-theory Th(D) = H+.

5 Extensional Taylor Expansion and η-Trees

We introduce the notion of extensional Taylor expansion T η(M) of a λ-term M and

prove that it is equal to the Taylor expansion of the extensional Böhm tree of M

(Theorem 5.15). This result is the analogue of Theorem 2.4. As a byproduct, we

obtain a new syntactical characterization of ≡nf (Corollary 5.17).

For technical reasons, we work with an alternative notion of extensional Böhm

tree of M , that will be denoted by BTη(M). Rather than producing a set of η-

normal approximants, BTη(−) gives an actual (possibly infinite) η-normal tree.

The η-normal form η(T) of a Böhm tree T is defined coinductively: η(⊥) = ⊥ and

η

(
λx1 . . . xn.y

T1 · · · Tm

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
η

(
λx1 . . . xn−1.y

T1 · · · Tm−1

) If xn /∈ fv(yT1 · · ·Tm−1)

Tm ∈ N , i.e. it is finite

and Tm �η xn,

λx1 . . . xn.y

η(T1) · · · η(Tm)

otherwise.

Therefore, we define the Böhm η-tree BTη(M) of a λ-term M as η(BT(M)).

Examples of Böhm η-trees are: BTη(J) = BT(J), BTη(λy.xyy) = λy.xyy,

BTη(λxy1y2.x(λz1.y1(λz2.z1(λz3.z2z3))y2) = BTη(I) = I, and BTη(λy.x⊥y) = x⊥.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 255

The notions of BTη(−) and BTe(−) are equivalent in the sense that, for all

M,N ∈ Λ, BTe(M) = BTe(N) if and only if BTη(M) = BTη(N) [25,15]. On

the other hand, BTe(M) ⊆ BTe(N) is not equivalent to BTη(M) ≤⊥ BTη(N).

E.g. BTe(x⊥) ⊆ BTe(λy.xyy) but BTη(x⊥) = x⊥ �≤⊥λy.xyy = BTη(λy.xyy).

5.1 Extensional Taylor Expansion

In order to obtain the analogue of Ehrhard and Regnier’s Theorem 2.4 in the exten-

sional setting, the extensional Taylor expansion of M should be the η-normal form

of nfβT (M), just like BTη(M) is the η-normal form of BT(M).

The problem is that defining an η-reduction on P(nfβ(Λr)) is no easy task.

Consider for instance the näıve definition →η= ∪k≥0(→ηk) where λx.t[xk]→ηk t if

x /∈ fv(t). This correctly reduces T (λy.xy) = {λy.x[yk] | k ≥ 0} to {x}, but the

fact that λy.x1→η0 x is a problem, since λy.x1 also belongs to T (λy.xΩ), whereas

x /∈ T (nfη(λy.xΩ)) = {λy.x1}. Similarly, λy.x1[y] as an element of T (λy.xzy) is

supposed to η-reduce to x1, while as an element of T (λy.xyy) should be η-normal.

These examples reveal that, while the β-reduction of T (M) can be performed

locally by reducing each term individually, the η-reduction of nfβT (M) must be

a global operation, that considers the whole set of terms before deciding whether

a term should reduce or not. Rather than defining an infinitary rewriting system

handling countably many terms, we prefer to divide the problem of computing the

η-normal form of T (M) into two phases:

(i) we first define a labeling L(−) on the terms t ∈ T (M) as a global operation

annotating on the empty bags 1 occurring in t:

• whether they “come from” a finite η-expansion of some variable y; for instance

λy.x1 ∈ T (λy.x(λz.yz)) should be labeled as λy.x1η(y),

• the set of free variables that were forgotten by taking 1 in the Taylor expansion;

for instance λy.x1[y] ∈ T (λy.xyy) should be labeled as λy.x1y[y].

(ii) We then define a local reduction →η� on L(nfβT (M)) that exploits this

extra-information annotated to perform the η-reduction only when it is safe.

The definition of the labeling L (Definition 5.1) relies on a certain homogeneity

exhibited by the structure of the resource terms in nfβT (M). As shown in [4], this

homogeneity relies on a definedness relation � between normal resource terms:

λx1 . . . xn.y � λx1 . . . xn.y

t � t′ b � b′

tb � t′b′ 1 � b

∃t′ ∈ b′ ∀t ∈ b , t � t′

b � b′

The relation � is not a preorder since it is transitive, but not reflexive. For instance,

x[y1[y], y[y]1] �� x[y1[y], y[y]1], since y1[y] �� y[y]1 and y[y]1 �� y1[y]. See the

discussion after Definition 9 in [4] for more properties of this relation, and examples.

Notice that all singletons {λx1 . . . xn.y} (for n ≥ 0) are ideals with respect to �.
By Lemma 12 in [4], every ideal S has one of the following shapes: {x}, λx.T,

TB for some ideals T and B. Therefore, the following definition is sound.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272256

Definition 5.1 Let S ⊆ nfβ(Λ
r) be an ideal with respect to � and t ∈ S. The

labeled term L(t, S) is defined as follows:

L(x, {x}) = x, L(λx.t, λx.T) = λx.L(t,T), L(tb,TB) = L(t,T)L(b,B),

L([t1, . . . , tk],B) = [L(t1,
⋃

B), . . . ,L(tk,
⋃

B)], for k > 0

L(1,B) =

⎧⎨⎩ 1xη(x) if there exists t′ ∈
⋃

B such that t′ �η′ x, (•)

1fv(B) otherwise.

where →η′ is λx.t[xk+1] →η′ t when x /∈ fv(t). We set L(S) = {L(t, S) | t ∈ S}.
Given a labelled term t, we write �t� for the term obtained by erasing all its labels.

The labeling L(−) can be always applied to nfβT (M) thanks to the following.

Proposition 5.2 [4, Lemma 23] Let M ∈ Λ. Then nfβT (M) is an ideal w.r.t. �.

Remark 5.3 The definition of L(t, S) will be only used when S is the β-normal

of a Taylor expansion. Under this hypothesis, the case L(1,B) is applied when⋃
B = T (M) for some β-normal M ∈ Λ and Condition (•) becomes “there is

t ∈ T (M) such that t �η′ x” which holds exactly when M �η x.

For example, for t = λy.x11 and S = nfβT (λy.xΩy) = {λy.x1[yn] | n ≥ 0}
we have L(t, S) = λy.L(x, {x})L(1, {1})L(1, {[yk] | k ≥ 0}) = λy.x1∅1yη(y). While

L(λy.x11, nfβT (λy.xyy)) = λy.x1yη(y)1
y
η(y). Thus L(T (λy.xyy)) = {λy.x1yη(y)1

y
η(y)}

∪{λy.x1yη(y)[y
n+1] | n ≥ 0}∪{λy.x[yk+1]1yη(y) | k ≥ 0}∪{λy.x[yk+1][yn+1] | n, k ≥ 0}.

The definition of the set f̃v(t) of free variables of a labeled term t is analogous

to the one of fv(t), except for the clauses f̃v(1xη(x)) = {x} and f̃v(1�x) = {	x}.

Remark 5.4 Given T = BT(M), x ∈ fv(T) iff x ∈ f̃v(t) for every t ∈ L(T (T)).

Definition 5.5 The reduction →η� on labelled β-normal resource terms, is the

contextual closure of ∪n∈N(→η�n
) where →η�n

is defined as follows:

(η�0) λx.t1
x
η(x) →η�0

t, if x /∈ f̃v(t), (η�n+1) λx.t[x
n+1]→η�n+1

t, if x /∈ f̃v(t).

For example, we have L(λy.x1[y], nfβT (λy.xzy)) = λy.x1zη(z)[y] →η� x1zη(z),

while L(λy.x1[y], nfβT (λy.xyy)) = λy.x1yη(y)y, which is already η�-normal.

Lemma 5.6 The reduction →η� is SN and confluent.

Proof The reduction→η� is SN since the size of the term decreases. It is moreover

weakly confluent, and therefore confluent by Newman’s lemma. �

Definition 5.7 The extensional Taylor expansion of a λ-term M is given by:

T η(M) = �nfη�L(nfβT (M))�

In the definition above, β- and η�-reductions are separated because the reduction

β ∪ η� is not confluent: for instance λx.I[x, x]→η� I while λx.I[x, x]→β ∅.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 257

5.2 Eta-Reduction on Böhm Approximants

We now provide the technical tools that will be used to prove Theorem 5.15. By The-

orem 2.4, it is enough to prove that T (BTη(M)) is equal to �nfη�L(T (BT(M)))�.
The difficulty lies in that BTη(M), which is the η-normal form of BT(M), is de-

fined coinductively on BT(M), while the η�-reduction of T (BT(M)) works on a

set of (labeled) resource terms coming from the finite approximants in BT(M)∗.
Therefore, as an intermediate step, we define the η-normal form of the set BT(M)∗

mimicking what we did in Subsection 5.1 for sets of resource terms. In particular,

even in this framework the η-reduction must be a global operation; therefore, we

introduce a labeling on finite approximants in the spirit of Definition 5.1.

Given M ⊆ N , M ↓ denotes its downward closure {a ∈ N | ∃ b ∈ M, a ≤⊥ b}.
When M is an ideal, we have that M = M ↓ and all its elements have a similar

syntactic structure, except for ⊥. We adopt for sets M of approximants the same

syntactic sugar we used for P(Λr), by extending all the constructors of the grammar

of N as pointwise operations on P(N). For instance the ideal BT(Jx)∗ can be

written as {λz0.x(BT(Jz0)
∗)}↓ = λz0.x(BT(Jz0)

∗) ∪ {⊥}.

Definition 5.8 Let M ⊆ N be an ideal w.r.t. ≤⊥ and a ∈M. Define E(a,M) as:

E(x, {x}↓) = x, E(λx.a, (λx.M)↓) = λx.E(a,M↓),

E(ac, (MN)↓) = E(a,M↓)E(c,N),

E(⊥,M) =

⎧⎨⎩⊥x
η(x) if there exists a ⊥-free a ∈M such that a �η x, (◦)

⊥fv(M) otherwise.

We extend the definition to M by setting E(M) = {E(a,M) | a ∈M}.

Notice that in the case (MN)↓ above, the set N is already downward closed.

As BT(M)∗ is an ideal for every M ∈ Λ, we can always compute L(BT(M)∗).
Condition (◦) is then equivalent to check that M = BT(M ′)∗ for some M ′ �η x.

As we did for resource terms, we speak of labeled approximants a, we define the

set f̃v(a) by adding the clauses f̃v(⊥x
η(x)) = {x} and f̃v(⊥�x) = {	x}, and we write

�a� for the term obtained from a by erasing all its labels.

Remark 5.9 Given T = BT(M), x ∈ fv(T) iff x ∈ f̃v(t) for every t ∈ E(T ∗).

Definition 5.10 The reduction →ηe on labeled approximants is defined as:

λx.a⊥x
η(x) →ηe a, if x /∈ f̃v(a), λx.ax→ηe a, if x /∈ f̃v(a).

It is easy to check that also →ηe is strongly normalizing and confluent.

After a technical lemma, we show that the ηe-reduction on E(BT(M)) computes

exactly the finite approximants of the co-inductively defined tree BTη(M). Given

two sets of terms X,Y and a reduction →r we write X⇒r Y if for all t1 ∈ X there

is t2 ∈ Y such that t1 �r t2 and for all t2 ∈ Y there is t1 ∈ X such that t1 �r t2.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272258

Lemma 5.11 Let T = λ	xy.zT1 · · ·Tk+1 be a Böhm tree such that Tk+1 is finite,

Tk+1 �η y and y /∈ fv(zT1 · · ·Tk). Then E(T ∗)⇒ηe E((λ	x.zT ∗
1 · · ·T ∗

k)↓).

Proposition 5.12 For all M ∈ Λ, we have BTη(M)∗ = �nfηeE(BT(M)∗)�.

Proof [Sketch] One proceeds by co-induction on BT(M) using Lemma 5.11. �

5.3 A Taylor-Based Characterization of Morris’s Equivalence

Now that the technical tools for proving the main result of the section are finally in

place, we are able to prove that the extensional Taylor expansion of a λ-term M ,

actually captures the Taylor expansion of BTη(M).

We first need the following technical results, then we show a sort of commutation

between the η�-normalization and the Taylor expansion.

Lemma 5.13 Let T = λ	xy.zT1 · · ·Tk+1 be a Böhm tree such that Tk+1 is finite,

Tk+1 �η y and y /∈ fv(zT1 · · ·Tk). Then L(T (T))⇒η� L(T (λ	x.zT1 · · ·Tk)).

Proposition 5.14 For all M ∈ Λ, T (�nfηeE(BT(M)∗)�) = �nfη�L(T (BT(M)))�.

Proof [Sketch] By coinduction on BT(M), applying Lemma 5.13. �

We can finally prove the main result of the section.

Theorem 5.15 For every λ-term M , T η(M) = T (BTη(M)).

Proof Collecting the results above, we have the following chain of equalities:

T η(M) = �nfη�L(nfβT (M))� by Definition 5.7

= �nfη�L(T (BT(M)))� by Theorem 2.4

= T (�nfηeE(BT(M)∗)�) by Prop. 5.14

= T (BTη(M)∗) by Prop. 5.12 �

Corollary 5.16 For all M,N ∈ Λ, we have BTη(M)∗ ⊆ BTη(N)∗ if and only if

T η(M) ⊆ T η(N).

Proof (⇒) Let t ∈ T η(M). Then there is a ∈ BTη(M)∗ such that t ∈ T (a). Since

BTη(M)∗ ⊆ BTη(N)∗, we have that a ∈ BTη(N)∗. So t ∈ T (BTη(N)) and we get

from Theorem 5.15 that t ∈ T η(N).

(⇐) Let a ∈ BTη(M)∗. Then by Theorem 5.15 T (a) ⊆ T (BTη(M)) = T η(M) ⊆
T η(N). Since T η(N) = T (BTη(N)) holds still by Theorem 5.15, we have that

T (a) ⊆ T (BTη(N)). From Lemma 2.3 we conclude that a ∈ BTη(N)∗. �

A further corollary is that the notion of extensional Taylor expansion provides

an alternative characterization of Morris’s equivalence.

Corollary 5.17 For M,N ∈ Λ, we have M ≡nf N if and only if T η(M) = T η(N).

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 259

Proof We have the following chain of equivalences: By [25] M ≡nf N if and only

if BTη(M) = BTη(N), that is BTη(M)∗ = BTη(N)∗. By Corollary 5.16 this holds

if and only if T η(M) = T η(N) does. �

6 Related and Further Works

In [7], Coppo, Dezani and Zacchi defined a filter model Dcdz having two non-trivially

ordered atoms ϕ� ≤ ϕ� and proved that its theory is H+, namely the theory of

Morris’s equivalence. We claim that the relational semantics provides a more natural

framework for building models having this theory since: (i) it is enough for an rgm
to preserve ω-polarities to induce H+ as equational theory; (ii) the resulting models

are simpler than filter models as their elements are trivially ordered; (iii) a range

of powerful tools coming from the resource calculus, like the Taylor expansion, are

available as the relational semantics is actually a model of differential linear logic.

The present article is reminiscent of [16], where the first author gives sufficient

conditions for models living in non-well-pointed categories (in particular the re-

lational semantics) to have as theory H∗. The proof techniques used in [16] are

however more standard as those categories are not necessarily models of differential

linear logic. A breakthrough in this subject has been recently achieved by Breuvart

in [5], where he was able to provide a precise characterisation of those Krivine’s

models (K-models, for short) having theory H∗. Indeed he proved that an exten-

sional K-model has theory H∗ if and only if the unfolding of equivalent arrow types

is governed by a hyperimmune function, a notion widely used in recursion theory.

It would be interesting to check whether an analogous result holds for rgms, and

to look for necessary and sufficient conditions for characterising those rgms having

theory H+.

Concerning the syntactic results presented in Section 5, it would be interesting

to look for a notion of extensional Taylor expansion capturing directly Morris’s pre-

order. This would allow to strengthen Theorem 4.5 by adding a further syntactic

characterisation of �nf based on Taylor approximants.

A more ambitious goal is to generalise the definition of extensional Taylor ex-

pansion to the full fragment of resource calculus, where the notion of Böhm tree has

no easy equivalent. Preliminary investigations by the first author and Pagani [18]

show that a Böhm-like theorem holds in that setting: two finite sums of normal

resource terms (possibly with promotion) are semi-separable with respect to may-

convergence to a head-normal forms exactly when they are not η-convertible or

Taylor-equivalent. The problems of fully characterising observational equivalences

with respect to normal form or head normal forms for sums of arbitrary resource

terms either semantically (in terms of relational models) or syntactically (in terms

of Taylor expansion) are still open and promise to be quite difficult.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272260

Acknowledgement

Thanks to Henk Barendregt, Mariangiola Dezani, Thomas Ehrhard, Stefano Guer-

rini, Michele Pagani for stimulating discussions and the reviewers for their com-

ments.

References

[1] Amadio, R. and P.-L. Curien,“Domains and Lambda Calculi,”Cambridge tracts in theoretical computer
science, Cambridge University Press, 1998.

[2] Barendregt, H., “The lambda-calculus, its syntax and semantics,” Number 103 in Stud. Logic Found.
Math., North-Holland, 1984, second edition.

[3] Berline, C., From computation to foundations via functions and application: The λ-calculus and its
webbed models, Theor. Comput. Sci. 249 (2000), pp. 81–161.

[4] Boudes, P., F. He and M. Pagani, A characterization of the Taylor expansion of lambda-terms, in:
S. Ronchi Della Rocca, editor, CSL’13, LIPIcs 23 (2013), pp. 101–115.

[5] Breuvart, F., On the characterization of models of H� (2014), To appear in Computer Science Logic
and Logic in Computer Science (CSL-LICS 2014).

[6] Bucciarelli, A., T. Ehrhard and G. Manzonetto, Not enough points is enough, in: CSL’07, LNCS 4646
(2007), pp. 298–312.

[7] Coppo, M., M. Dezani and M. Zacchi, Type theories, normal forms and D∞-lambda-models, Inf.
Comput. 72 (1987), pp. 85–116.

[8] Ehrhard, T. and L. Regnier, The differential lambda-calculus, Theor. Comput. Sci. 309 (2003), pp. 1–41.

[9] Ehrhard, T. and L. Regnier, Böhm trees, Krivine’s machine and the Taylor expansion of lambda-terms,
in: CiE, LNCS 3988, 2006, pp. 186–197.

[10] Ehrhard, T. and L. Regnier, Uniformity and the Taylor expansion of ordinary lambda-terms, Theor.
Comput. Sci. 403 (2008), pp. 347–372.

[11] Engeler, E., Algebras and combinators, Algebra Universalis 13 (1981), pp. 389–392.

[12] Hyland, J., A survey of some useful partial order relations on terms of the lambda calculus, in: C. Böhm,
editor, Lambda-Calculus and Computer Science Theory, LNCS 37 (1975), pp. 83–95.

[13] Hyland, J., A syntactic characterization of the equality in some models for the λ-calculus, J. London
Math. Soc. (2) 12(3) (1975/76), pp. 361–370.

[14] Hyland, M., M. Nagayama, J. Power and G. Rosolini, A category theoretic formulation for Engeler-style
models of the untyped λ-calculus, Electronic Notes in Theor. Comp. Sci. 161 (2006), pp. 43–57.

[15] Levy, J.-J., Le lambda calcul - notes du cours (2005), in French, http://pauillac.inria.fr/~levy/
courses/X/M1/lambda/dea-spp/jjl.pdf.

[16] Manzonetto, G., A general class of models of H�, in: MFCS 2009, LNCS 5734 (2009), pp. 574–586.

[17] Manzonetto, G., What is a categorical model of the differential and the resource λ-calculi?,
Mathematical Structures in Computer Science 22 (2012), pp. 451–520.

[18] Manzonetto, G. and M. Pagani, Böhm’s theorem for resource lambda calculus through taylor expansion,
in: TLCA 2011, LNCS 6690, 2011, pp. 153–168.

[19] Morris, J., “Lambda calculus models of programming languages,” Ph.D. thesis, MIT (1968).

[20] Nakajima, R., Infinite normal forms for the lambda calculus, in: Lambda-Calculus and Computer
Science Theory, Lecture Notes in Computer Science 37 (1975), pp. 62–82.

[21] Paolini, L., M. Piccolo and S. Ronchi Della Rocca, Logical relational λ-models (2014), draft available
at http://www.di.unito.it/~paolini/papers/logicalRelational.pdf.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 261

http://pauillac.inria.fr/~levy/courses/X/M1/lambda/dea-spp/jjl.pdf
http://pauillac.inria.fr/~levy/courses/X/M1/lambda/dea-spp/jjl.pdf
http://www.di.unito.it/~paolini/papers/logicalRelational.pdf

[22] Ronchi Della Rocca, S. and L. Paolini, “The Parametric λ-Calculus: a Metamodel for Computation,”
Texts in TCS: An EATCS Series, Springer-Verlag, Berlin, 2004.

[23] Scott, D., Continuous lattices, in: Lawvere, editor, Toposes, Algebraic Geometry and Logic, Lecture
Notes in Math. 274 (1972), pp. 97–136.

[24] Tranquilli, P., Intuitionistic differential nets and λ-calculus, Th. Comp. Sci. 412 (2011), pp. 1979–1997.

[25] van Bakel, S., F. Barbanera, M. Dezani-Ciancaglini and F.-J. de Vries, Intersection types for lambda-
trees, Theor. Comput. Sci. 272 (2002), pp. 3–40.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272262

A Technical Appendix

This technical appendix is devoted to provide some proofs that were omitted or just

sketched in the article.

A.1 Omitted proofs of Section 2

Lemma 2.3 Let a ∈ N and M ∈ Λ, then T (a) ⊆ T (BT(M)) entails a ∈ BT(M)∗.

Proof By structural induction on a.

Case a = ⊥ and T (a) = ∅ ⊆ T (BT(M)). Then it is trivial since ⊥ ∈ BT(M).

Case a = λ	x.ya1 · · · ak and T (a) =
⋃

n1,...,nk≥0 λ	x.y[T (a1)
n1] · · · [T (ak)

nk] ⊆
T (BT(M)). Then M �β λ	x.yN1 · · ·Nk for some N1, . . . , Nk ∈ Λ such that T (ai) ⊆
T (BT(Ni)). By induction hypothesis ai ∈ BT(Ni)

∗ for all 1 ≤ i ≤ k and we

conclude that λ	x.ya1 · · · ak ∈ BT(M)∗. �

A.2 Omitted proofs of Section 3

Theorem 3.10 (Approximation Theorem) Let M be a λ-term. Then Γ �M :

σ if and only if there exists t ∈ T (M) such that Γ � t : σ.

Proof (⇒) The proof is by induction on a derivation of Γ �M : σ. We proceed by

case analysis on the last rule applied in the derivation.

Case var. We have x : σ � x : σ using the rule (var). This case is trivial since

T (x) = {x}.
Case lam. We have Γ � λx.N : σ using the rule (lam). By Theorem 3.7(ii), we

have that Γ, x : μ � N : τ for some μ→ τ � σ. By IH, there exists t′ ∈ T (N) such

that Γ, x : μ � t′ : τ . Therefore, λx.t′ ∈ T (λx.N) and

Γ, x : μ � t′ : τ

Γ � λx.t′ : μ→ τ
(lam)

μ→ τ � σ

Γ � λx.t′ : σ
(eq)

Case app. We have Γ � NP : σ using the rule (app). By Theorem 3.7(iii), there

is a decomposition Γ = Γ0∧(∧n
i=1Γi) for some n ≥ 0, such that Γ0 � N : ∧n

i=1σi → σ

and Γi � P : σi. By IH, there exists s ∈ T (N) such that Γ0 � s : ∧n
i=1σi → σ, and

there exist t1, . . . , tn ∈ T (P) such that Γi � ti : σi.

Therefore we have that s[t1, . . . , tn] ∈ T (NP) and:

Γ0 � s : ∧n
i=1σi → σ Γi � ti : σi ∀i ∈ {1, . . . , n}

Γ � s[t1, . . . , tn] : σ

Case eq. Let Γ � M : σ using the rule (eq). Then Γ � M : τ for some τ � σ.

By IH there exists t ∈ T (M) such that Γ � t : τ . By applying (eq) we derive

Γ � t : σ.

This concludes the left-to-right implication.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 263

(⇐) Let t ∈ T (M) such that Γ � t : σ. We proceed by induction on the deriva-

tion for such a type assignment.

Case var. We have x : σ � x : σ and x ∈ T (M) which entails M = x by

definition of the Taylor expansion. This case is therefore trivial.

Case app. We have s[t1, . . . , tn] ∈ T (M) such that Γ � s[t1, . . . , tn] : σ. By

Theorem 3.7(iii)’, we get the decomposition Γ = Γ0 ∧ (∧n
i=1Γi) and the typing

assignments Γ0 � t : ∧n
i=1σi → σ and Γi � si : σi. By definition of Taylor expansion,

if s[t1, . . . , tn] ∈ T (M) then M = NP for some N,P ∈ Λ such that s ∈ T (N) and

t1, . . . , tn ∈ T (P). By IH, Γ0 � N : ∧n
i=1σi → σ and Γi � P : σi for all i ∈ {1, . . . , n}.

Therefore we derive:

Γ0 � N : ∧n
i=1σi → σ Γi � P : σi ∀i ∈ {1, . . . , n}

Γ � NP : σ
(app)

Case lam. We have λx.t ∈ T (M) such that Γ � λx.t : σ. By definition of Taylor

expansion, λx.t ∈ T (M) entails M = λx.N for some N ∈ Λ such that t ∈ T (N).

By Theorem 3.7(ii), one gets Γ, x : μ � t : τ for some μ → τ � σ. By IH, we have

Γ, x : μ � N : τ . Therefore, we can derive

Γ, x : μ � N : τ

Γ � λx.N : μ→ τ
(lam)

μ→ τ � σ

Γ � λx.N : σ
(eq)

Case eq. Let t ∈ T (M) and suppose Γ � t : σ comes from Γ � t : τ by (eq). By

IH, we have Γ �M : τ . By applying (eq) we derive Γ � N : σ. �

A.3 Omitted proofs of Section 4

We recall the definition of “ω occurs positively/negatively in a type σ”.

Definition A.1 The relations ω ∈p σ for p ∈ {+,−} are defined as follows:

(i) ω ∈− μ→ σ for any type σ and intersection μ such that μ = ω;

(ii) if ω ∈p σ then ω ∈p μ→ σ for any intersection μ;

(iii) if ω ∈pσ then ω ∈¬p σ ∧ μ→ τ for any types σ, τ and intersection μ.

Remark that the condition μ = ω in (i) is non-trivial, since equality = between

types includes the neutrality of ω. For instance ω ∈− ω ∧ ω → σ as ω ∧ ω = ω.

Proposition 4.2 Let A be a partial pair such that, for all m ∈Mf(A) and α ∈ A,

(m,α) ∈ dom(j) entails that m �= []. Then A preserves ω-polarities.

Proof We perform an induction loading and prove that, for all type σ, τ ∈ TA and

p ∈ {+,−}: if ω ∈p σ and τ �A σ then τ• /∈ A and ω ∈p τ . In the rest of the proof

we will just write � for �A.

We proceed by induction on the definition of ω ∈p σ.

Case (i). Suppose that ω ∈p σ because p = − and σ = ω → γ, then we need

to prove that ω ∈− τ , for any τ such that τ � σ, that is such that τ• = σ•. By

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272264

definition, we have:

σ• = (ω → γ)• = j([], γ•) = ([], γ•)

where the last equality follows from Definition 3.2 and the hypothesis that ([], γ•) /∈
dom(j). From τ• = ([], γ•) we get that τ• /∈ A since A does not contain any pair,

and this entails that also τ cannot be atomic.

Suppose therefore τ = μ → δ, then we have τ• = (μ → δ)• = j(μ•, δ•) =

j([], γ•) = σ•. From the injectivity of j, we get that μ• = [] and δ• = γ•, so

τ = ω → δ and ω ∈− τ .

Case (ii). Suppose that ω ∈p σ because σ = μ→ γ and ω ∈p γ. Then

σ• = (μ→ γ)• = j(μ•, γ•) = τ•.

From ω ∈p γ, γ � γ and the induction hypothesis, we get that γ• /∈ A and therefore

(μ•, γ•) /∈ dom(j). By Definition 3.2, we have that j(μ•, γ•) = (μ•, γ•), and since

this is equal to τ•, we get τ = ν → δ for some ν, δ. From j(μ•, γ•) = j(ν•, δ•) and
the injectivity of j we get that μ• = ν• and γ• = δ•.

From ω ∈p γ and δ � γ we get, by induction hypothesis, that ω ∈p δ and

therefore ω ∈p ν → δ = τ .

Case (iii). Suppose that ω ∈p σ because σ = γ1 ∧ μ→ γ2 and ω ∈¬p γ1. From
γ1 ∧ μ→ γ2 � τ , we get

(γ1 ∧ μ→ γ2)
• = j([γ•1] + μ•, γ•2) = τ•.

Suppose, by the way of contradiction, that τ is an atomic type α. Then, we have

j([γ•1]+μ•, γ•2) = α which implies, by Definition 3.2, that ([γ•1]+μ•, γ•2) ∈ dom(j) ⊆
Mf(A) × A. In particular, we get γ•1 ∈ A, which is impossible since ω ∈¬p γ1 and

γ1 � γ1, so by the induction hypothesis we conclude that γ•1 is not atomic.

So, τ = ν → δ2, and (ν → δ2)
• = j(ν•, δ•2) = j([γ•1]+μ•, γ•2). Since j is injective,

ν• = [γ•1] + μ• and δ•2 = γ•2 . Therefore, ν = δ1 ∧ ν ′ such that δ•1 = γ•1 and ν ′• = μ•.
Since ω ∈¬p γ1 and γ1 � δ1, by IH we get ω ∈¬p γ1 and we conclude that ω ∈p τ . �

For convenience, we present Lemma 4.3 with an additional equivalent sen-

tence (iii-bis), which is an intermediate step between (iii) and (iv).

Lemma 4.3 Let M ∈ Λ. The following are equivalent:

(i) M has a normal form,

(ii) there is a ∈ BT(M)∗ that does not contain ⊥,
(iii) there is t ∈ nfβ(T (M)) that does not contain the empty bag 1,

(iii-bis) in every rgm D preserving ω-polarities, Γ �D t : σ for some t ∈ nfβT (M),

environment Γ and type σ such that ω /∈+ σ and ω /∈− Γ, that is ω /∈− Γ(x)

for all x ∈ Var.

(iv) in every rgm D preserving ω-polarities, Γ �D M : σ for some environment Γ

and type σ such that ω /∈+ σ and ω /∈− Γ, that is ω /∈− Γ(x) for all x ∈ Var.

Proof (i ⇐⇒ ii) is trivial.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 265

(ii ⇐⇒ iii) follows from Theorem 2.4.

(iii ⇒ iii-bis) We prove that this implication holds more generally for any β-

normal form t that does not contain 1 (regardless the fact that t belongs to a Taylor

expansion). We proceed by structural induction on t.

Case t = λx.t′ where t′ is β-normal. By induction hypothesis, Γ′ � t′ : τ holds

for some context Γ′ and type τ such that ω /∈−Γ′ and ω /∈+ τ . Note that Γ′ can be

written as Γ, x : μ for some Γ and μ, therefore we can derive:

Γ, x : μ � t′ : τ

Γ � λx.t′ : μ→ τ
(lam)

From ω /∈−Γ′ we get that ω /∈−Γ and ω /∈−μ, which entails ω /∈+μ→ τ .

Case t = yb1 · · · bk, for some k ≥ 0, and each bi = [si,1, . . . , si,ni] (for ni ≥ 0)

only contains β-normal terms. By induction hypothesis, there are environments Γij ,

and types τij , such that ω /∈− Γij and ω /∈+ τij and Γij � sij : τij holds. Then we

can derive:

Γ0 � y : μ1 → · · · → μk → α Γij � sij : τij i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}
Γ � yb1 · · · bk : α

where μi = ∧ni
j=1τij , Γ0 = y : μ1 → · · · → μk → α and Γ = Γ0 ∧ (∧k

i=1 ∧
ni
j=1 Γij). As

ω /∈+ τij we also have ω /∈−μi and therefore ω /∈−Γ0. From this, and the hypotheses

that ω /∈−Γij we get that ω /∈−Γ. Of course ω /∈− α because α is an atom.

(iii-bis ⇒ iii) Consider t ∈ nfβT (M) such that Γ � t : σ where Γ and σ satisfy

the hypotheses of (iii-bis). We proceed by induction on the structure of the β-

normal t.

Case t = λx.t′ where t′ is β-normal. By applying Theorem 3.7(ii) we have

that Γ, x : μ � t′ : τ holds for μ ∈ ID and τ ∈ TD such that σ � μ → τ . Since

D preserves ω-polarities, ω /∈+ σ entails ω /∈+ μ → τ . As neither Γ nor μ has

negative occurrences of ω, we have ω /∈− (Γ, x : μ) and ω /∈+ τ , so, by the induction

hypothesis, we get that t′ does not have occurrences of 1. Therefore 1 does not

occur in λx.t′ either.

Case t = yb1 · · · bk, for some k ≥ 0, and each bi = [si,1, . . . , si,ni] (for ni ≥ 0)

only contains β-normal terms. If k = 0 we are done, as y does not contain 1.

Consider then the case k > 0. By iterating Theorem 3.7(iii’) we know that there is

a decomposition Γ = Γ0 ∧ (∧k
i=1 ∧

ni
j=1 Γij) such that (setting μi = ∧ni

j=1τij):

Γ0 � y : μ1 → · · · → μk → σ Γij � sij : τij for i = 1, . . . , k j = 1, . . . , ni

Γ � yb1 · · · bk : σ

By Theorem 3.7(i), we get that Γ0 = y : τ for some τ � μ1 → · · · → μk → σ. From

this, it follows that Γ(y) = τ ∧ μ for some μ, so ω /∈− Γ entails that ω /∈− τ and, as

D preserves ω-polarities, we get that ω /∈− μ1 → · · · → μk → σ. From this, on the

one side we get that each μi is different from ω (that is, ni > 0, so bi �= 1) and on

the other side that ω /∈+ τij holds for 1 ≤ i ≤ k and 1 ≤ j ≤ ni. We can therefore

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272266

apply the induction hypothesis to each derivation Γij � sij : τij and conclude that

the terms sij do not contain 1, so neither does the term yb1 · · · bk.
(iii-bis ⇐⇒ iv) Let us suppose (iv). By Theorem 3.10, we have that Γ �M : σ

holds if and only if there exists s ∈ T (M) such that Γ � s : σ. By Theorem 2.1

(strong normalization of Λr) and Theorem 3.8(i)-(ii) (both subject reduction and

expansion), the latter is equivalent to the existence of t ∈ nfβT (M) such that

Γ � t : σ. Therefore, (iv) is equivalent to (iii-bis). �

For proving Lemma 4.4, we need the following remark and technical lemma.

Remark A.2 In the model D�, we have that σ � � holds if and only if σ is

generated by the following grammar:

γ ::= � | γ → γ

In particular, μ→ σ � � entails that μ = τ for some τ � � and σ � �.

Lemma A.3 Let N ∈ Λ be a β-normal form. If Γ � N : σ, for some Γ and σ such

that Γ(x) � � for all x ∈ dom(Γ) and σ � �, then N is linear and dom(Γ) = fv(N).

Proof We proceed by structural induction on N .

Case N = λx.N ′ where N ′ is β-normal. From Γ � λx.N ′ : σ we get, by

Theorem 3.7(ii), that Γ, x : μ � N ′ : τ for some μ, τ such that μ → τ � σ and, by

transitivity of �, we get that μ → τ � � holds. By Remark A.2 this entails μ = γ

for some γ � � and τ � �, therefore we can apply the induction hypothesis and

get that N ′ is linear and dom(Γ, x : γ) = fv(N ′). Thus, λx.N ′ is also linear and

dom(Γ) = fv(N ′)− {x} = fv(λx.N ′) which is what we are meant to prove.

Case N = yN1 · · ·Nk such that N1, . . . , Nk are β-normal. By Theorem 3.7(iii)

and there is a decomposition Γ = Γ0 ∧ (∧k
i=1 ∧

ni
j=1 Γij) such that Γ0 � y : μ1 →

· · · → μk → σ holds for some μi = τi1 ∧ · · · ∧ τini and Γij � Ni : τij is derivable

for all 1 ≤ i ≤ k and 1 ≤ j ≤ ni. By Theorem 3.7(i), Γ0 = y : γ, for a type

γ � μ1 → · · · → μk → σ. As Γ0(y) = Γ(y) = γ � � we also have by transitivity

of � that μ1 → · · · → μk → σ � � which entails by Remark A.2 that μi = τi
(i.e. ni = 1) and τi � �. Therefore we have Γ = Γ0 ∧ (∧k

i=1Γi) and Γi � Ni : τi for

some Γi such that Γi(x) � � for all x ∈ dom(Γi) and τi � �.

By the induction hypothesis we get that each Ni is linear and dom(Γi) = fv(Ni).

We conclude that yN1 · · ·Nk is linear and dom(Γ) = dom(Γ0) ∪ (
⋃k

i=1 dom(Γi)) =

fv(yN1 · · ·Nk). �

Lemma 4.4 Let M ∈ Λ and Γ = x1 : �, . . . , xn : �. Then Γ �D� M : � if and only

if M has a linear β-normal form and dom(Γ) = fv(nfβ(M)).

Proof (⇒) By Theorem 4.2, the rgm D� preserves ω-polarities. As ω does not

occur positively nor negatively in �, we can deduce by Lemma 4.3 that M has a β-

normal form. By subject reduction, we derive Γ � nfβ(M) : � and, by Lemma A.3,

we conclude that nfβ(M) is linear.

(⇐) Suppose that M ∈ Λ has a linear β-normal form and that the environ-

ment Γ = x1 : �, . . . , xn : � is such that dom(Γ) = fv(nfβ(M)). It is enough to

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 267

prove that Γ � nfβ(M) : � is derivable, then one concludes by subject expansion

(Theorem 3.8(i)) that Γ �M : � holds. We proceed by induction on nfβ(M).

Case nfβ(M) = λx.N ′ where N ′ is β-normal. Obviously, N ′ is linear and

dom(Γ, x : �) = fv(N ′), so by the induction hypothesis

Γ, x : � � N ′ : �

Γ � λx.N ′ : �→ �
(lam)

� � �→ �
Γ � λx.N ′ : �

(eq)

is also derivable.

Case nfβ(M) = yN1 · · ·Nk such that N1, . . . , Nk are β-normal. We let Γi to be

the environment such that Γi(x) = � if x ∈ fv(Ni) and Γi(x) = ω otherwise. As

the Ni’s are linear, we derive Γi � Ni : � by the induction hypothesis. Then we can

derive (for Γ0 = y : �):

Γ0 � y : �
(var)

� � �→ · · · → �→ �

Γ0 � y : �→ · · · → �→ �
(eq)

Γi � Ni : � 1 ≤ i ≤ k

Γ0 ∧ (∧k
i=1Γi) � yN1 · · ·Nk : �

(lam)

To conclude, it is enough to check that Γ = Γ0 ∧ (∧k
i=1Γi). �

A.4 Omitted proofs of Section 5

Lemma A.4 Let M ∈ Λ be a β-normal form such that M �η x. For all a ∈ M∗,
we have that either E(a,M∗) = ⊥x

η(x) or E(a,M∗) �ηe x.

Proof Since M is β-normal, it has the shape λx1 . . . xn.xN1 · · ·Nk. As M �η x

we get that n = m, x �= xi and Ni �β xi for all i ∈ {1, . . . , n}.
We proceed by induction on a.

Case a = ⊥. Then E(a,M∗) = ⊥x
η(x) by Definition 5.8.

Case a = λx1 . . . xn.xa1 · · · an with ai ∈ N∗
i for all i ∈ {1, . . . , n}. By induc-

tion hypothesis, either E(ai, N∗
i) �ηe xi or E(ai, N∗

i) �ηe ⊥xi

η(xi)
so E(a,M∗) =

λx1 . . . xn.xE(a1, N∗
1) · · · E(an, N∗

n) �ηe x. �

Lemma 5.11 Let T = λ	xy.zT1 · · ·Tk+1 be a Böhm tree such that Tk+1 is finite,

Tk+1 �η y and y /∈ fv(zT1 · · ·Tk). Then E(T ∗)⇒ηe E((λ	x.zT ∗
1 · · ·T ∗

k)↓).

Proof We first prove that, given a ∈ T ∗, there exists a′ ∈ (λ	x.zT ∗
1 · · ·T ∗

k) ↓ such

that E(a, T ∗) �ηe E(a′, (λ	x.zT ∗
1 · · ·T ∗

k)↓). We split into cases depending on a.

Case a = ⊥. Then E(a, T ∗) = E(⊥, T ∗) = E(⊥, (λ	xy.zT ∗
1 · · ·T ∗

kT
∗
k+1)↓). From

the fact that Tk+1 is finite, we get that Tk+1 ∈ N and since Tk+1 �η y we have that

Tk+1 is ⊥-free. As y /∈ fv(zT1 · · ·Tk), there is a ⊥-free c1 ∈ T ∗ such that c1 �η z if

and only if there exists a ⊥-free c2 ∈ (λ	x.zT ∗
1 · · ·T ∗

k)↓ such that c2 �η z. Therefore

E(⊥, (λ	xy.zT ∗
1 · · ·T ∗

kT
∗
k+1)↓) = E(⊥, (λ	x.zT ∗

1 · · ·T ∗
k)↓), so a′ = ⊥.

Case a = λ	xy.za1 · · · ak+1, with ai ∈ T ∗
i for 1 ≤ i ≤ k + 1. By defini-

tion, we have E(a, T ∗) = λ	xy.zE(a1, T ∗
1) · · · E(ak, T ∗

k)E(ak+1, T
∗
k+1). By hypothe-

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272268

sis, Tk+1 is actually a λ-term (i.e., finite and ⊥-free) such that Tk+1 �η y so, by

Lemma 5.11, either E(ak+1, Tk+1) �ηe ⊥y
η(y) or E(ak+1, Tk+1) �ηe y. By Remark 5.9

y /∈ fv(zT1 · · ·Tk) entails y /∈ f̃v(zE(a1, T ∗
1) · · · E(ak, T ∗

k)), hence in both cases we get

E(a, T ∗) �ηe λ	x.zE(a1, T ∗
1) · · · E(ak, T ∗

k) ∈ E((λ	x.zT ∗
1 · · ·T ∗

k)↓). Therefore the a′ we
were looking for is just λ	x.za1 · · · ak.

Second, we prove that for every a′ ∈ (λ	x.zT ∗
1 · · ·T ∗

k)↓ there is a ∈ T ∗ such that

E(a, T ∗) �ηe E(a′, (λ	x.zT ∗
1 · · ·T ∗

k)↓). Again, we split into cases depending on a′.

Case a′ = ⊥. It is enough to take a′ = ⊥ and reason as above.

Case a′ = λ	x.za′1 · · · a′k with a′i ∈ T ∗
i for all 1 ≤ i ≤ k. Clearly, ⊥ ∈ T ∗

k+1 and

E(⊥, T ∗
k+1) = ⊥y

η(y), since by hypothesis Tk+1 is finite and Tk+1 �η y. Therefore,

for a = λ	xy.za′1 · · · a′k⊥ ∈ T ∗ we have

E(a, T ∗) = λ	xy.zE(a′1, T ∗
1) · · · E(a′k, T ∗

k)E(a′k+1, T
∗
k+1)

= λ	xy.zE(a′1, T ∗
1) · · · E(a′k, T ∗

k)⊥
y
η(y)

→ηe λ	x.zE(a′1, T ∗
1) · · · E(a′k, T ∗

k) using Remark 5.9

= E(a′, λ	x.zT ∗
1 · · ·T ∗

k).

We conclude as E(a, T ∗) ∈ E(T ∗). �

Lemma A.5 For all Böhm trees T , we have η(T)∗ = �nfηe(E(T ∗))�.

Proof We proceed by co-induction on T .

If T = ⊥, then η(T)∗ = {⊥} = {�⊥∅�} = {�E(⊥,⊥)�} = �nfηe(E(T ∗))�.
Otherwise, the Böhm tree T can be written in a unique way as T =

λx1 . . . xny1 . . . ym.zT1 · · ·TkT
′
1 · · ·T ′

m (for some n,m, k ≥ 0) such that:

• yi /∈ fv(zT1 · · ·Tk), T
′
i is finite and T ′

i �η yi for all i ∈ {1, . . . ,m},
• xn ∈ fv(zT1 · · ·Tk) or Tk is infinite, or Tk is finite but does not η-reduce to xn.

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 269

The following equalities hold:

η(T)∗ = λ	x.zη(T1)
∗ · · · η(Tk)

∗ ∪ {⊥} by def. of η(−)

= λ	x.z�nfηe(E(T ∗
1))� · · · �nfηe(E(T ∗

k))� ∪ {⊥} by co-IH

= �λ	x.znfηe(E(T ∗
1)) · · · nfηe(E(T ∗

k))�

∪ �{E(⊥, (λ	x.zT ∗
1 · · ·T ∗

k)↓)}� by def. of �·�

= �λ	x.znfηe(E(T ∗
1)) · · · nfηe(E(T ∗

k)) by def. of �·�

∪ {nfηe(E(⊥, (λ	x.zT ∗
1 · · ·T ∗

k)↓)})� and of nfη(−)

= �nfηe
(
λ	x.zE(T ∗

1) · · · E(T ∗
n))

∪ {E(⊥, (λ	x.zT ∗
1 · · ·T ∗

k)↓)}
)
� by def. of nfη(−)

= �nfηe(E(λ	x.zT ∗
1 · · ·T ∗

k)↓)� by def. of E(−)

= �nfηe(E(T ∗))� by Lemma 5.11. �

Proposition 5.12 For all M ∈ Λ, we have BTη(M)∗ = �nfηeE(BT(M)∗)�.

Proof Since BTη(M) = η(BT(M)), the result follows directly by Lemma A.5. �

Lemma A.6 Let M ∈ Λ be a β-normal form such that M �η x. Then for all

t ∈ T (M), we have L(t, T (M)) �η� x.

Proof By hypothesis, M has the shape λx1 . . . xn.xM1 · · ·Mn (for some n ≥ 0)

such that, for all i ∈ {1, . . . , n}, x �= xi and Mi is a β-normal form such

that Mi �η xi. We proceed by induction on t. Since t ∈ T (M), we have

t = λx1 . . . xn.xb1 · · · bn such that bi ∈ Mf(T (Mi)) for every 1 ≤ i ≤ n.

If n = 0 we are done. Otherwise, by Definition 5.1 we have L(t, T (M)) =

λx1 . . . xn.xL(b1,Mf(T (M1))) · · · L(bn,Mf(T (Mn))).

Suppose bn = [t1, . . . , tk] with tj ∈ T (Mn) for all j ∈ {1, . . . , k}.
If k = 0 then, by Definition 5.1, L(bn,Mf(T (Mn))) = 1xn

η(xn)
because Mn �η xn

entails that there is s ∈
⋃
Mf(T (Mn)) = T (Mn) such that s �η′ xn. Therefore:

L(t, T (Mn)) �η� λx1 . . . xn.xL(b1,Mf(T (M1))) · · · L(bn−1,Mf(T (Mn−1)))1
xn

η(xn)

�η� λx1 . . . xn−1.xL(b1,Mf(T (M1))) · · · L(bn−1,Mf(T (Mn−1)))

If k > 0, then by induction hypothesis L(tnj , T (Mn)) �η� xn. Therefore,

L(t, T (Mn)) �η� λx1 . . . xn.xL(b1,Mf(T (M1))) · · · L(bn−1,Mf(T (Mn−1)))[x
k
n]

�η� λx1 . . . xn−1.xL(b1,Mf(T (M1))) · · · L(bn−1,Mf(T (Mn−1)))

By iterating this reasoning on b1, . . . , bn−1 we conclude that L(t, T (M)) �η� x. �

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272270

Lemma 5.13 Let T = λ	xy.zT1 · · ·Tk+1 be a Böhm tree such that Tk+1 is finite,

Tk+1 �η y and y /∈ fv(zT1 · · ·Tk). Then L(T (T))⇒η� L(T (λ	x.zT1 · · ·Tk)).

Proof We first take t ∈ T (T), that is t = λ	xy.zb1 · · · bk+1 with bi ∈ Mf(T (Ti)),

and show that L(t, T (T)) �η� L(t′, T (λ	x.zT1 · · ·Tk)) holds for t′ = λ	x.zb1 · · · bk ∈
L(T (λ	x.zT1 · · ·Tk)). By definition of the labeling L(−), we have L(t, T (T)) =

λ	xy.zL(b1,Mf(T (T1))) · · · L(bk+1,Mf(T (Tk+1))). By Remark 5.4 we have that y /∈
fv(zT1 · · ·Tk) implies y /∈ f̃v(zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk))).

Suppose that bk+1 = [t1, . . . , tn], we split into cases depending on n.

Case n = 0. As Tk+1 �η y, then Tk+1 is ⊥-free finite tree, and therefore

there exists an s ∈ T (Tk+1) without empty bags such that s �η′ y. Hence

L(bk+1,Mf(T (Tk+1))) = L(1,Mf(T (Tk+1))) = 1yη(y) since s ∈
⋃
Mf(T (Tk+1)) =

T (Tk+1). Therefore we have:

L(t, T (T)) = λ	xy.zL(b1,Mf(T (T1))) · · · L(bk+1,Mf(T (Tk+1)))

= λ	xy.zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk)))1
y
η(y)

→η� λ	xy.zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk)))

= L(λ	xy.zb1 · · · bk, T (λ	xy.zT1 · · ·Tk)).

Case n > 0. Then ti ∈ T (Tk+1) for 1 ≤ i ≤ n, and L(bk+1,Mf(T (Tk+1))) =

[L(t1, T (Tk+1)), . . . ,L(tn, T (Tk+1))]. Since Tk+1 �η y, then Tk+1 is a ⊥-free finite

tree (that is a β-normal λ-term), so by Lemma A.6 we have L(ti, T (Tk+1)) �η� y

for every 1 ≤ i ≤ n. Therefore:

L(t, T (T)) = λ	xy.zL(b1,Mf(T (T1))) · · · L(bk+1,Mf(T (Tk+1)))

�η� λ	xy.zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk)))[y
n]

→η� λ	xy.zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk)))

Second, we take s ∈ T (λ	x.zT1 · · ·Tk), i.e. s = λ	x.zb1 · · · bk with bi ∈Mf(T (Ti)),

and show that L(t, T (T)) �η� L(s, T (λ	x.zT1 · · ·Tk)) for t = λ	xy.zb1 · · · bk1 ∈ T (T).

As Tk+1 �η y, then Tk+1 is ⊥-free finite tree, and therefore there exists an s ∈
T (Tk+1) without empty bags such that s �η′ y. Thus L(1,Mf(T (Tk+1))) = 1yη(y)
since s ∈

⋃
Mf(T (Tk+1)) = T (Tk+1). Hence, we have:

L(t, T (T)) = λ	xy.zL(b1,Mf(T (T1))) · · · L(b′k,Mf(T (Tk)))L(1,Mf(T (Tk+1)))

= λ	xy.zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk)))1
y
η(y)

→η� λ	x.zL(b1,Mf(T (T1))) · · · L(bk,Mf(T (Tk)))

= L(s, T (λ	x.zT1 · · ·Tk)).

This completes the proof. �

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272 271

Lemma A.7 For all Böhm tree T the following equality holds:

T (�nfηeE(T ∗)�) = �nfη�L(T (T))�

Proof We proceed by co-induction on T .

If T = ⊥, then the equality follows because T (⊥) = ∅.
Otherwise, the Böhm tree T can be written in a unique way as T =

λx1 . . . xny1 . . . ym.zT1 · · ·TkT
′
1 · · ·T ′

m (for some n,m, k ≥ 0) such that:

• yi /∈ fv(zT1 · · ·Tk), T
′
i is finite and T ′

i �η yi for all i ∈ {1, . . . ,m},
• xn ∈ fv(zT1 · · ·Tk) or Tk is infinite, or Tk is finite but does not η-reduce to xn.

Therefore, the following equalities hold:

T (�nfηeE(T ∗)�) = T (�nfηeE((λx1 . . . xn.zT1 · · ·Tk)↓)�) by Lemma 5.11

= T (�λ	x.znfηe(E(T ∗
1)) · · · nfηe(E(T ∗

k))� ∪ {�E(⊥, λ	x.zT ∗
1 · · ·T ∗

k)�}) by def. of E(−)

= T (�λ	x.znfηe(E(T ∗
1)) · · · nfηe(E(T ∗

k))�) ∪ T (�E(⊥, λ	x.zT ∗
1 · · ·T ∗

k)�) by def. of T (−)

= λ	x.zMf(T (�nfηe(E(T ∗
1))�)) · · ·Mf(T (�nfηe(E(T ∗

k))�)) ∪ T (⊥) by def. of T (−)

= λ	x.zMf(T (�nfηe(E(T ∗
1))�)) · · ·Mf(T (�nfηe(E(T ∗

k))�)) since T (⊥) = ∅

= λ	x.zMf(�nfη�(L(T (T1)))�) · · ·Mf(�nfη�(L(T (Tk)))�) by co-IH

= �nfη�(λ	x.zMf(L(T (T1))) · · ·Mf(L(T (Tk))))� by def. of nfη�

= �nfη�L(λ	x.zMf(T (T1)) · · ·Mf(T (Tk)))� by def. of L(−)

= �nfη�L(T (λ	x.zT1 · · ·Tk))� by def. of T (−)

= �nfη�L(T (T))� by Lemma 5.13.�

Proposition 5.14 For all M ∈ Λ, T (�nfηeE(BT(M)∗)�) = �nfη�L(T (BT(M)))�.

Proof It follows directly from Lemma A.7. �

G. Manzonetto, D. Ruoppolo / Electronic Notes in Theoretical Computer Science 308 (2014) 245–272272

	Lambda Calculus and Böhm Trees
	Resource Calculus and Taylor Expansion
	Relational Graph Models and Intersection Types
	Relational Graph Models
	Non-Idempotent Intersection Type Systems

	Full Abstraction for Morris's Observational Preorder
	Extensional Taylor Expansion and -Trees
	Extensional Taylor Expansion
	Eta-Reduction on Böhm Approximants
	A Taylor-Based Characterization of Morris's Equivalence

	Related and Further Works
	References
	References
	Technical Appendix
	Omitted proofs of Section 2
	Omitted proofs of Section 3
	Omitted proofs of Section 4
	Omitted proofs of Section 5

