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GENERAL REILLY-TYPE INEQUALITIES FOR SUBMANIFOLDS OF
WEIGHTED EUCLIDEAN SPACES

JULIEN ROTH

ABSTRACT. We prove new upper bounds for the first positive eigenvalue of a family
of second order operators, including the Bakry-Émery Laplacian, for submanifolds of
weighted Euclidean spaces.

1. INTRODUCTION

A weighted manifold (M̄, ḡ, µ̄f ) is a Riemannian manifold (M̄, ḡ) endowed with a
weighted volume form µ̄f = e−fdvḡ, where f is a real-valued smooth function on M̄
and dvḡ is the Riemannian volume form associated with the metric ḡ. In the present
note, we will focus on the case where (M̄, ḡ) is the Euclidean space (RN , can) with
its canonical flat metric and we will consider isometric immersions of Riemannian
manifolds (Mn, g) into (RN , can). For such an immersion, we define the weighted
mean curvature vector Hf = H − (∇̄f)⊥, where H is the mean curvature vector of
the immersion and (∇̄f)⊥ is the projection of ∇̄f on the normal bundle T⊥M .
We can define on M a divergence and a Laplace operator associated with the volume
form µf = e−fdvg by

divfY = divY − 〈∇f, Y 〉 and ∆fu = −divf (∇u) = ∆u+ 〈∇f,∇u〉,

where∇ is the gradient on M , that is the projection on TM of ∇̄. We call them the f -
divergence and the f -Laplacian which is often called Bakry-Émery Laplacian, Witten
Laplacian or drifting Laplacian in the litterature. It is a classical fact that ∆f has a
discrete spectrum composed of an infinite sequence of nonnegative real numbers

0 = λ0 < λ1 6 λ2 6 · · · −→ +∞.

The eigenvalue λ0 = 0 has multiplicity one and corresponds to constant functions.
In [4], Batista, Cavalcante and Pyo proved the following upper bound for the first
positive eigenvalue of ∆f :

λ1(∆f ) 6

∫
M
||Hf − ∇̄f ||2µf

nVolf (M)
=

∫
M

(||H||2 + ||∇f ||2)µf

nVolf (M)
,
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where Volf (M) =
∫
M
µf is the f -volume of M . This inequality is a weighted version

of the classical Reilly inequality (see [9])

λ1(∆) 6
1

nVol(M)

∫
M

||H||2dvg.

Very recently, Domingo-Juan and Miquel [6] obtained the same inequality with a
more complete characterization of the equality case by the use of mean curvature flow.

The aim of this note is to give a general inequality, which contains the above
one, for a larger class of f -divergence-type operators. Precisely, for a positive
symmetric divergence-free (1, 1)-tensor T , we define the operator LT,f by

LT,fu = −divf (T∇u),

for any C2 fonction u on M . We prove the following theorem.

Theorem 1.1. Let (Mn, g) be a connected and oriented closed Riemannian manifold
isometrically immersed into the Euclidean space RN endowed with a density e−f . Let
S and T be two symmetric divergence-free (1, 1)-tensor over M . Assume moreover
that T is positive. Then, the first positive eigenvalue of the operator LT,f satisfies the
following inequality

λ1(LT,f )

(∫
M

tr(S)µf

)2

6

(∫
M

tr(T )µf

)∫
M

(
||HS||2 + ||S∇f ||2

)
µf .

Moreover, if equality holds in the case S = Id then M is a self-shrinker for the mean
curvature flow and f|M = a − c

2
r2
p, where rp is the Euclidean distance to the center

of mass p of M . In particular, if n = N − 1 and H > 0 or n = 2, N = 3 and M is
embedded and has genus 0, then M a geodesic hypersphere.

As a corollary, we obtain a similar inequality for submanifolds of the sphere SN which
generalizes the corresponding inequality of [4] and [6] for the operatorLT,f (see Corol-
lary 4.4). We also prove a general non-weighted Reilly-type inequality (Theorem 5.1).

2. PRELIMINARIES

Let (Mn, g) be a connected and oriented closed Riemannian manifold isometrically
immersed into RN . We denote byX its position vector,B its second fundamental form
and H = tr(B) its mean curvature vector. For the case of hypersurfaces, we will also
consider the real-valued mean curvature H = 〈H, ν〉, where ν is a unit normal vector
field (H is defined up to a sign depend of the choice of ν). We denote by {∂1, · · · , ∂N}
the canonical frame of RN and for k ∈ {1, · · · , N}, Xk = 〈X, ∂k〉 the coordinate
functions. We begin by giving the following elementary lemma.
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Lemma 2.1. If A is a field of endomorphisms on M , we have

N∑
k=1

〈A(∇Xk),∇Xk〉 = tr(A).

Proof: Let {e1, · · · , en} be a local orthonormal frame of TM . It is a classical fact that
∇Xk = ∂>k =

∑n
i=1〈∂k, ei〉ei. Hence, we have

N∑
k=1

〈A(∇Xk),∇Xk〉 =
N∑
k=1

n∑
i,j=1

〈∂k, ej〉〈∂k, ej〉〈Aei, ej〉

=
n∑

i,j=1

(
N∑
k=1

〈∂k, ej〉〈∂k, ej〉

)
〈Aei, ej〉

=
n∑

i,j=1

〈ei, ej〉〈Aei, ej〉 = tr(A).

�
Note that, in particular, for A = Id, we recover the well known identity∑N

k=1 ||∇Xk||2 = n.

Then, we recall briefly by some basic facts about the f -divergence. We first
have the weighted version of the divergence theorem:

(1)
∫
M

divfY µf = 0,

for any vector field Y on M . From this, we deduce easily the integration by parts
formula

(2)
∫
M

udivfY µf = −
∫
M

〈∇u,X〉µf ,

for any smooth fonction u and any vector field Y on M .

Now, let T be a divergence-free symmetric (1, 1)-tensor. We associate with T
the second order differential operator LT defined by LTu := −div(T∇u), for any C2

function u on M . We also associate with T the following normal vector field:

HT =
n∑

i,j=1

T (ei, ej)B(ei, ej),(3)

where {e1, · · · , en} is a local orthonormal frame of TM . We also defined a corre-
sponding weighted operator by LT,fu = −divf (T∇u) for any C2 function u . We have
the following weighted Hsiung-Minkowski formula.
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Lemma 2.2. We have ∫
M

(
〈X,HT − T∇f〉+ tr(T )

)
µf = 0.

Proof: First, it is well known that LTX = −HT . The proof of this fact is standard and
completely analogue to the case T = Id, that is, ∆X = −nH and uses the fact that
div(T ) = 0. From this, we deduce

LT ||X||2 =
N∑
k=1

LT ((Xk)2)

= −2
N∑
k=1

div(XkT (∇Xk))

= 2
N∑
k=1

(
XkLTX

k − 〈∇Xk, T (∇Xk)〉
)

= −2〈X,HT 〉 − 2tr(T ),

where we have used LTX = −HT and Lemma 2.1 for the last line. Therefore, we get
1

2
LT,f ||X||2 =

1

2
LT ||X||2 +

1

2
〈T (∇||X||2),∇f〉

= −〈X,HT 〉 − tr(T ) +
1

2
〈∇||X||2, T∇f〉,

= −〈HT − T∇f,X〉 − tr(T )

where we have used (4), the symmetry of T and the fact that ∇||X||2 = 2X>.
We conclude by integrating over M for the measure µf and using the fact that∫
M
LT,f ||X||2µf = 0 by (1). �

We can obtain a weighted Hsiung-Minkowski inequality by the use of the operator
LT,f . Namely, we prove the following lemma.

3. PROOF OF THEOREM 1.1

Now, we have all the ingredients to prove the main theorem of this note. First, since
we assume that the tensor T is positive, the operator LT,f has a discrete nonnegative
spectrum. The first eigenvalue is λ0 = 0 is of mulitplicity one and the associated eigen-
functions are the constants. Thus, we denote by λ1(LT,f ) its first positive eigenvalue.
From the definition of LT,f and (2) we have the following the variational characteriza-
tion of λ1(LT,f )

λ1(LT,f ) = inf

{∫
M
〈T∇u,∇u〉µf∫

M
u2µf

∣∣∣ u ∈ C∞(M),

∫
M

uµf = 0

}
.
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Up to a translation if needed, we may assume that the µf -center of mass of M is
zero, that is,

∫
M
Xµf = ~0. Hence, the coordinates can be used as test functions in the

Rayleigh quotient and we have

λ1(LT,f )

∫
M

||X||2µf 6
∫
M

N∑
i=1

〈T∇Xk, Xk〉µf ,

which gives, by Lemma 2.1,

λ1(LT,f )

∫
M

||X||2µf 6
∫
M

tr(T )µf .(4)

Now, we have

λ1(LT,f )

(∫
M

tr(S)µf

)2

6 λ1(LT,f )

(∫
M

(
〈X,HS − S∇f〉

)
µf

)2

6 λ1(LT,f )

(∫
M

||X||2µf

)(∫
M

||HS − S∇f ||2µf

)
6

(∫
M

tr(T )µf

)(∫
M

||HS − S∇f ||2µf

)
,

where we have used succesively the weighted Hsiung-Minkowski formula, the
Cauchy-Schwarz inequality and (4). Since HS is normal and S∇f is tangent to M ,
we get the wanted upper bound

λ1(LT,f )

(∫
M

tr(S)µf

)2

6

(∫
M

tr(T )µf

)∫
M

(
||HS||2 + ||S∇f ||2

)
µf .

Equality case. Now, we assume that S = Id. Then, the inequality becomes

λ1(LT,f ) 6

(∫
M

tr(T )µf

)∫
M

(
||H||2 + ||∇f ||2

)
µf .

If, equality occurs then all the above inequalities are equalities. In particular, equality
occurs in the Cauchy-Schwarz inequality and we have H − ∇f = cX for some con-
stant c. Identifying tangential and normal parts, we get∇f = −cX> and H = cX⊥.

The normal equation H = cX⊥ is exactly the definition of a self-similar solu-
tion of the mean curvature flow. Since M is a compact submanifold of RN , c cannot be
zero. The case c > 0 is no more possible. Indeed, if c > 0, then M is a self-expander,
but it is well known that there exists no compact self-expander. Hence, the only
possibility is c < 0, that is M is a self-shrkiner.

In addition, since X> = 1
2
∇||X||2, the tangential equation becomes

∇(f + c
2
||X||2) = 0. Since M is connected, there exists a constant a such that

f|M = a− c
2
||X||2.

In the particular cases N = n − 1 and H > 0 or n = 2, N = 3 and M is embedded
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and has genus 0, then we know from [8] and [5] respectively that M has to be a
geodesic hypersphere. This finishes the proof of the equality case.

4. SOME COROLLARIES

In this secction, we state some corollaries obtained from Theorem 1.1. The first corol-
lary is just a particular case of Theorem 1.1 invovling higher order mean curvatures.
We before stating it, we recall briefely the definition of higher order mean curvatures
and their associated tensors. For r ∈ {1, · · · , n}, we set

Tr =
1

r!

∑
i, i1, · · · , ir
j, j1, · · · , jr

ε

(
i, i1, · · · , ir
j, j1, · · · , jr

)
〈Bi1j1Bi2j2〉 · · · 〈Bir−1jr−1Birjr〉e∗i ⊗ e∗j ,

if r is even and

Tr =
1

r!

∑
i, i1, · · · , ir
j, j1, · · · , jr

ε

(
i, i1, · · · , ir
j, j1, · · · , jr

)
〈Bi1j1Bi2j2〉 · · · 〈Bir−1jr−1Birjr〉Bir,jr⊗e∗i⊗e∗j ,

where the Bij’s are the coefficients of the second fundamental form B in a local
orthonormal frame {e1, · · · , en} and ε is the standard signature for permutations.
Here, {e∗1, · · · , e∗n} is the dual coframe of {e1, · · · , en}. By definition, the r-th mean
curvature is Hr = 1

c(r)
tr(Tr), where c(r) = (n− r)

(
r
n

)
. Note that Hr is a real function

if r is even and a normal vector field if r is odd. By convention, we set H0 = 1.
Moreover, always if r is even, we show easily that HTr = c(r)Hr+1, where HTr is
given by the relation (3).

In the case of hypersurfaces, we can consider the higher order mean curvatures
as scalar functions also for odd indices by taking B as the real-valued second
fundamental form.

By the symmetry of B, these tensors are clearly symmetric. Morover, we have the fol-
lowing well-known lemma (the proof of this lemma can be found in [7] for instance).

Lemma 4.1. (1) If n = N−1, then for any r ∈ {0, · · · , n−1}, we have div(Tr) =
0.

(2) If n 6 N − 2, then for any even r ∈ {0, · · · , n− 1} , we have div(Tr) = 0.

The tensor Tr is the linearized operator associated with the r-th mean curvature and
plays a crucial role in the study of the r-stability of hypersurfaces with constant r-th
mean curvature (see [1] for instance).

We can state the following corollary obtained immediately form Theorem 1.1,
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since the tensors Tr are divergence-free. Note that this corollary is a weighted version
of an inequality of Alias and Malacarne [2].

Corollary 4.2. Let (Mn, g) be a connected and oriented closed Riemannian manifold
isometrically immersed into the Euclidean space RN endowed with a density e−f . Let
r, s ∈ {1, · · · , n−1}. Assume that r and s are even ifN > n−1 and assume moreover
that Tr is positive. Then, the first positive eigenvalue of the operator Lr,f = LTr,f

satisfies the following inequality

λ1(Lr,f )

(∫
M

Hsµf

)2

6
c(r)

c(s)

(∫
M

Hrµf

)∫
M

(
c(s)2||Hs+1||2 + ||Ts∇f ||2

)
µf .

Remark 4.3. In the case of hypersurfaces, it is sufficient to have Hr+1 > 0 to ensure
that Tr is positive (see [3] for instance).

Now, using the embedding of the sphere SN into the Euclidean space RN+1, we can
prove this second corollary for submanifolds of the sphere SN . Precisely, we have the
following result.

Corollary 4.4. Let (Mn, g) be a connected and oriented closed Riemannian manifold
isometrically immersed into the sphere SN endowed with a density e−f . Let S and T
be two symmetric divergence-free (1, 1)-tensor over M . Assume moreover that T is
positive. Then, the first positive eigenvalue of the operator LT,f satisfies the following
inequality

λ1(LT,f )

(∫
M

tr(S)µf

)2

6

(∫
M

tr(T )µf

)∫
M

(
||HS||2 + tr(S)2 + ||S∇f ||2

)
µf .

Proof: The proof comes easily form Theorem 1.1. We denote by φ the immersion
of M into SN and we consider the canonical immersion i of SN into RN+1 and we
extend the weight f defined on SN to a weight f̃ on RN+1, for instance by taking
f̃(x) = |x|f

(
x
|x|

)
for any x ∈ SN and f̃(0) = 0. From Theorem 1.1 we have

(5) λ1(LT,f )

(∫
M

tr(S)µf

)2

6

(∫
M

tr(T )µf

)∫
M

(
|H ′S|2 + |S∇f̃ |2

)
µf ,

where H ′S is defined by HS =
∑n

i,j=1 S(ei, ej)B
′(ei, ej) with B′ the second funda-

mental form of the immersion of M into RN+1. Obviously, the second fundamental
forms B of φ and B′ of i◦φ are linked by the relation B′ = B−gφ. Hence, we get im-
mediately H ′S = HS − tr(S)φ. Therefore, we deduce that ||H ′S||2 = ||HS||2 + tr(S)2,
since HS and φ are orthogonal and ||φ|| = 1 since M is contained in the sphere SN .
Reporting this in (5), and since f coincides with f̃ on M , we have ∇f̃ = ∇f and so

λ1(LT,f )

(∫
M

tr(S)µf

)2

6

(∫
M

tr(T )µf

)∫
M

(
||HS||2 + tr(S)2 + ||S∇f ||2

)
µf .
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This concludes the proof. �

For submanifolds of spheres, we have immediately the following corollary in-
volving higher order mean curvatures.

Corollary 4.5. Let (Mn, g) be a connected, oriented closed Riemannian manifold
isometrically immersed into the sphere SN endowed with a density e−f . Let r, s ∈
{1, · · · , n − 1}. Assume that r and s are even if N > n − 1 and assume moreover
that Tr is positive. Then, the first eigenvalue of the operator Lr,f satisfies the following
inequality

λ1(Lr,f )

(∫
M

Hsµf

)2

6
c(r)

c(s)

(∫
M

Hrµf

)∫
M

(
c(s)2||Hs+1||2+c(s)2H2

s+||Ts∇f ||2
)
µf .

5. A GENERAL NON-WEIGHTED INEQUALITY

In the classical case, that is, without density, the equality case can be characterized in
a more rigid way. Namely, we have the following result

Theorem 5.1. Let (Mn, g) be a connected, oriented closed Riemannian manifold iso-
metrically immersed into RN . Assume that M is endowed with two symmetric and
divergence-free (1, 1)-tensors S et T . Assume in addition that T is positive definite.
Then, the first positive eigenvalue of the operator LT satisfies

(6) λ1(LT )

(∫
M

tr(S)dvg

)2

6

(∫
M

tr(T )dvg

)(∫
M

||HS||2dvg
)
.

Moreover, if N > n − 1 and HS does not vanish identically and equality occurs,
then tr(S) and ||HS|| are non-zero constants and M is S-minimally immersed into a
geodesic hypersphere of RN of radius |tr(S)|

||HS ||
.

In particular, if n = N − 1 and HS does not vanish identically then if equality holds,
then tr(S) and HS are non-zero constants and M is a geodesic hypersphere of radius
|tr(S)|
|HS |

.

Remarks 5.2. (1) Note that for this theorem, contrary to Theorem 1.1, we do not
need to assume that M is embedded to characterize the equality case, the em-
bedding is obtained as a consequence.

(2) For T = Id, we have

λ(∆)

(∫
M

tr(S)dvg

)2

6 nVol(M)

(∫
M

||HS||2dvg
)
,

which was proved by Grosjean in [7].

Proof: The inequality is immediate form Theorem 1.1 with f identically zero. If equal-
ity occurs, then all the above inequalities in the proof of Theorem 1.1 become equal-
ities. In particular, we have HS = cX from the equality case of Cauchy-Schwarz
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inequality, where c is a non-zero constant. This means that the position vector X is
everywhere normal to M . But, on the other hand, since ∇||X||2 = 2X>, we get that
∇||X||2 = 0. Hence, since M is connected, then ||X|| = r is constant and M lies in a
geodesic hypersphere of radius r. Moreover, since HS = cX , we get that ||HS|| is also
constant and from Equation (4), we conclude that tr(S) = −〈X,HS〉 = −1

c
||HS||2.

Thus, tr(S) is also constant. Note that, since we assume that HS does not vanish iden-
tically, tr(S) and ||HS|| are non-zero constants and we have r = |tr(S)|

||HS ||
.

Now, we will show that the immersion ofM in this hypersphere SN−1(r) is S-minimal,
that is, H̃S = 0, where is defined by

HS =
n∑

i,j=1

S(ei, ej)B̃(ei, ej),

with B̃ the second fundamental form of M in SN−1(r). Clearly, we have B = B̃ + B
where B is the second fundamental form of SN−1 into RN and is given by Bij =

− 1
r2
δijX . From this fact and the definition of HS and H̃S , we get

HS = H̃S −
1

r2

n∑
i,j

S(ei, ej)δijX

= H̃S −
1

r2
tr(S)X

= H̃S −
|HS|2

tr(S)
X

= H̃S + cX = H̃S +HS.

We deduce that H̃S = 0, that is M is S-minimally immersed into SN−1(r).
If n = N−1, if equality occurs, by the above discussion and sinceM has no boundary,
then M is SN−1(r). This concludes the proof. �
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