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The emergence of particle irreversibility in periodically driven colloidal suspensions has been in-
terpreted as resulting either from a nonequilibrium phase transition to an absorbing state or from
the chaotic nature of particle trajectories. Using a simple model of a driven suspension we show that
a nonequilibrium phase transition is accompanied by hyperuniform static density fluctuations in the
vicinity of the transition, where we also observe strong dynamic heterogeneities reminiscent of dy-
namics in glassy materials. We find that single particle dynamics becomes intermittent and strongly
non-Fickian, and that collective dynamics becomes spatially correlated over diverging lengthscales.
Our results suggest that the two theoretical scenarii can be experimentally discriminated using
particle-resolved measurements of standard static and dynamic observables.

PACS numbers: 05.40.-a, 05.65.+b, 47.57.E-

Nonequilibrium phase transitions have been studied in-
tensively in recent years [1, 2]. Whereas many theoreti-
cal models have been analysed and organized in a small
number of universality classes (such as directed perco-
lation), convincing experimental realisations have typi-
cally proved harder to achieve. Non-Brownian colloidal
suspensions (such as stabilized droplet emulsions or large
particles suspended in a viscous solvent) driven by a low-
frequency periodic shear flow represent one potential re-
alisation of a second-order phase transition towards an
absorbing state [3–9]. It has been found experimentally
that below a certain shearing amplitude (which depends
on the density), the system evolves after a transient into
a reversible state where all particles return to the same
position at the end of each cycle of the periodic drive.
Above a well-defined threshold amplitude, particle mo-
tion are no longer periodic, and a continuous increase of
diffusive motion is observed in this irreversible phase [3].

Several studies [4–6, 10–13] suggested that the exper-
imental transition is in the universality class of directed
percolation (or conserved directed percolation). This in-
terpretation is further supported by an elegant numeri-
cal model of the original experiment, which was shown
to undergo a second-order nonequilibrium phase transi-
tion [4]. However, an alternative explanation was also
proposed [14–19], which relies on the chaotic nature of
trajectories in dynamical systems. In this view, a phase
transition is not needed to explain the relatively sharp
onset of irreversilibity observed in the experiments. Ex-
periments have not fully established criticality because
direct measurements of the critical exponents are diffi-
cult [3, 4, 13, 16]. As a result, the nature of the initial ex-
perimental observations remains to be fully understood.
Here we establish that measurements based on standard
particle-resolved observables developed in the context of
glassy dynamics [20] very directly reveal nonequilibrium
criticality, when present. This suggests that the two ex-
isting theoretical scenarii can be experimentally discri-

mated using standard static and dynamic observables.

To support our conclusions, we consider a modified
version of the model proposed in Ref. [4], as illustrated
in Fig. 1(a). We consider a bidimensional assembly of
spherical particles of diameter σ, using periodic bound-
ary conditions in a box of linear size L. The system
is initiated from a random configuration, where particle
overlaps may exist. At each time step, we simultane-
ously move all particles which overlap with one neighbor
(or several) by an independent random amount. The

displacement of particle i is of the form ~δi = εiêi, where
êi is a unit vector whose orientation is uniformly dis-
tributed on a unit circle and the magnitude εi is uni-
formly distributed on the interval [0, δ]. The time is then

FIG. 1: (a) Sketch of the model: Particles overlaping at time
t (red) are simultaneously moved by an independent random
amount. Particles with no overlap (black) are immobile, but
may become mobile at later time (color online). (b) The (φ, δ)
phase diagram with a passive region where the number of
mobile particles vanishes at long time and an active phase
where particle overlaps are constantly destroyed and created.
The line of second-order critical points is determined from
investigating the state points shown with symbols.
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incremented by one unit. The model has two control

parameters: the area fraction φ = πNσ2

4L2 , and the maxi-
mal amplitude of the random kicks δ. We use σ as the
unit length and we vary the area fraction by changing
the number of particles N while keeping the system size
fixed at L = 280 (unless mentioned otherwise).

Our model represents an isotropic version of the peri-
odically sheared system considered in Ref. [4], where ran-
dom kicks were given to particles virtually colliding with
neighbors during a shear deformation cycle (the shear
cycle is actually not performed). This original rule is in
fact equivalent to giving a random kick to each particle
having at least one neighbor in an anisotropic area near
its center [21]. In our model, we consider that this area is
circular, and σ represents its diameter. This small sim-
plification makes the determination of the critical prop-
erties of the model simpler because it prevents the de-
velopment of locally anisotropic correlations [22], which
could affect the numerical value of the measured expo-
nents, but not the overall qualitative behavior that we
report. Our setup is also physically meaningful, as it de-
picts the experimental situation where a non-Brownian
colloidal suspension is driven periodically by a periodic
change of the particle diameters leading to irreversible
collisions. This is obviously equivalent to isotropic com-
pression cycles of a colloidal system. Such experiments
could be realized experimentally using thermosensitive
colloidal particles [13].

As expected [4] we find that below a critical density
φc(δ), the number of active particles evolves to zero (no
more overlap) and all particles stop moving; this corre-
sponds to the “reversible” phase of the experiments with
periodic forcing. Above φc(δ), the number of active par-
ticles fluctuates at steady state around its mean non-zero
value, and the system is diffusive. By carefully explor-
ing the steady state properties [23] of the state points
shown in Fig. 1(b), we have numerically determined the
critical line φc(δ) separating the two phases. To deter-
mine the critical properties of the model, we used the
order parameter, which is the fraction of active particles,
fa(t) = Na/N , where Na(t) is the number of particles
having overlaps at time t. The spatio-temporal proper-
ties of fa(t) display critical properties that can be com-
pared to known universality classes [24]. While such a
study is not problematic for computer simulations, it is
more difficult in experiments as it requires tracking the
displacement of all particles at all times and separating
mobile from immobile particles. We provide below sim-
pler observables which exhibit relevant signatures of the
underlying phase transition.

A simpler quantity, measured in the original exper-
imental study, is the single particle diffusion constant,
defined as D = limt→∞〈|∆~r(t)|2〉/(4t), where ∆~r(t) rep-
resents the displacement of a given particle over a time t.
The brackets indicate an ensemble average (equivalent,
in steady state, to a time average). This measurement

can be performed using tracer particles followed over long
times. In our model, we find that D = 0 for φ < φc, and
it emerges continuously above φc:

D ∼ (φ− φc)β , φ→ φ+c . (1)

We measure β ' 0.572, which is similar to the value
found in related studies [4, 11–13, 25]. Additionally,
we find that β remains constant, within statistical un-
certainty, along the line φc(δ). For most of this pa-
per, we thus fix δ = 0.5 for which φc ' 0.375. The
critical exponent β in Eq. (1) is relevant because it is
directly related to the order parameter, 〈fa〉. To see
this, let us rewrite the particle displacement as ∆~r(t) =∑t−1
t′=0[~r(t′ + 1) − ~r(t′)]. Denoting by ta the number of

timesteps where the tracer is mobile between times 0 and
t, the displacement is the sum of ta random kicks. As a
result, D scales as ta/t, which represents the fraction
of the time when the tracer is mobile. When t → ∞,
this becomes the ensemble average 〈fa〉. In two dimen-
sions, β ≈ 0.58 for directed percolation, and β ≈ 0.64 for
conserved directed percolation (or ‘Manna’ universality
class) [2]. Our simulations appear closer to the directed
percolation universality class.

In experiments with non-Brownian particles, it is easy
to visualise particle configurations and analyse static den-
sity fluctuations. In Fig. 2(a), we show a snapshot of the
system close to criticality, where very few active particles
coexist with many passive ones. The structure appears
globally homogeneous with no sign of large scale density
fluctuations. At smaller scale, particles form short one-
dimensional clusters, or ‘strings’, which are disconnected
and do not percolate throughout the system. This ten-
dency is confirmed in the radial distribution function [26],
g(r), shown in Fig. 2(b) for various densities across the
critical point. We see that g(r) has two peaks at r = 1
and r = 2, indicative of the string-like structure at short
lengthscales. The sharpness of these two peaks is con-
trolled by the amplitude δ of the random jumps; they
become sharper as δ → 0. Very similar radial distribu-
tion functions have recently been observed in a periodi-
cally driven colloidal suspension [16]. More importantly,
we conclude from Fig. 2(b) that g(r) is rather insensitive
to the crossing of the phase transition.

While this might indicate that static density fluctua-
tions are insensitive to the critical point, Fourier trans-
forming g(r) to get the structure factor S(q) shows in-
teresting behaviour, as suggested very recently [27]. In
Figs. 2(c,d) we show the low-q behavior of S(q) respec-
tively above and below the critical point. In this log-
log representation it is clear that S(q → 0) becomes ex-
tremely small as φ→ φ±c , with emerging power laws. No-
tice that S(q) converges to the same form on both sides,
but convergence from the absorbing phase is slower, as
the system retains memory of the disordered initial con-
ditions on very large scale. However, careful analysis of
the density evolution [24] reveals that S(q → 0) vanishes
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FIG. 2: (a) Typical snapshot close to criticality (φ/φc =
1.004 and δ = 0.05) at steady state. Active/passive particles
are shown in red/black. Bonds are drawn between particles
whose separation is less than 1.05 to reveal string-like clus-
ters. (b) The radial distribution function for different densi-
ties (for δ = 0.05) reveals two peaks at r = 1 and r = 2, due
to the strings but g(r) does not change significantly across
the transition. (c) The structure factor for different densities
φ > φc reveals hyperuniformity at large scale close to crit-
icality φc ' 0.37499, with S(q → 0) ∼ q crossing over to
a different power law. (d) The structure factor for φ < φc

behaves similarly as φc is approached. The system size is
L = 280 except for φ/φc = 1.000 for which L = 560 is used.

precisely at φc, where S(q) ≈ q up to q ≈ 0.05, crossing
over to S(q) ≈ q0.45 at larger q. A vanishing S(q → 0)
physically means that density fluctuations are strongly
suppressed at large scale, which is termed ‘hyperunifor-
mity’ [28]. The linear behaviour with q implies that the
number of particles in a (large) subsystem of size L obeys
〈∆N2〉/〈N〉 ∼ L−1. In an equilibrium fluid, this ratio is
instead independent of L. Hyperuniformity has been re-
ported in a number of nonequilibrium situations [28–32],
among which hard sphere jammed packings. However the
critical density here is much smaller than the jamming
density and the hyperuniform structure is different from
that of compressed hard spheres. A previous study [27]
suggested that S(q) ∼ q0.45 reflects the asymptotic be-
havior of S(q), whereas we find that this is only a tran-
sient. These findings imply nonetheless that static fluc-
tuations reveal a striking signature of criticality, which
has not yet been investigated experimentally [3, 13, 16].

We now turn to the dynamics. Close to the irreversibil-
ity transition, we detect strong signatures of dynamic
heterogeneities, reminiscent of observations in disordered
systems approaching dynamic arrest (such as dense col-

loidal suspensions) [20]. This analogy is useful, as it pro-
vides us with a toolbox to directly reveal the criticality
associated to the nonequilibrium phase transition.

A striking observation stems from tracer trajectories,
see Figs. 3(a,b). Over short times, Fig. 3(a), the tra-
jectory is characterised by long waiting periods (when
the particle is passive) and a few moments where the
particle makes several rapid jumps (when the particle is
active). Because activity is sparse close to φc, particles
are necessarily immobile most of the time. Such inter-
mittency is also observed in glassy fluids where particles
are caged over long periods [33]. Much longer trajecto-
ries resemble ordinary Brownian motion, Fig. 3(b), sug-
gesting that Fickian diffusion is recovered at large scale.
Intermittent, non-Fickian dynamics thus represents an-
other signature of the criticality, which could be sys-
tematically investigated experimentally through the self-
intermediate function Fs(q, t) =

〈
1
N

∑
i ci(q, t)

〉
, where

ci(q, t) = cos [~q ·∆~ri(t)]. Physically, Fs(q, t) relaxes from
1 to 0 when particles have moved an average distance 2π

q .

The relaxation time τ(q) (defined as Fs(q, τ) = e−1)
is plotted in Fig. 3(c). Over large distances (q → 0),
Fickian behaviour is observed, τ(q) ∼ 1/(Dq2). On the
other hand, at shorter lengthscales τ(q) crosses over to
a plateau value, τ∞(φ). As φ → φ+c , this non-Fickian
plateau regime becomes dominant. Physically, τ∞ repre-
sents the typical waiting time before an immobile particle
becomes active. We measure τ∞ ∼ (φ − φc)−ν‖ , where
ν‖ ' 1.27, see Fig 3(f). Interestingly, we found numer-
ically that the same exponent ν‖ controls the temporal
fluctuations of the order parameter, fa(t) [24]. This is
close to the directed percolation value ν‖ = 1.30 (ν‖ =
1.23 for conserved directed percolation) [2]. Finally, be-
cause τ∞ and D−1 obey different power laws, we can de-
fine a diverging crossover lengthscale for the emergence
of Fickian diffusion [33], `F ∼

√
Dτ∞ ∼ (φ−φc)−(ν‖−β)/2

(see Fig. 3(c)), indicating that diffusion is non-Fickian at
all length scale at the critical point.

Intermittency suggests that mobile and immobile par-
ticles coexist in space. We now show that the associated
dynamic fluctuations also diverge at φc. To this end, we
study spatial correlations of particle displacements, in
analogy with measurements in dense fluids [20]. We first
introduce a ‘four-point’ structure factor S4(k, t) [20]:

S4(k, t) =

〈
1

N

∑
i,j

eik·(ri−rj)ci(q, t)cj(q, t))

〉
, (2)

where we fix q = 2π [in the plateau regime of τ(q) in
Fig 3(c)]. Physically, S4(k, t) measures (in the Fourier
domain) spatial correlations between particles which
have moved a distance q−1 during the time interval t. We
also define the four-point susceptibility χ4(t) = S4(k →
0, t), which measures the variance of spontaneous fluctu-
ations of the time correlation function Fs(q, t).

The dynamic susceptibility is plotted in Fig. 3(d) for
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FIG. 3: (a) Typical particle trajectory along the x-axis for φ/φc = 1.009 characterised by long waiting periods (when the
particle is passive) and few jumps (when the particle is active). (b) Over a much longer time interval, the same trajectory
resembles an ordinary random walk. (c) Wavevector dependence of the relaxation timescale τ(q) for two different densities.
A non-Fickian (τ ∼ τ∞(φ)) to Fickian (τ ∼ 1/(Dq2)) crossover is observed at a wavector (2π/`F (φ)) which decreases as the
transition is approached. (d) The four-point susceptibility χ4(t) quantifies spatially correlated dynamics over a time interval
t. It shows a peak at t = τ∗4 (φ) which diverges as φ → φ+

c . (e) Four-point structure factor S4(k, t = τ∗4 ) as a function
of the wavevector k for different densities reveals a diverging dynamic correlation length ξ∗4(φ). (f) Critical power laws for
quantities measured in this work: inverse diffusion constant D−1 (exponent 0.572), Fickian crossover timescale τ∞ (1.27),
dynamic timescale τ∗4 (1.24), maximum susceptibility χ∗4 (1.22), and dynamic lengthscale ξ∗4 (0.72).

different densities. For a given φ, χ4(t) exhibits a maxi-
mum, χ∗4, at a time τ∗4 . Both τ∗4 and χ∗4 grow rapidly as
φc is approached, and obey power laws, see Fig. 3(f):
τ∗4 ∼ (φ − φc)

−ν‖ , with ν‖ ' 1.24, compatible with
the result for τ∞. Similarly, χ∗4 ∼ (φ − φc)

−γ , with
γ ' 1.22. The divergence of χ∗4 is accompanied by a
diverging correlation length, as revealed by the evolution
of S4(k, t) in Fig. 3(e). Here we fix t = τ∗4 when the
correlation is maximal. We observe a growing peak at
low wavevector shifting to lower k as φ increases. We
follow established procedures [20] and extract the dy-
namic lengthscale ξ∗4 by using the following scaling form:
S4(k, τ∗4 )/χ∗4 = F (kξ∗4(φ)), where F (x) is a scaling func-
tion independent of φ. As shown in Fig. 3(f), ξ∗4 obeys
a power law divergence, ξ∗4 ∼ (φ − φc)ν⊥ . We measure
ν⊥ ' 0.72. We found numerically that a similar critical
exponent controls the divergence of the order parameter
correlation length [24]. Again, our measurements com-
pare well to the directed percolation exponent, ν⊥ = 0.72
(ν⊥ = 0.80 for conserved directed percolation) [2].

Our results demonstrate that the irreversibility tran-
sition observed in periodically driven systems has inter-
esting qualitative analogies with glassy systems. In both

cases, the radial distribution function g(r) appears in-
sensitive to dynamic arrest, whereas other quantities dis-
play stronger signatures. We have reported a strong sup-
pression of the density fluctuations at large scales, and
a divergence of several dynamic quantities associated to
single particle and collective dynamics. The analogy be-
tween the two types of systems suggests that particle-
based measurements and observables developed for glassy
materials could prove useful in driven suspensions. These
tools could in particular reveal whether the ‘singularity-
free’ explanation based on the Lyapunov instability is
experimentally relevant. Our work also suggests that it
would be interesting to characterize more precisely the
static structure and dynamic correlations in the vicinity
of the yielding transition in dense suspensions under os-
cillatory shear [7, 13, 17, 25, 34], which represents another
important situation where a reversibility transition and
a transition to chaos [35] should be better understood.

We thank D. Bartolo and R. Jack for useful discus-
sions. The research leading to these results has received
funding from the European Research Council under the
European Unions (EU) Seventh Framework Programme
(FP7/2007-2013)/ERC Grant Agreement No. 306845.
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