Seasonal effects of climate manipulation on microbial community structure and function in mountain soils

To cite this version:

J. Puissant, L. Cecillon, R.T.E. Mills, B.J.M. Robroek, K. Gavazov, et al.. Seasonal effects of climate manipulation on microbial community structure and function in mountain soils. Soil Biology and Biochemistry, 2015, 80, pp.296-305. 10.1016/j.soilbio.2014.10.013 . hal-01140653

HAL Id: hal-01140653
https://hal.science/hal-01140653
Submitted on 9 Apr 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Seasonal influence of climate manipulation on microbial community structure and function in mountain soils

Jérémy Puissanta,b, Lauric Cécillona,b, Robert T.E. Millsc,d, Bjorn J.M. Robroekc,d,e, Konstantin Gavazovc,d, Sébastien De Danielia,b, Thomas Spiegelbergera,b, Alexandre Buttlerc,d,f, Jean-Jacques Bruna,b

aIrstea, UR EMGR Ecosystèmes montagnards, 2 rue de la Papeterie-BP 76, F-38402 Saint Martin d'Hères, France
bUniv. Grenoble Alpes, F-38402 Grenoble, France
cEcole Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of ecological systems ECOS, Station 2, 1015 Lausanne, Switzerland
dSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Site Lausanne, Station 2, 1015 Lausanne, Switzerland.
eEcology and Biodiversity, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
fLaboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et Techniques, 16 route de Gray, Université de Franche-Comté, F-25030 Besançon, France

First and corresponding author: Jérémy Puissant

jeremy.puissant@gmail.com
Tel: +33-4-7676-2782;
Abstract

Microbial communities drive soil organic matter (SOM) decomposition through the production of a variety of extracellular enzymes. Climate change impact on soil microbial communities and soil enzymatic activities can therefore strongly affect SOM turnover, and thereby determine the fate of ecosystems and their role as carbon sinks or sources.

To simulate projected impacts of climate change on Swiss Jura subalpine grassland soils, an altitudinal soil transplantation experiment was set up in October 2009. On the fourth year of this experiment, we measured microbial biomass (MB), microbial community structure (MCS), and soil extracellular enzymatic activities (EEA) of nine hydrolytic and oxidative extracellular enzymes in the transplanted soils on a seasonal basis.

We found a strong sampling date effect and a smaller but significant effect of the climate manipulation (soil transplantation) on EEA. Overall EEA was higher in winter and spring but enzymes linked to N and P cycles showed higher potential activities in autumn, suggesting that other factors than soil microclimate controlled their pool size, such as substrate availability. The climate warming manipulation decreased EEA in most cases, with oxidative enzymes more concerned than hydrolytic enzymes. In contrast to EEA, soil MB was more affected by the climate manipulation than by the seasons. Transplanting soils to lower altitudes caused a significant decrease in soil MB, but did not affect soil MCS. Conversely, a clear shift in soil MCS was observed between winter and summer. Mass-specific soil EEA (EEA normalized by MB) showed a systematic
seasonal trend, with a higher ratio in winter than in summer, suggesting that the seasonal shift in MCS is accompanied by a change in their activities. Surprisingly, we observed a significant decrease in soil organic carbon (SOC) concentration after four years of soil transplantation, as compared to the control site, which could not be linked to any microbial data.

We conclude that medium term (four years) warming and decreased precipitation strongly affected MB and EEA but not MCS in subalpine grassland soils, and that those shifts cannot be readily linked to the dynamics of soil carbon concentration under climate change.

Keywords: Climate change; PLFA; soil enzymes; soil organic carbon; mountain grasslands; soil transplantation experiment
1. **Introduction**

The persistence of the large amount of organic carbon stored in mountain grassland soils strongly depends on the expected modification of the rate of microbial decomposition of soil organic matter (SOM) under a changing climate (Saenger et al., 2013; Sjögersten et al., 2011). Climate control on the rate of SOM decomposition can be evaluated by considering soils as a “black box”, and monitoring soil C outputs such as soil respiration under various climatic conditions (Bahn et al., 2008; Bond-Lamberty and Thomson, 2010). However, the emergence of a new generation of models of soil organic C (SOC) dynamics, integrating some principles of microbial ecology (biomass, community structure and metabolic activities of microorganisms), aims for a better understanding of the climate dependency of microbial mechanisms involved in SOM decomposition (Allison et al., 2010; Lawrence et al., 2009; McGuire and Treseder, 2010; Wang et al., 2013).

Soil microbial communities affect SOM decomposition by a variety of extracellular enzymes (EEs), exuded to the soil matrix; each EE being specific to a certain chemical bond. Soil EEs depolymerize SOM through several types of chemical reactions, such as hydrolysis (hydrolytic EEs) or oxidation (oxidative EEs), the latter having received relatively little attention in soil research (Sinsabaugh, 2010). Even though the regulation of SOM turnover by soil microorganisms has recently been questioned (Bradford, 2013; Kemmitt et al., 2008), SOM enzymatic depolymerisation has been hypothesised to be the rate-limiting step in SOM decomposition (Bengtson a Bengtsson, 2007; Conant et al.,
This key soil process is tightly linked to soil microclimate (temperature and moisture), and also to EE pool size, which is mediated by the complex strategies of soil microbial communities (Allison and Treseder, 2008; Burns et al., 2013; Steinweg et al., 2013).

Only few studies have assessed the effect of *in situ* climate change (using e.g. overhead infrared heaters, open top chambers, soil altitudinal transplantation) on potential soil extracellular enzyme activities (EEA), and most of them focused on the growing season only (Burns et al., 2013). Climate change could lead to contradictory effects on microbial decomposition with decreased enzyme production (synthesis and secretion), increased enzyme-catalysed reactions, and modified enzyme stability in soils (Burns et al., 2013). Altered precipitation generally has a greater impact on soil EEA than temperature change, which is often not significant (Henry, 2013). Seasonal climate effects are generally known to be stronger on soil EEA than experimental climate manipulations (see Weedon et al., 2011 for a review), suggesting other drivers like plant nutrient demand and/or substrate quality and availability for soil EEA (German et al., 2011). On the other hand, climate warming affects also seasonal development, typically in mountain regions with a shortening of the snow period, which affects soil processes (Robroek et al., 2012). However, seasonal changes in soil EEA are not unidirectional, and depend on the studied enzyme and ecosystem type (Baldrian et al., 2013; Löffler et al., 2008; Steinweg et al., 2013). As such, it appears difficult to predict modifications in the rate of SOM enzymatic depolymerisation under projected climate change (Burns et al., 2013; Davidson and Janssens, 2006). Moreover, there is a lack of knowledge on the effect of climate change on...
the relationships between soil microbial biomass (MB), microbial community
structure (MCS) and EEA, which impedes building a predictive framework
(Sinsabaugh, 2010). Apart from generally observed seasonal shift in MCS and
MB (Bardgett et al., 1999; Lipson and Schmidt, 2004; Pascault et al., 2010;
Waldrop and Firestone, 2006), climate manipulations (mostly long term
warming, i.e. >10 years) also impact on MCS (Budge et al., 2011; Rinnan et al.,
2007). The link between MB and soil EEA is not clear, with a majority of studies
showing no correlation as evidenced by climate induced modifications of mass-
specific EEA (i.e. EEA per mg MB C; Schindlbacher et al., 2011; Steinweg et al.,
2013; Waldrop and Firestone, 2006), while some enzyme-based models explicitly
hypothesize that EEA is tightly linked to MB (e.g. Wang et al., 2013).

In this study, we used an altitudinal transplantation experiment of
grassland turfs in mesocosm boxes to investigate the climate impact (both the
seasonal influence and the climate-manipulation effect on the fourth year of
experimentation) on microbial decomposition in subalpine grasslands of the
Swiss Jura. The transplantation experiment simulated two realistic climate
change scenarios, with increased air temperatures ranging between 2 °C and 4 °C
and decreased precipitation ranging between 20% and 40%. These changes reflect
current predictions of climate change for the 21st century in temperate mountain
regions (Frei et al., 2006; Meehl et al., 2007; C2SM, 2011). Previous results from
the same experimental plots have already shown (i) a significant decrease in soil
respiration (Gavazov, 2013; Mills et al., 2014), and (ii) a significant increase in
soil dissolved organic carbon (DOC) concentration in soil solution collected by
zero tension lysimeters (Gavazov, 2013) under both climate change scenarios, and
(iii) a significant decrease in aboveground biomass production under the most intensive climate change scenario (+4 °C and 40% decrease in precipitation; Gavazov et al., 2014).

Here, we investigated three key elements related to microbial decomposition: soil microbial abundance/biomass, soil microbial C, N and P enzymatic activities and soil microbial community structure across seasons. Our main objectives were to assess (i) the seasonal dynamics of various enzyme pool sizes in mountain grassland soils, and their relationships with microbial abundance and community structure; (ii) the medium term (four years) impact of two climate change scenarios on soil microbial abundance, community structure and activities across seasons, and their links with SOC concentration in mountain grassland soils.

2. Materials and methods

2.1. Design of the altitudinal soil transplantation experiment

The experimental design of this study was based on a mesocosm turf transplantation carried out in 2009 (Gavazov et al., 2013, 2014), and focused on the response of subalpine grasslands in the Swiss Jura mountains to two intensities of climate change. This manipulation successfully simulated year-round moderate and intensive climate change scenarios expected regionally in the 21st century (A1B and A2 scenarios, respectively; Frei et al., 2006; Meehl et al., 2007). Briefly, 15 mesocosms, made of rectangular PVC boxes (60 x 80 and 35
cm in height), containing monoliths of undisturbed soil (30 cm depth), and their
intact herbaceous vegetation typical of open grasslands (consisting mainly of
graminoids with few forbs; Gavazov et al., 2014) were taken from a subalpine
pasture located at 1350 m a.s.l. (Combe des Amburnex, N46°54', E6°23'). The soil
type is Cambisol (IUSS Working Group WRB, 2007), and the parent material is
Jurassic limestone. The 15 mesocosms were then transplanted (5 per site) in
common gardens at the site of origin (control: 1350 m a.s.l.) and two lower-
altitudinal sites: 1010 m a.s.l. (Saint-George, N46°52', E6°26') and 570 m a.s.l.
(Arboretum d'Aubonne, N46°51', E6°37'). Climate conditions in the Swiss Jura
are typical for an oceanic mountain climate, with significant amount of
precipitation and large annual temperature variation. At the highest site
(control; 1350m a.s.l), the mean annual temperature is +4.5 °C and the mean
annual rainfall is 1750 mm, including over 450 mm of snow. The soil
transplantation simulates a climate warming with an average 2 °C and 4 °C
temperature increase and 20% and 40% decrease in precipitation at the
intermediate site and the lowest site, respectively (see Gavazov et al. 2013 for a
more detailed description of climate data).

2.2. Soil microclimate monitoring

Soil temperature and volumetric water content of topsoil horizon were recorded
every minute in each mesocosm, using Em50 data-loggers (Decagon Devices, Inc.,
USA) and ECH2O EC-TM probes inserted at 3 cm depth. Soil temperature and
moisture data used here (Nov. 2012 – Oct. 2013) are daily averages.
2.3. Seasonal soil sampling

Four sampling campaigns (corresponding to each season) were performed over the fourth year of the soil transplantation experiment. Sampling dates were chosen according to the main climatic drivers at the control site (1350 m a.s.l.): just before snow cover (autumn, November 23rd 2012), at maximum snow cover (winter, February 20th 2013), just after snow-melt (spring, May 27th 2013) and at the end of summer (September 2nd 2013). For MB, EEA and basic soil characteristics, five intact soil cores (5 cm diameter × 10 cm length) per site (one core per mesocosm) were taken at each sampling date, immediately placed in a cool box and transported to the lab where the cores were stored at field moisture content and 4 °C before analysis. Samples were analysed within one week after sampling for EEA and MB (see below). For PLFA analysis, 20 g of soil from 0 to 10 cm were sampled at two sampling date (winter and summer) in each mesocosm, only at the highest and lowest altitudes. These soil samples were sieved to 2 mm directly in the field and stored immediately at -79 °C into carbon ice before analysis.

2.4. Basic soil characteristics

Basic soil properties of the intact soil cores (0-10 cm depth) were analysed using standardized methods. The gravimetric soil water content was measured by drying soil at 105 °C for 48 h according to norm NF ISO 16586 (2003). For all
chemical soil analyses, samples were dried at 40 °C as indicated in norm NF ISO 11464 (2006). Soil pH was measured in H₂O (1:5 vol:vol) according to the norm NF ISO 10390 (2005). Calcareous content was determined following the norm NF ISO 10693 (1995). Organic carbon and total nitrogen concentrations were measured by the Dumas dry combustion after decarbonation (NF ISO 10694, 1995; 13878, 1995, respectively). Decarbonation was achieved by successive additions of a diluted HCl (10%) solution to soil samples.

2.5. Soil microbial biomass (MB)

Soil MB was assessed as microbial C, using the chloroform fumigation extraction method (Brookes et al., 1985; Vance et al., 1987) on subsamples of 10 g of sieved (2 mm) soils incubated in the dark, overnight. An extraction coefficient of 0.45 was used for calculating microbial C. Soil MB measurements are available only for the winter, spring and summer sampling times.

2.6. Soil microbial community structure (MCS)

Soil MCS was assessed by analysing the microbial phospholipid fatty acid (PLFA) composition. PLFAs were extracted according to Bligh and Dyer (1959), and modified by Börjesson et al. (1998). Total lipids were extracted overnight from 4 g freeze-dried soil in a solvent phase of 3.0 ml 50mM phosphate buffer (pH = 7.0), 3.8 ml chloroform (CHCl₃), 7.6 ml methanol (MeOH), and 4 ml Bligh and Dyer (1959) reagent (CHCl₃: MeOH: P-buffer; 1: 2: 0.8 (v/v/v)). Total lipids were separated into neutral lipids, glycolipids, and phospholipids by dissolving the
total lipid fraction using chloroform, acetone and methanol solutions, which were respectively added over Discovery® DSC-Si SPE Tubes (Sigma-Aldrich). PLFA 19:0 (Larodan Malmö, Sweden) was added as internal standard to the phospholipid fraction. PLFAs were trans-esterified to fatty acid methyl esthers (FAMEs) using 1 ml 0.2 M methanolic-KOH (Chowdhury and Dick, 2012; Sundh et al., 1997). PLFAs were analysed on a gas chromatograph according to Steger et al. (2003).

The ratio of fungal to bacterial biomass (F/B) in soil was calculated from PLFA data, following the method used and described by Bardgett et al, (1999).

2.7. Soil extracellular enzymes activity (EEA) assays

The potential activity of eight individual extracellular enzymes (see Table 1 for a presentation of all enzymes and their abbreviations) was used to represent the degradation of the main soil biochemical compounds. Seven hydrolytic EEA were measured by fluorogenic methods using 4-MUB (4-methylumbelliferone) and 7-AMC (7-amino-4-methyl coumarin). Enzyme assays were processed in acetate buffer solution (pH = 5) which was chosen to be close to soil field pH, and for stabilizing the fluorescence intensity which is dependent on pH fluctuation (German et al., 2011). Enzyme assays were performed according to Marx et al. (2001) with small modifications. Briefly, 2.5 g of moist soil sieved at 2 mm was mixed with 40 ml of acetate buffer in 50ml sterile tubes. These tubes were placed for twenty minutes into a shaker at 250 rpm to obtain a homogenous soil solution. Then, 30 µl of soil solution was added to a 96-well microplate with 30 µl
of fluorometric substrate (300 mM, saturated concentration) and completed to 250 µl with acetate buffer solution. Enzymatic reactions were incubated in the dark for 5 hours at 28 °C, with one fluorometric measure per hour. For each sample, three methodological replicates (sample + buffer + substrate) and a quenched standard (sample + buffer + 4-MUB or 7-AMC) were used. For each substrate, a control including the 4-MUB- or 7-AMC-linked substrate and the buffer solution alone were used to check the evolution of fluorescence without enzyme degradation over the duration of assay. The fluorescence intensity was measured using a Varioskan flash spectrophotometer set to 330 and 342 nm for excitation and 450 and 440 nm for emission for the 4-MUB and the 7-AMC substrate, respectively.

The potential activity of phenol oxidase (POX), an oxidative EE, was measured by absorbance. The protocol described by (Floch et al., 2007) was used with small modifications. Oxidation of ABTS (2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) was determined by using the same soil solution prepared for fluorogenic enzyme assays. POX reactions were processed for 10 minutes at 37 °C in 2 ml centrifuge tubes containing 0.4 ml of soil solution, 1 ml of acetate buffer (pH = 5) and 0.1 ml of ABTS (50 mM). Blanks were measured with 0.4 ml of soil solution and 1.1 ml of acetate buffer. Additionally, a control of substrate absorbance was performed with 0.1 ml of ABTS (50 mM) and 1.4 ml of acetate buffer. Absorbance was measured at 420 nm and the extinction value was $\varepsilon_{420} = 36\,000\, \text{M}^{-1}\text{cm}^{-1}$ (Ullrich and Nüske, 2004).

Finally, hydrolysis of fluorescein diacetate (FDA) was measured to estimate the overall microbial activity in soil (Green et al., 2006). FDA was
assayed with the same protocol as described above for hydrolytic EEA, with little adaptations. For FDA, the reaction was processed in sodium phosphate buffer (pH = 7.6) as recommended by Green et al. (2006), and the fluorescence intensity was measured at 490 nm for excitation and 523 nm for emission.

All enzymes activities were calculated in nanokatal (nmol of product per second) and normalized by (i) g of dry soil (EEA on a dry soil mass basis), (ii) mg of microbial biomass (mass-specific EEA, reflecting microbial strategy of enzymes production).

2.8. Statistical analyses

The effect of climate manipulation (altitudinal effect) on MB, F/B, EEA and basic soil characteristics was assessed at each sampling date using a one-way ANOVA followed by Tukey's HSD post hoc tests. Assumptions of normality and homoscedasticity of the residuals were verified visually using diagnostic plots and a Shapiro-Wilk test. Log or square root transformations were used when necessary to respect these assumptions.

The effects of sampling date and climate manipulation (altitudinal effect) and their interactions on MB, F/B, EEA and basic soil characteristics were assessed by repeated measures ANOVA. Fixed factors were sampling date and site, while mesocosm was added as a random factor. It is important to note that in this study the seasonal dynamics is evaluated with one sampling date per season, with spatial replicates instead of temporal replicates.
To identify MCS pattern, a principal component analysis (PCA) based on Hellinger-transformed PLFA data was performed (Legendre and Gallagher, 2001). We used a permutational multivariate ANOVA (ADONIS) based on Euclidean distance to test the effect of sampling date and altitude on MCS pattern. For each sample, PLFA data were normalized by total PLFA abundance to obtain relative abundances. Sums of squares and resulting F-tests from permutations of the raw data were calculated to test for the significance of the transplantation site and the sampling date on PLFAs data. Two indices PC 1 and PC 2 corresponding to axis 1 and 2 of the PCA were extracted so as to summarize MCS data in subsequent statistical analyses. Finally, the effects of the soil microbial compartment (MB and MCS, summarized as PC 1 and PC 2 indices) and substrate availability (SOC content and C/N) on EEA (dry soil mass basis) were tested using redundancy analysis (RDA). RDA analysis was applied to the C (=BG + BX + CB), N (=NAG +NAP), P, LIP, POX enzyme pool size, using microbial parameters (MB and MCS), and soil substrate characteristics (SOC content and C/N) as explanatory variables. RDA was based on data collected in winter and summer at the control site (1350 m a.s.l.) and the lowest experimental site (570 m. a.s.l.; the most intensive climate change scenario). The significance of explanatory variables was tested by a permutation test (9999 permutations).

All statistical analyses were performed in R 2.14.0 (R Development Core Team 2011), using the R packages vegan (Oksanen et al., 2013), ade4 (Dray and Dufour, 2007) and NLME (Pinheiro et al., 2014).

3. Results
3.1. Soil microclimate

Soil temperatures during the period of investigation (Fig. 1) showed a long stable soil temperature period at 0°C in winter under snow cover and a daily maximum temperature of ca. 20 °C in summer at the control site (1350 m a.s.l.). The transplantation sites at lower elevation, in contrast, exhibited longer and warmer plant growing seasons. At the lowest experimental site (570 m a.s.l.), the snow cover melted completely several times during the winter, resulting in strong mid-winter soil temperature fluctuations. For each experimental site, soil moisture (volumetric water content) at 3 cm depth remained rather constant across the year except in summer when soil moisture decreased strongly (Fig. 1).

The effect of soil transplantation (climate manipulation) on soil microclimate was more proportional to altitude for soil temperature than for soil moisture (Fig. 1). From November 2012 to October 2013, averaged annual soil temperature and moisture at 3 cm depth were respectively 6.6°C and 53% at the control site (1350 m a.s.l.), 9.2°C and 56% at the intermediate experimental site (1010 m a.s.l.), and 11.2°C and 36% at the lowest experimental site (570 m a.s.l.). These values were consistent with microclimate data measured from the start of the experiment (Gavazov, 2013). The three experimental sites thus showed a clear gradient of soil temperature, with decreasing temperature related to the elevation of the experimental site. Soil moisture slightly decreased with altitude except at the intermediate site (1010 m a.s.l) where soil moisture was either similar to the highest site or to the lowest site, depending on the measured soil depth (0-3 cm or 0-10 cm, Table 2). Globally, on the four sampling dates, the soil
microclimate was consistent with soil temperature and moisture patterns recorded during the four corresponding seasons (Fig. 1).

3.2. Basic soil characteristics

Soil pH neither differed among sampling dates, nor among experimental sites (mean pH = 5.5), but in autumn when soil pH was higher at the control (1350 m a.s.l.) site (Table 2). Calcareous content was about 2 g kg$^{-1}$ and did not differ among experimental sites or among sampling dates (Table 2). Soil organic C concentration did not change along the year. In contrast, SOC concentration was affected by the soil transplantation. SOC concentration was decreased significantly at the intermediate experimental site (in winter, spring and summer) and at the lowest site (summer) compared to the control site after four years of soil transplantation (Table 2). Soil total N concentration showed a similar pattern (Table 2), except in autumn, where total N concentration was lower at the control and intermediate sites as compared to the lowest experimental site.

3.3. Soil microbial biomass (MB)

We observed significant temporal variation in soil MB, with a higher abundance of soil microorganisms in winter and spring than in summer (Table 2). Interestingly, we also observed a significant transplantation effect on MB, which was stronger than the sampling date effect (Table 3). Soil MB decreased at the two lower experimental sites (570 and 1010 m a.s.l.) compared to the control site.
(1350 m a.s.l.). These differences in soil MB due to climate manipulation were significant in spring and summer but not in winter even though the trend was similar (Tables 2 and 3).

3.4. Soil microbial community structure (MCS)

The PCA based on PLFA data explained 76.9% of total MCS variance on the first two axes (66.4% and 10.5%, Fig.2). PCA ordination diagram identified two distinct non-overlapping groups of soil microbial communities corresponding to the winter and the summer samplings (Fig.2). Conversely, soil transplantation had no effect on MCS, as indicated by the close location of the centroids corresponding to the control (1350 m a.s.l.) and the lowest (570 m a.s.l.) experimental sites on the ordination map (Fig. 2). This was also confirmed by the variance partitioning analysis (ADONIS), which pointed out significant effects of sampling date (p=0.002, R²=0.30), but neither an effect of climate manipulation (p=0.33) nor of the interaction between both factors (p=0.87) on MCS.

Examination of the PCA loadings showed that PLFA cy19:0 contributed mainly to the first PCA axis, while PLFAs 20:5ω3, 18:1ω9 and i-16:0 contributed mainly to the second PCA axis. Soil microclimate variables (temperature and moisture) were correlated with the first PCA axis (r = 0.7 and 0.6, respectively, p < 0.05).

We observed a significant temporal variation in F/B between winter and summer, with a higher abundance of fungi microorganisms in winter than in summer (Table 2 and Supplementary Table 1). Conversely, soil transplantation had no effect on F/B.
3.5. EEA on a dry soil mass basis

On a dry soil mass basis, overall microbial activity potential (FDA) was three times higher in winter and spring ($1.2 \text{ nkatal.g}^{-1}$ of soil) than in summer and autumn ($0.4 \text{ nkatal.g}^{-1}$ of soil), irrespective of site (Fig. 3). Transplanting soils to lower altitudes significantly impacted FDA only in winter, with decreased values at the two lower experimental sites compared to the control site (1350 m a.s.l.; Supplementary Table S1, Fig. 3). For all EEAs, the sampling date effect was stronger than the effect of climate manipulation. Enzymes involved in N (LAP, NAG) and P (PHO) cycle showed clearly higher activity in autumn (Fig. 3). The same pattern is observed for the CB enzyme. Consistently with overall microbial activity (FDA), several EEA’s were negatively affected by the climate manipulation, with differences in the magnitude of this negative effect depending on the sampling date (Supplementary Table S1 and Fig. 3). Interestingly, the oxidative POX enzyme was more impacted by the climate manipulation than hydrolytic enzymes, with a significant response at each sampling date (Supplementary Table S1).

3.6. Mass-specific EEA

Mass-specific EEA (potential EEA per mg MB C) were significantly different between sampling dates, with a systematic seasonal trend (Supplementary Table S1). Indeed, we found lower mass-specific EEA for all hydrolytic or oxidative enzymes, and for overall microbial activity in summer (Supplementary Fig. S1).
Climate manipulation impacted mass-specific EEA of some hydrolases in spring and summer. Conversely, no effect of soil transplantation on mass-specific EEA was observed in winter for none of the investigated enzymes. Contrary to EEA on a dry soil mass basis, mass-specific EEA associated to oxidative reaction (POX) and the N cycle (NAG+LAP) did not differ between sites for all sampling dates (Supplementary Table S1 and Fig. S1).

3.7. Factors influencing microbial enzymatic activity

Differences between winter and summer sampling dates were mostly observed on axis 1 of RDA, while differences between experimental sites were represented on axis 1 and also on axis 2 for winter (Fig. 4). The soil EEAs were significantly explained by soil MCS (F-value = 7.2, p = 0.008 for PC 1 index; PC 2 index: p = 0.08) and also by soil MB (F-value = 6.29, p = 0.01). Conversely, substrate concentration and quality (SOC content and C/N) were not related to soil enzyme pool size (F-value =0.8, p=0.41 and F-value =0.4, p=0.61, respectively).

4. Discussion

4.1. Seasonal dynamics of enzymatic activities and their relationships with microbial biomass and structure

We found a strong effect of seasonal change on microbial enzymatic activity as assessed by standard laboratory tests of potential hydrolytic and oxidative EEA. Such EEA measurements under controlled temperature
conditions (27°C) provide a reliable assessment of enzyme pool size (Henry, 2013). The fact that the pool size of most soil enzymes changed seasonally is consistent with most studies on intra-annual variation of microbial enzymatic activities (Baldrian et al., 2013; Löffler et al., 2008; Wallenstein et al., 2009; Yao et al., 2011). According to other works, the season corresponding to the highest soil enzyme pool size is strongly ecosystem dependent. Indeed, several studies found higher potential EEAs in the warmer seasons (Baldrian et al., 2013; Jing et al., 2013; Löffler et al., 2008), whereas others found higher EEA in colder periods (Alster et al., 2013; Bell et al., 2010). In our study, the observed seasonal pattern in FDA showed (i) an increase in the enzyme pool size during the winter and spring, when, respectively, snow cover reduces soil micro-climate variability/amplitude and when plants draw nutrients and release root exudates; (ii) a decrease in the enzyme pool size in summer under dryer conditions and in autumn. FDA was used as an indicator of overall microbial activity, as this substrate is hydrolysed by many non-specific enzymes such as esterases, proteases and lipases (Adam and Duncan, 2001). This indicator remains, however, seldom used in soil enzyme studies which generally measure specific hydrolytic enzymes (but see e.g. Cécillon et al., 2008; Stauffer et al., 2014). In mountain ecosystems, EEA peaks typically occur at the snowmelt period (Weedon et al., 2011). Bell and colleagues (2010) suggested that in winter, microbes could increase enzyme production at low temperature so as to compensate lower enzyme reaction kinetics. Moreover, during the growing season, competition between plants and microorganisms for resources is often observed (Hu et al., 2001; Jingguo and Bakken, 1997; Yao et al., 2011; Zhang et al., 2005a), which
could lead to increased enzyme production by soil microorganisms. These explanations seem to be confirmed in our study by the high mass-specific EEAs in winter and spring, as compared to summer, for most soil enzymes. This systematic seasonal trend for mass-specific EEA underlines a clear decoupling between enzyme pool size and the abundance of soil microbes (MB) in these mountain grassland soils. Such decoupling could be linked to the strong seasonal shift in soil MCS and the fungal to bacterial ratio, with higher fungal activity in winter. Indeed, in winter fungi could access decomposing plant residues, while in summer bacteria are more competitive due to the availability of easily degradable root exudates (Bardgett et al., 2005). This emphasizes the need to explicitly distinguish enzyme pool size from microbial biomass in enzyme-based models of SOC dynamics (Steinweg et al., 2013; Wang et al., 2013), and shows that soil MB may not be a relevant proxy for soil enzyme pool size. The decrease in enzyme pool size in drier summer conditions is consistent with a conceptual model (Henry et al., 2013), which shows hypothetical variations in EEA along a soil moisture gradient depending on soil drainage status. The decrease in EEA during summer is associated with a strong decrease in MB that might be related to a hydrological stress (i.e. summer drought). In autumn, soils showed a water content similar to that of winter and spring. Nevertheless, the FDA potential activity remained surprisingly very low in this season. Whilst this might have been linked to freeze thaw cycles, which are frequent in mountain grassland soils in autumn (with no snow cover), and can deeply affect soil microbial decomposition (e.g. Saccone et al., 2012), soil temperature measurements did not show any soil frost at 3 cm depth during this time (Fig. 1). Substrate availability and quality are known to
be key factors in controlling EE production (Allison., 2005, Erman and Hacon., 2011), but in this study, the RDA did not reveal any link between EEA (on a dry soil mass basis) and SOC content or C/N. However, some more specific information on the actual microbial substrate (dissolved organic matter) and its chemistry could potentially explain the contrasted enzyme pool size for C, N and P cycles observed in autumn (Fig. 3; see e.g., Park et al., 2014). Indeed, our results showed contrasting responses of the various enzyme groups to seasonal changes, with a higher activity in autumn for CB, N-acquiring, and P-acquiring enzymes, while all other EEA had their highest intensities in winter and spring. Each season is associated with a specific soil microclimate, but also a specific plant activity and secretion of root exudates and/or soil microbial substrate quality. Their combination results in contrasted MB, MCS and EEA across seasons, as previously shown (see e.g, Pascault et al., 2010; Stevenson et al., 2014; Tan et al., 2014). Overall, our results on the seasonal dynamics of these three microbial compartments are consistent with the literature, as they also showed contrasting soil MB and MCS across seasons, which significantly explained the seasonal changes of EEA, as revealed by the RDA (Fig. 4).

4.2. Impact of climate manipulation on microbial biomass and structure and enzymatic activities across seasons and their link with soil organic carbon dynamics

With a significant decrease under both climate change scenarios at all seasons, soil MB appeared to be the most sensitive microbial parameter to the medium
term experimental climate manipulation in our study. Indeed, a decrease in
topsoil MB under experimental warming is often observed in climate change
experiments (Rinnan et al., 2007; Vanhala et al., 2011, but see Tan et al., 2014;
Zhang et al., 2005b).

Conversely, we observed no modifications of soil MCS under both climate
change scenarios (at the 570 and 1010 m a.s.l. experimental sites) compared to
the control site (1350 m a.s.l.; Fig. 2), with no interactions between climate
manipulation and seasons. This result indicates a high resistance of microbial
communities to the four years experimental climate manipulation, the only
changes in MCS of soil transplants being induced by temporal variations within
each transplantation site. A previous investigation of the same soil
transplantation experiment has revealed a strong effect of the most intensive
climate change scenario on aboveground plant biomass and diversity (Gavazov et
al., 2014). Thus, our results combined with Gavazov et al. (2014), hint more so
towards a dominant effect of seasonality (including both seasonal variations in
climate and plant activity) on MCS than an effect of plant biomass and diversity.
Nonetheless, despite the fact that PLFA is a relevant method to detect changes in
soil MCS (Björk et al., 2008; Waldrop and Firestone, 2006; Zeglin et al., 2013), its
relatively low resolution in profiling MCS could hide finer MCS changes due to
the climate manipulation. However, according to the literature, soil microbial
community structure is mostly impacted by experimental climate warming
and/or decreased precipitation in longer climate manipulation experiments (>10
years; Frey et al., 2008; Rinnan et al., 2007, but see Djukic et al., 2013).
Contrary to MCS, transplanting soils to lower altitudes had a moderate but significant effect on potential soil EEAs. Overall, enzyme pool size decreased under both climate change scenarios compared to the control site, with a diversity of responses depending on the enzyme and the season considered. These results on EEAs are consistent with soil respiration measurements performed in 2011 on the same soil transplantation experiment (Gavazov, 2013; Mills et al., 2014). Interestingly, the oxidative POX enzyme was more heavily affected by the climate manipulation than the hydrolytic enzymes. This highlights the need for improving our knowledge on the specific response to climate change of oxidative enzyme reactions, which are seldom assessed in soil enzyme studies (Burns et al., 2013; Hassan et al., 2013; Sinsabaugh, 2010). Our results are thus contradictory with many studies simulating climate warming, which did not show any climate manipulation impact on soil enzyme pool size (Allison and Treseder, 2008; Henry, 2013; Jing et al., 2013; Steinweg et al., 2013). However, to our knowledge, our study is the first investigation on the response of such a large panel of soil hydrolytic and oxidative enzyme pool sizes to a climate manipulation generated by a soil transplantation experiment.

Most mass-specific EEAs including FDA were significantly increased by climate manipulation, similarly to results from Steinweg et al. (2013), with a medium warming (+2°C). This suggests an adaptation of microbial communities, which increase their enzyme production under stressful conditions. However, Steinweg et al. (2013) showed a decline in mass-specific EEAs under intensive warming (ca. +3°C), which contradicts our results. In our study, we found a significant effect of climate manipulation on EEA (on both a dry soil mass basis
and a mass-specific basis), which could be explained by an adaptation of microorganisms but also to other factors controlling soil enzyme pool size. For instance, the stability of soil EE can change under climate change: warming and decrease in precipitation could lead to decreased enzyme stability in soil (Burns et al., 2013). However, our enzyme assays were not suitable to investigate enzyme stability in soils.

In this study, we found a significant decrease in SOC content in the topsoil (0-10 cm) at the intermediate (in winter, spring and summer) and at the lowest experimental site (summer) compared to the control site, whereas no differences in SOC concentration were found in the topsoil layer (0-4 cm) two years before (Mills et al., 2014). This could indicate that (i) the dynamics of SOC concentration is different between the 0-4 cm and the 0-10 cm soil layers, possibly due to roots exudates dynamics, or that (ii) the effect of climate manipulation on SOC concentration became significant only on the fourth year of the experiment. Indeed, the decrease in SOC concentration in the 0-10 cm layer reached the significance threshold during the fourth year (respectively in winter 2012 and in summer 2013 at the intermediate and the lowest experimental sites).

Interestingly, the observed trends for EEAs were not consistent with the trend of SOC concentration. This highlights that the actual SOC dynamics cannot be easily predicted from the assessment of a simple proxy of SOC outputs such as potential soil enzyme activity tests. Other variables may explain the trend in SOC concentration, such as a decrease in C inputs or an increase in C leaching from the mesocombs. Indeed, Gavazov et al. (2014) and Gavazov (2013)
respectively reported a decreased aboveground biomass production at the lowest site but similar yields at the intermediate site compared to the control site, and increased DOC concentration in soil solution collected by zero tension lysimeters. Overall, the discordance between our microbial parameters and the trend in SOC concentration would add to a controversial debate in soil biogeochemistry (Bradford, 2013; Brookes et al., 2009; Paterson, 2009), with emerging conceptual models on SOC turnover, which discusses the ability of microbial community characteristics such as MCS or EEA to be directly linked to SOC dynamics (Kemmitt et al., 2008).

4.3. Conclusions

We have shown in our study on mountain subalpine grassland soils of the Swiss Jura that enzyme pool size were regulated by a series of abiotic (soil temperature and moisture) and biotic (soil MB and MCS) factors. Large seasonal variations in enzyme pool size were due to the complex interaction of soil MB, MCS, soil microclimate and also potentially to plant rhizosphere activity. Conversely, the effect of the climate manipulation induced by four years altitudinal soil transplantation on EEA was neither explained by MCS change nor by SOC concentration or quality, but rather by soil microclimate and MB only. Surprisingly, the medium term loss in SOC content induced by the four years climate manipulation could not be linked to any microbial data assessed in this study. This underlines the difficulties to relate microbial information with the actual dynamics of soil carbon concentration. More research is needed on the
regulation of SOM enzymatic depolymerisation by microbial communities according to climate and to substrate quantity, quality and availability, which may improve enzyme-based models of SOC dynamics.
Acknowledgements

This work has been funded by Irstea, by the CCES (Competence Center Environment and Sustainability of the ETH Domain, Switzerland) as part of the Mountland project, and supported by a grant from Labex OSUG@2020 (Investissements d'avenir – ANR10 LABX56) and by a grant from the French Ministry of Higher Education and Research (Ph.D. thesis of JP, EDISCE Doctoral School). BJMR was supported through the Netherlands Organization for Scientific Research (NWO; Research Innovation Scheme 863.10.014). The Laboratoire d'Ecologie Alpine (LECA) and T. Goïtré (Irstea) are thanked for providing the equipment and help for soil enzymes measurements. Two anonymous reviewers are thanked for their constructive comments which strongly improved this paper.

References

doi:10.2136/sssaj2009.0036

is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective 40, 61-73”. Soil Biology and Biochemistry 41, 440–443.

doi:10.1016/j.soilbio.2008.03.016

NF ISO 11464, Soil quality., 2006. Pretreatment of samples for physico-chemical analysis. AFNOR.

NF ISO 13878, Soil quality., 1995. Determination of total nitrogen content by dry combustion ("elemental analysis"). AFNOR.

NF ISO 16586, Soil quality., 2003. Determination of soil water content as a volume fraction on the basis of known dry bulk density - Gravimetric method. AFNOR.

Table 1: Soil extracellular enzymes assayed for potential activity with abbreviation and enzyme commission classification (EC), substrate and enzymes functions.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>EC number</th>
<th>Enzyme</th>
<th>Substrate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHO</td>
<td>3.1.3.1</td>
<td>alkaline phosphatase</td>
<td>4-MUB-phosphate</td>
<td>Phosphorus mineralization</td>
</tr>
<tr>
<td>BG</td>
<td>3.2.1.21</td>
<td>ß-glucosidases</td>
<td>4-MUB-ß-D-glucopyranoside</td>
<td>Releases glucose from cellulose</td>
</tr>
<tr>
<td>CB</td>
<td>3.2.1.91</td>
<td>cellobiohydrolase</td>
<td>4-MUB-ß-D-cellobioside</td>
<td>Releases disaccharides from cellulose</td>
</tr>
<tr>
<td>NAG</td>
<td>3.2.1.30</td>
<td>N-acetyl-glucosaminidase</td>
<td>4-MUB-N-acetyl-ß-D-glucosaminide</td>
<td>Degrades chitin</td>
</tr>
<tr>
<td>BX</td>
<td>3.2.1.37</td>
<td>xylosidase</td>
<td>4-MUB-ß-D-xylopyranoside</td>
<td>Degrades hemicellulose</td>
</tr>
<tr>
<td>LIP</td>
<td>3.1.1.3</td>
<td>lipase</td>
<td>4-MUB-heptanoate</td>
<td>Degrades lipids</td>
</tr>
<tr>
<td>FDA</td>
<td>3.1.1</td>
<td>fluorescein diacetate</td>
<td>fluorescein diacetate</td>
<td>Overall microbial activity potential</td>
</tr>
<tr>
<td>POX</td>
<td>1.10.3.2</td>
<td>phenol oxidase</td>
<td>ABTS</td>
<td>Oxidation of aromatic compound (lignin)</td>
</tr>
<tr>
<td>LAP</td>
<td>3.4.11.1</td>
<td>leucine-amino-peptidase</td>
<td>L-Leucine-7-AMC</td>
<td>Degrades protein into amino acids</td>
</tr>
</tbody>
</table>

7-AMC = 7-amido-4-methylcoumarin hydrochloride, 4-MUB = 4-methylumbelliferonyl. ABTS = 2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt.
<table>
<thead>
<tr>
<th>Sampling dates</th>
<th>autumn (November 23rd 2012)</th>
<th>winter (February 20th 2013)</th>
<th>spring (May 27th 2013)</th>
<th>summer (September 2nd 2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>Altitude (m a.s.l.)</td>
<td>Soil moisture (0-10 cm; laboratory measurements)</td>
<td>Soil moisture (field measurements at 3 cm)</td>
<td>Soil temperature (field measurements at 3 cm)</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>1010</td>
<td>1350</td>
<td>570</td>
</tr>
<tr>
<td>Altitude</td>
<td>m a.s.l.</td>
<td>570</td>
<td>1010</td>
<td>1350</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>%</td>
<td>42 ± 2</td>
<td>43 ± 2</td>
<td>48 ± 1</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>%</td>
<td>38 ± 2</td>
<td>55 ± 4</td>
<td>54 ± 11</td>
</tr>
<tr>
<td>Soil temperature</td>
<td>°C</td>
<td>7.7 ± 0.3a</td>
<td>6.1 ± 0.1b</td>
<td>2.4 ± 0.2c</td>
</tr>
<tr>
<td>pH [in H\textsubscript{2}O]</td>
<td>-</td>
<td>5.2 ± 0.1a</td>
<td>5.3 ± 0.3a</td>
<td>6.5 ± 0.3b</td>
</tr>
<tr>
<td>Calcareous content</td>
<td>g.kg-1</td>
<td>2.6 ± 0.2</td>
<td>2.4 ± 0.2</td>
<td>7.8 ± 4.1</td>
</tr>
<tr>
<td>Organic carbon</td>
<td>g.kg-1</td>
<td>71.1 ± 5.2</td>
<td>61 ± 6.9</td>
<td>74.6 ± 6</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>g.kg-1</td>
<td>6.7 ± 0.3a</td>
<td>5 ± 0.5b</td>
<td>5.2 ± 0.16</td>
</tr>
<tr>
<td>C/N</td>
<td>-</td>
<td>10.6 ± 0.3a</td>
<td>12.2 ± 0.6ab</td>
<td>14.3 ± 0.8b</td>
</tr>
<tr>
<td>Microbial biomass</td>
<td>mg C·g⁻¹soil</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>F/B ratio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Basic soil characteristics, soil microbial biomass and F/B ratio for each sampling date and experimental site. Values represent the mean (n=5) with the associated standard error (SE). Post hoc HSD tests are only represented with different bold letters to indicate significant differences (p<0.05).
Figure captions

Fig.1. Daily mean soil temperature and moisture of soil mesocosms at each site throughout the year 2012-2013. Control site (1350 m a.s.l.) in black line; intermediate site (1010 m a.s.l.) in dashed line; lowest site (570 m a.s.l.) in grey line. The arrows indicate the four dates of soil sampling.

Fig.2. Principal component analysis (PCA) ordination diagram based on soil microbial community structure data (PLFAs). Centroids of season and site are written framed. Triangle = 1350 m a.s.l. site, circle = 570 m a.s.l. site; filled in = winter, empty = summer.

Fig.3. Soil extracellular enzymatic activities (dry soil mass basis) across seasons for each site. Error bars represent the standard errors of the mean values (n = 5). Circle= control site (1350 m a.s.l.); triangle = intermediate site (1010 m a.s.l.); dark square = lowest site (570 m a.s.l.). Aut, Win, Spr, Sum respectively stand for autumn, winter, spring and summer. See Table 1 for abbreviations.

Fig.4. Redundancy analysis (RDA) of EEA (dry soil mass basis) using microbial biomass (MB), microbial community structure (PC 1; PC 2), SOC and C/N as constraining variables. Triangle = control site (1350 m a.s.l.), circle = lowest site (570 m a.s.l.); filled in = winter, empty = summer. Grey
arrows and black arrows represent non-significant and significant explanatory variables, respectively (p<0.05).
Fig.S1. Mass-specific soil extracellular enzymes activities across seasons for each site. Error bars represent the standard errors of the mean values (n = 5). Circle= control site (1350 m a.s.l.); triangle = intermediate site (1010 m a.s.l.); dark square = lowest site (570 m a.s.l.). Win, Spr, Sum respectively stand for winter, spring and summer. See Table 1 for abbreviations.
Soil Characteristics

| Indicator | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P |
|--|----|
| Soil moisture | 161.0 | *** | 11.0 | ** | 1.1 | 0.4 | 2.7 | 0.1 | 3.6 | 0.1 | 4.5 | * | 23.2 | *** |
| Soil field moisture (3 cm) | 120.0 | *** | 6.3 | * | 2.0 | 0.1 | 3.4 | 0.1 | 1.2 | 0.3 | 9.5 | ** | 11.1 | ** |
| Soil temperature | 5033.0 | *** | 100.0 | *** | 69.0 | *** | 138.0 | *** | 1.2 | 0.4 | 91.6 | *** | 101.1 | *** |
| pH [H2O] | 1.7 | 0.2 | 4.6 | * | 3.8 | ** | 7.2 | ** | 0.6 | 0.6 | 1.5 | 0.3 | 0.8 | 0.5 |
| Organic carbon | 0.0 | 1.0 | 7.6 | ** | 0.6 | 0.8 | 1.5 | 0.3 | 4.3 | * | 7.0 | * | 4.3 | * |
| Organic nitrogen | 4.1 | * | 6.6 | * | 5.7 | ** | 4.9 | * | 4.2 | * | 6.7 | * | 6.2 | * |
| C/N ratio | 10.3 | *** | 1.8 | 0.2 | 7.0 | *** | 10.1 | ** | 0.8 | 0.5 | 0.1 | 0.9 | 2.1 | 0.2 |
| Microbial biomass (MB) | 9.6 | *** | 14.4 | *** | 0.9 | 0.5 | - | - | 2.1 | 0.2 | 9.9 | ** | 10.6 | ** |
| F/B ratio | 12.3 | ** | 0.3 | 0.6 | 0.0 | 0.9 | - | - | 0.3 | 0.6 | - | - | 0.2 | 0.7 |
| **EEA** |
| LAP | 51.0 | *** | 4.6 | * | 4.2 | ** | 2.5 | 0.1 | 7.7 | ** | 5.2 | * | 5.4 | * |
| CB | 192.0 | *** | 2.1 | 0.2 | 2.2 | 0.1 | 8.0 | * | 0.4 | 0.7 | 1.0 | 0.4 | 4.3 | * |
| NAG | 149.0 | *** | 7.4 | ** | 0.9 | 0.5 | 1.7 | 0.2 | 5.7 | * | 2.6 | 0.1 | 4.3 | * |
| FDA | 278.0 | *** | 1.5 | 0.3 | 2.9 | * | 0.2 | 0.8 | 8.3 | ** | 2.3 | 0.1 | 3.2 | 0.1 |
| BG | 82.0 | *** | 8.7 | ** | 0.5 | 0.8 | 4.5 | * | 1.2 | 0.3 | 3.8 | 0.1 | 1.7 | 0.2 |
| BX | 90.0 | *** | 10.6 | ** | 3.1 | * | 0.1 | 0.9 | 0.9 | 0.4 | 11.7 | ** | 8.6 | ** |
| LIP | 90.0 | *** | 1.9 | 0.2 | 1.2 | 0.3 | 5.3 | * | 1.4 | 0.3 | 0.7 | 0.5 | 20.9 | *** |
| PHO | 169.0 | *** | 9.6 | ** | 1.4 | 0.3 | 2.2 | 0.1 | 1.7 | 0.2 | 1.5 | 0.3 | 9.1 | ** |
| POX | 53.0 | *** | 14.0 | *** | 2.7 | * | 15.7 | *** | 11.5 | ** | 6.6 | * | 4.8 | * |

Mass-specific EEA

| Indicator | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P |
|-----------|
| LAP | 11.8 | *** | 0.2 | 0.8 | 0.1 | 1.0 | - | - | 0.1 | 0.9 | 0.2 | 0.9 | 0.1 | 0.9 |
| CB | 21.3 | *** | 3.7 | * | 0.8 | 0.5 | - | - | 1.8 | 0.2 | 1.4 | 0.3 | 4.6 | * |
| NAG | 4.5 | * | 0.0 | 1.0 | 1.2 | 0.3 | - | - | 0.8 | 0.5 | 0.1 | 0.9 | 0.9 | 0.5 |
| FDA | 35.7 | *** | 6.3 | * | 0.8 | 0.6 | - | - | 0.6 | 0.6 | 8.5 | ** | 4.0 | * |
| BG | 17.9 | *** | 1.4 | 0.3 | 0.4 | 0.8 | - | - | 0.5 | 0.6 | 1.2 | 0.3 | 1.1 | 0.4 |
| BX | 35.2 | *** | 3.2 | 0.1 | 1.3 | 0.3 | - | - | 0.7 | 0.5 | 3.0 | 0.1 | 3.4 | 0.1 |
| LIP | 21.3 | *** | 3.0 | 0.1 | 1.9 | 0.1 | - | - | 0.6 | 0.6 | 10.0 | ** | 4.6 | * |
| PHO | 3.4 | * | 8.4 | ** | 0.4 | 0.8 | - | - | 1.7 | 0.2 | 2.8 | 0.1 | 5.1 | * |
| POX | 24.8 | *** | 1.3 | 0.3 | 1.7 | 0.2 | - | - | 1.0 | 0.4 | 1.4 | 0.3 | 2.2 | 0.2 |
Supplementary Table 1: Left hand side: effects of sampling date, climate manipulation and interactions of both factors on basic soil characteristics, F/B, MB and EEAs (overall repeated measures ANOVA tests); right hand side: within season effect of climate manipulation on basic soil characteristics, MB and EEAs (one-way ANOVA tests). Significance codes for ANOVA’s are (*** \(p<0.001 \); (**) \(p<0.01 \); (*) \(p<0.05 \).
Author-produced version of the article published in: Soil biology and biochemistry, vol 80, p.296-305
EEA on a dry soil mass basis (nKatal/g dry soil)

Author-produced version of the article published in: Soil Biology and Biochemistry, vol 80, p.296-305