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Abstract The goal of this paper is to identify the most

general formulation that consistently links the differ-

ent degrees of freedom in a contact between spherical

soft particles. These contact laws have two parts: a set

of “generalized contact velocities” that characterize the

relative motion of the two particles, and a set of “gener-

alized contact forces” that characterize the interparticle

forces.

One well known constraint on contact models is that

the contact velocities must be objective. This require-

ment fixes the number of linearly independent contact

velocities. We also present a previously unnoticed (in

this context) constraint, namely, that the velocities and

forces must be related in such a way that the stiffness

matrix is symmetric. This constraint also places restric-

tions on the coupling between the contact forces.

Within our generalized contact model, we discuss

the expression for rolling velocity that need to be used

in the calculation of rolling resistance, and the risk or

producing perpetual mobile when other expressions of

rolling velocity are using instead.

Keywords Rolling resistance · discrete element

modeling · soft sphere

1 Introduction

Soft spheres discrete element modeling (DEM) has been

used by physicists, engineers, geo-technical/-physical

and many other researchers worldwide for almost forty

years [1; 2; 3] to model particle systems. Simulations of
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soft spheres involve interactions via visco-elastic forces

[2; 4; 5; 6], rolling resistance that accounts the deforma-

tion of the particles at the contact [7; 8; 9], or mimics

the effect of particle shape [10; 11], and torsion mo-

ments to model inter-particle bonds [12; 13; 14]. Yet

the question of how to correctly and best model the

interactions is still open to discussion.

Most contact models are based on the strong as-

sumption of decoupling of the constitutive models across

the degrees of freedom: normal, tangential, sliding, rolling

(bending) and torsion. (torsion refers to the twisting at

the contact, and rolling corresponds to bending in co-

hesive contacts)

Even with this simplification, the best way to de-

fine a rolling velocity and rolling resistance – how much

two spheres roll relative to each other, and what is the

resistance/reaction to this motion – has not been es-

tablished so far. Numerous papers [15; 16; 17; 18; 19;

20; 13; 21; 22], have proposed different models for the

rolling velocity,

but it is not clear how one should choose among

the different alternatives. Even after requiring that the

rolling velocity be objective, that is, independent of the

reference frame in which the motion of the touching

spheres is measured [13; 18; 19; 20], many alternatives

remain. For example, one thorough study [19] consid-

ered four different objective rolling velocities, and found

that they are all roughly equivalent. Nevertheless, the

literature seems to converge towards formulations with

simplified version of rolling resistance [13; 23; 24; 25].

In this paper, we show that the symmetry of the

stiffness matrix [26] imposes a relation between the rolling

velocity and the contact moment (or rolling resistance),

i.e. the combination of contact forces and moments that

the touching grains exert on one another in response to

the rolling motion. Specifically, we show below that if
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rolling generates equal and opposite contact moments,

then the rolling and torsion velocity is uniquely deter-

mined – and it must be of the form proposed by Jiang

[24] and Luding [13]. More generally, we show that the

degrees of freedom can be coupled, but this must be

done in a symmetric way.

In Sec. 2 we present the general form a contact law

must have by first setting out our notation in Sec. 2.1,

discussing objectivity in Sec. 2.2, and the conservation

of linear and angular momentum in Sec. 2.3. These con-

straints on contact laws have already been discussed.

Then we introduce the new constraint on the contact

laws in Sec. 2.4 and 2.5.

In Sec. 3 we present perhaps the simplest model

that obeys all the conditions described above. Finally,

in Sec. 4, we discuss the consequences of our work on

other models.

2 General considerations

In this section, we present the constraints that all con-

tact laws must follow.

2.1 What is a contact law?

Consider the kinematics of two spheres in contact (see

Figure 1) as a generalized vector in a twelve dimensional

velocity space.

V =


v1

v2

ω1

ω2

 (1)

with vi being the translational velocities of particles

i = 1, 2, and ωi their rotational, angular velocities. Note

that we adopt here the freedom to keep entries of the

vectors/matrices with different units, which is a well-

establish practice in structural mechanics [27]. Having

vectors with different units does not pose a problem as

long as we do not calculate quantities with inconsistent

units. For example, we cannot calculate the length of

V using the traditional dot product.

The interaction (force and torque) between the two

particles is given by a generalized force-vector

F =


F12

F21

T12

T21

 , (2)

where Fij is the force on particle i due to particle j and

Tij is the torque on particle i due to particle j.

Fig. 1 Velocities of particle 1 and particle 2 in contact

A contact model simply gives a relation between F

and V. One begins by calculating certain linear com-

binations of the components of V that represent the

relative motion of the spheres:

v = CV, (3)

where C is a transformation matrix. The different com-

ponents of v contain the different types of relative mo-

tion: normal and tangential velocity, sliding and rolling,

for example. Other combinations are in theory possible.

Next the contact forces must be calculated with the

contact model, that we will represent by a vector f .

These forces are calculated from the current and past

values of v. The integral of v, representing some kind

of “contact springs”, are almost always used:

δ =

∫ t

t0

v(t′) dt′, (4)

where t0 is the time where the contact forms. The com-

ponents of δ give the accumulated amount of each kind

of contact displacement. For example, if one of the com-

ponents of v is the normal relative velocity, then the

corresponding component of δ is the overlap.

In the linear spring model, a contact force depends

linearly on each component of δ:

f = kδ. (5)

where k is a diagonal matrix whose non-zero entries are

spring stiffnesses.

In other models (the Hertz law for example), f is a

nonlinear function of δ. Even in these cases, however,

we are usually able to linearize the contact forces about

the current value of δ, i.e.,

f(t0 +∆t) = f(t0) + k

∫ t0+∆t

t0

v(t) dt, (6)
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so that the linear spring model has a wider significance

than its simple nature might suggest.

Finally, the contact forces must be applied to the

particles. Since f represents interaction forces or torques

applied to the grains, the relation between f and F is

linear:

F = C∗f , (7)

where C∗ is another matrix.

In conclusion, therefore, a contact model must spec-

ify:

1. A matrix C which converts the particle velocities V

to the contact velocities v,

2. An algorithm for calculating the contact forces f

from the contact velocities v. For small displace-

ments, this relation can often be linearized, so that

∆f = k
∫

v dt′.

3. A matrix C∗ that relates the contact forces f to the

total interaction forces F.

2.2 Objectivity

The dimension of v is fixed by the requirement that the

contact velocities be objective, that is, invariant under

both Galilean and Jaumann transformations. Under a

Galilean transformation, a constant is added to the lin-

ear velocities:

V→ V′ = V + UG =


v1

v2

ω1

ω2

+


uG
uG
0

0

 , (8)

where uG is any vector in R3. Thus all possible vectors

UG form a 3-dimensional subset in R12.

Requiring v to be objective leads to

v = CV = C(V + UG)⇒ CUG = 0. (9)

Thus C is rank 9, at most.

Under a Jaumann transformation, a constant is added

to both linear and angular velocities:

V→ V′ = V+UJ =


v1

v2

ω1

ω2

+


ωJ × (x1 − x0)

ωJ × (x2 − x0)

ωJ
ωJ

 , (10)

where x0 and ωJ are vectors in R3. Thus all possible

vectors UJ form a 3-dimensional subset in R12.

Requiring v to be objective leads to

v = CV = C(V + UJ)⇒ CUJ = 0. (11)

Thus, solid body rotations of the two grains form

a second three dimensional family of transformations

that must also be in the null space of C. This lowers

the rank of C to 6. Imposing objectivity means that

we will have at most six linearly independent contact

velocities. We can therefore take v ∈ R6 without loss of

generality.

2.3 Conservation of momentum

The conservation of momentum imposes a similar con-

straint on f . If the two particles do not interact with

their environment, their total momentum is constant:

m1v1 +m2v2 = Const (12)

Differentiating this equation with respect to time gives

m1
dv1

dt
+m2

dv2

dt
= 0, (13)

and combining with Newton’s second law

m1
dv1

dt
= F12 m2

dv2

dt
= F21, (14)

gives Newton’s third law:

F12 + F21 = 0. (15)

The vectors in this equation have three components,

and thus three constraints are applied to the vector

F. This means that F belongs to an at most nine-

dimensional subspace of R12.

Now let us consider the conservation of angular mo-

mentum about an arbitrary point x0:

m1(x1 − x0)× v1 +m2(x2 − x0)× v2

+ I1ω1 + I2ω2 = Const. (16)

Differentiating by time we have

m1(x1 − x0)× dv1

dt
+m2(x2 − x0)× dv2

dt

+ I1
dω1

dt
+ I2

dω2

dt
= 0. (17)

Note that the temporal derivative of x1 dissappears be-

cause dx1/dt× v1 = v1 × v1 = 0.

Using Newton’s second and third laws, Eq. (14)

and (15), together with

I1
dω1

dt
= T12 I2

dω2

dt
= T21, (18)

we have

(x1 − x2)× F12 + T12 + T21 = 0. (19)

This is a second equation that imposes three conditions

on the components of F. Thus all physically admissible

values of F lie in a six-dimensional subspace of R12.

Without loss of generality, we can therefore take f ∈ R6.
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2.4 Power

We now turn our attention to the relation between the

forces and the velocities. These two quantities appear

together in the expression for the rate of work done by

the contact forces.

Expressions for the kinetic energy can be obtained

by taking the scalar product of the equations of motion

Eqs. (14) and (18) with the corresponding velocity:

mi
dvi
dt
· vi = Fij · vi, Ii

dωi
dt
· ωi = Tij · ωi, (20)

where (i, j) = (1, 2), (2, 1). The left hand side of the

equations in (20) can be expressed as full derivatives

d

dt

(
miv

2
i

2

)
= Fij · vi,

d

dt

(
Iiω

2
i

2

)
= Tij · ωi (21)

Summing the two equations in (21),

2∑
i=1

d

dt

(
miv

2
i

2
+
Iiω

2
i

2

)
=
∑
(i,j)

(Fij · vi + Tij · ωi) ,

(22)

where the sum runs over two pairs of values (i, j) =

(1, 2), (2, 1). The sum can be written out as

d

dt

2∑
i=1

(
miv

2
i

2
+
Iiω

2
i

2

)
= (F12 · v1 + F21 · v2 + T12 · ω1 + T21 · ω2) . (23)

Recalling Eqs. (1) and (2), Eq. (23) yields:

d

dt

2∑
i=1

(
miv

2
i

2
+
Iiω

2
i

2

)
= FTV. (24)

We see that the left hand side is the kinetic energy of

the two grains. The right hand side is thus the power

of the contact forces.

2.5 Symmetry of the stiffness matrix

To use the power to find a relation between C and C∗,

we need to consider the displacement instead of the

velocities. We define

D =

∫ t

t0

V dt′, δ =

∫ t

t0

v dt′, (25)

where t0 is some reference time. Integrating Eq. (3)

leads to

δ = CD (26)

Next let us suppose that the contact is in a state

where the contact forces can be linearized, as described

in Eq. (5), leading to

f = f0 + kCD. (27)

This equation applies both to linear contact laws and to

many nonlinear contact laws for infinitesimal displace-

ments. Certain contact laws cannot be linearized; these

cases will be discussed below.

Combining with Eq. (7) gives

F = F0 + KD (28)

with

K = C∗kC (29)

We will now show that K must be symmetric.

Let us consider a cyclic motion of the two spheres.

Let D1 and D2 give two different displacements. Let

us consider executing the following cycle, starting from

time t0 with D = 0:

1. We move slowly to D = D1.

2. We then move to D = D1 + D2.

3. We the move to D = D2.

4. Finally, we move back to D = 0.

We will calculate the total work done during one cycle.

In this first step of the cycle:

W1 =

∫ t1

t0

P dt =

∫ t1

t0

FTV dt (30)

Note that that this integral can be transformed into a

line integral in R12 because D(t) =
∫ t1
t

Vdt, leading to

dD = V dt where dD signifies a vector of infinitesimal

components. Using this notation and Eq. (28) yields

W1 =

∫ D1

0

[F0 + KD(t)]T dD

= FT0 D1 +
1

2
DT

1 KD1. (31)

Alternatively, this integral can be done over time.

The force law Eq. (28) is independent of velocity, so that

we can choose V = V1 = D1/t1. (after Taking t0 = 0

to lighten the notation). In this notation, D(t) = tV1,

and

W1 =

∫ t1

0

[F0 + tKV1]TV1 dt

= t1F
T
0 V1 +

1

2
t2VT

1 KV1

= FT0 D1 +
1

2
DT

1 KD1. (32)
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For the remaining steps of the cycle, we will compute

integrals, but it is possible to rewrite them as integrals

over time. In the second step of the cycle:

W2 =

∫ t2

t1

FTV dt =

∫ D2

0

(D + D1)TK dD

= DT
2 KD1 +

1

2
DT

2 KD2 + FT0 D2. (33)

In the third step of the cycle

W3 =

∫ t3

t2

FTV dt =

∫ −D1

0

(D + D1 + D2)TK dD

= −DT
1 KD2 −

1

2
DT

1 KD1 − FT0 D1. (34)

And finally, the last step of the cycle,

W4 =

∫ −D2

0

(D2 + D)TK dD = −1

2
DT

2 KD2 − FT0 D2.

(35)

Adding the results of all four steps together,

W = DT
2 KD1 −DT

1 KD2 = D2

[
K−KT

]
D1. (36)

The total work done vanishes for every choice of D1,

D2 if and only if the matrix K is symmetric. The total

work must vanish, otherwise it is possible to generate

as much energy as we please by repeating the cycle

over and over again, in the correct sense. (If W < 0 in

Eq. (36), we can just run the cycle in reverse to change

the sign of W ). If K is not symmetric, each contact is

a possible perpetual motion machine.

Note that contact laws usually include a dissipative

part, usually a dashpot, that may compensate for an

energy-generating perpetual motion machine, but this

solution is difficult to control.

The simplest way to assure that K is symmetric is

to choose a symmetric k with CT = C∗. This last re-

lation links the contact velocities to the contact forces,

and can be used to eliminate certain proposed rolling

velocities.

It is possible (but difficult) to construct a symmetric

K with CT 6= C∗. But choosing CT = C∗ has another

benefit: it assures that the grain and contact velocities

and forces are energetically consistent:

FTV = (C∗f)TV = fT (C∗TV) = fT (CV) = fTv.

(37)

Strictly speaking, this condition is not necessary. Only

the forces applied to each grain F and the grain ve-

locities V are integrated to obtain grain motion. As

we will see in the next section, the quantities f and v

model physics that we suppose are significant at the

contact; that strain is accumulating near the contact

point, for example. If FTV 6= fTv, the contact physics

used to explain the force law is inconsistent with the ac-

tual forces applied to the particles. The contact physics

fails to explain the storage or dissipation of energy at

the contact.

As mentioned above, certain contact laws cannot be

linearized. One example is where a contact stiffness de-

pends on the direction of motion [13]. Another case is

the sliding contact: a tangential motion in one direc-

tion results in a constant tangential force (equivalent

to zero stiffness), while motion in the other direction is

associated with non-zero stiffness. These are examples

of incremental nonlinearity: the nonlinearity cannot be

removed no matter how small the displacements are

made. In such cases, the calculation above does not ap-

ply, and K may be asymmetric. Even in these cases,

however, it is desirable to have CT = C∗ for the rea-

son described in the preceding paragraph: this choice

assures that the incremental nonlinearity is explicitly

put into the contact physics, and not some hidden in

the way relative velocities are calculated.

3 Contact surface analysis

Fig. 2 Interaction between two particles.

In this section, we propose a physically motivated

contact model. based on the idea that the two spheres

touch at a surface, as shown in Fig. 2. Here, Ri is a

vector from the center of particle i to the center of the

region of contact. The vector d specifies the position of

a point within the area of contact.
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3.1 Contact quantities

As we showed above, a six-dimensional vector suffices

to describe the relative velocities. We propose the form

v =

[
vc
ωc

]
, (38)

where the three-dimensional vectors vc and ωc will be

called contact velocity and contact angular velocity.

A similar situation holds for the forces: a six-dimensional

vector suffices to specify the contact forces:

f =

[
f c
mc

]
(39)

Here, f has two components that will be called contact

force f c and contact moment mc. As we showed above,

this vector is sufficient to characterize interaction, even

though the forces applied to the particles, F, have 12

components.

3.2 Contact force and torque analysis

Let us assume that the interaction between two parti-

cles is given by a traction, or stress vector, τ (x) (refer

to Fig. 2) on the contact surface created by the defor-

mation of the two spheres at contact. The traction at

each point corresponds to the stress tensor times the

unit normal vector at this point. Applying Newton’s

third law, this traction acts on the spheres as

τ 12(x) = −τ 21(x) = τ (x) (40)

where the vector τ ij(x) is the traction on particle i due

to particle j. The contact forces acting on each particle

become

F12 = −F21 = f c =

∫
a

τ (x)da. (41)

Note that that the requirement in Eq. (15) is satisfied

for all choices of f c.

The torque produced by the traction of the contact

surface S on the particles is given by

T12 =

∫
a

`12 × τ 12da T21 =

∫
a

`21 × τ 21da. (42)

where `ij is the branch vector connecting the center

of mass of the particle i with the point in the contact

surface with particle j where the traction is acting. If

we replace Eq. (40) into the above equations we get

T12 =

∫
a

`12 × τda T21 = −
∫
a

`21 × τda. (43)

The branch vectors can be written as

`12 = R1 + d `21 = R2 + d, (44)

where d is the vector connecting the center of the con-

tact to the point of application of the traction. Replac-

ing them in the equation above we obtain

T12 = R1 × f c + mc T21 = −R2 × f c −mc (45)

where the contact moment is given by

mc =

∫
a

d× τda (46)

Note that the expression for the torques in Eq. (45)

satisfies Eq. (19) for all choices of f c and mc.

Finally, let us construct the matrix C∗ in Eq. (7).

Ri and f c in Eqs. (45) are defined as:

R1 =

R1x

R1y

R1z

 R2 =

R2x

R2y

R2z

 fc =

fcxfcy
fcz

 (47)

The cross product Ri × fc is defined as R∗i fc.

Ri × f c = R∗i f c =

 0 −Riz Riy
Riz 0 −Rix
−Riy Rix 0

fcxfcy
fcz

 (48)

We rewrite Eq. (45),

T12 = R∗1fc + mc T21 = −R∗2fc −mc (49)

Now we write Eqs. (41) and (45) in a matrix form


F12

F21

T12

T21

 =


I 0

−I 0

R∗1 I

−R∗2 −I

[ f c
mc

]
, I =

1 0 0

0 1 0

0 0 1

 (50)

From this equation, we identify the matrix C∗:

C∗ =


I 0

−I 0

R∗1 I

−R∗2 −I

 (51)



7

3.3 Kinematic analysis

Since the grains are rigid spheres, the velocity of any

material point x of grain i is given by

v(x) = vi + ωi × (x− xi). (52)

At the surface where the particles touch, there is a ve-

locity jump given by

∆v(x) = v1(x)− v2(x)

= v1 − v2 + ω1 × `12 − ω2 × `21 (53)

Expressing `12 and `21 as in Eq. (44), we have

∆v = v1−v2+R1×ω1−R2×ω2+(ω1−ω2)×d. (54)

Defining the normal vector at the contact as

n =
x1 − x2

R1 +R2
, (55)

we have R1 = R1n, R2 = −R2n, and thus

∆v = v1−v2+n×(R1ω1+R2ω2)+(ω1−ω2)×d. (56)

Recall that the contact velocity v in Eq. (38) is com-

posed of vc and ωc. Defining

vc = v1 − v2 + n× (R1ω1 +R2ω2),

ωc = ω1 − ω2, (57)

we have

∆v = vc + ωc × d. (58)

This expression will be very useful for the calculation

of the power. Before doing this, however, let us obtain

the matrix C. Recalling that v = CV leads to

C =

[
I −I R∗1 −R∗2
0 0 I −I

]
(59)

Note that C∗ = CT , as it should.

Note that we could have done this calculation in re-

verse. Once C has been fixed in Eq. (51), then Eq. (59)

follows immediately by C∗ = CT . Once C is known, v

is easily obtained from v = CV. The derivation above

to show the physical plausibility of our choice.

Note also that calculating the work done at the con-

tact directly also gives a consistent result:

P =

∫
a

τ ·∆v da,

=

∫
a

τ · (vc + d× ωc) da,

= f c · vc +

∫
a

τ · (d× ωc) da,

= f c · vc +

∫
a

ωc · (τ × d) da,

= f c · vc + ωc ·mc,

= fTv. (60)

3.4 The different contact velocities

Note that all the usual contact velocities are contained

in v. The normal velocity is the normal component of

vc, and the tangential velocity is the tangential com-

ponent of vc. The torsion velocity is the normal com-

ponent of ωc, and the rolling velocity is its tangential

components.

If we assume that the modes are independent, the

matrix k can be written as:

k =


kn 0 0 0

0 ktI2 0 0

0 0 κn 0

0 0 0 κtI2

 , I2 =

[
1 0

0 1

]
. (61)

Where kn, kt, κn, and κt are the stiffnesses associ-

ated to normal, tangential, torsion an rolling motion.

More general constitutive relations can be derived by

relaxing the assumption that the internal degrees of

freedom need to be decoupled.

4 Consequences

The two main consequences of our formulation of the

generalized interaction between soft spheres are: (i) it

rules out some definitions of rolling velocity existing in

the literature, and (ii) it restricts the contact model by

the condition of the symmetry of the stiffness matrix.

We comment briefly on each consequence below.

4.1 Rolling velocity

Let us first note that there are different definition of

contact rolling in the literature. In particular Bagi and

Kuhn [28; 29] surveyed different models of rolling ve-

locity. One proposed definition is given by

vc = v1 − v2 + ω1 ×R1 − ω2×R2,

ωBc = ω1R1 − ω2R2 +
R2 −R1

R1 +R2
(v1 − v2). (62)

The contact velocity is unchanged, but the angular con-

tact velocity mixes angular and translational veloci-

ties. The relations are based on an early derivation of

Iwashita-Oda [8] and it is proven that they are objec-

tive. The C matrix associated to Eq. (62) is given by

C =

[
I −I R∗1 −R∗2
RI −RI R1I −R2I

]
R =

R2 −R1

R1 +R2
(63)

If this rolling velocity is used to generate forces that

oppose the rolling motion, then torques and forces must

also be mixed. But in [29], this rotational velocity is

used only to analyze grain motion, so our work does
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not directly impact that paper. However, we hope the

authors will not give into the temptation to use this

rolling velocity to generate torques!

4.2 Coupling contact velocities

Our work also has consequences for models that couple

the different degrees of freedom. The symmetry of K is

assured if C = C∗T and if k is symmetric. This sym-

metry condition reduces the number of component of

the stiffness matrix to 21. Non-diagonal elements may

indicate that the different deformation modes are cou-

pled. For example, rolling deformation can affect nor-

mal force. But if this is so, then the symmetry of k

requires that the normal force affect the rolling resis-

tance.

5 Summary and conclusions

Contact laws have been a major concern since the early

days of particle simulations and e.g. for non-spherical

particles. Major contributions were based on the inno-

vation triggered in the group around Hans Herrmann,

where the authors also learned a lot.

In summary, we presented a general formulation of

interaction between soft spheres based on objectivity

and conservation principles. We first used Newtons third

law on tractions to obtain the relation between forces

and torques with contact forces and contact moment.

Examining the power generated at contacts leads to

another, hitherto unrecognized, constraint on the in-

teraction: the stiffness matrix must be symmetric, un-

less their is incremental nonlinearity. We then present

a simple contact model for two spheres that includes

rolling and torsion that illustrates these constraints.

From our derivation we conclude that some expres-

sions of rolling velocity existing in the literature should

be ruled out when calculating rolling resistance, to avoid

numerical problems of energy conservation. Our work

also shows how different degrees of freedom at the con-

tact could be couples, while still respecting the basic

mechanical laws. Coupled contact laws can be useful to

mimic the effect of particle shape via rolling resistance

[16], to model the complex interaction of particles in

cohesive power [13], or in meso-scale simulations where

a discrete element represent an ensemble of particles

[30; 31]

Acknowledgements The authors thank Stefan Luding for ma-

jor contributions to this paper and his patient encouragement. We
acknowledge scientific discussion with Hans Herrmann, Lothar

Brendel, Hans Muhlhaus, Antoinette Tordesillas, Yucang Wang,

and Thomas Weinhart on rolling resistance. We thank Shumiao

Chen and Coraline Chiew for editing earlier versions of this manuscript.

We thank Falk Wittel for applying the last kick needed to get this
paper finished. We express special dedication to Hans Herrmann

for his enthusiastic approach to science and the time we spent in

one of his many institutes. The project was funded by the USYD
Civil Engineering Research Development Scheme, 2013.

References

1. P. A. Cundall and O. D. Strack, Geotechnique 29, 47 (1979).

2. H. J. Herrmann, J. Hovi, and S. Luding, NATO-ASI Series

E 350, Kluwer academic publishers, Dordrecht (1998).
3. H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Reviews of

Modern Physics 68, 1259 (1996).

4. C. Goldenberg and I. Goldhirsch, Physical Review E 77,
041303 (2008).

5. D. M. Mueth, H. M. Jaeger, and S. R. Nagel, Physical Review
E 57, 3164 (1998).

6. Y. Fukumoto, H. Sakaguchi, and A. Murakami, Granular

Matter 15, 175 (2013).
7. M. Oda, J. Konishi, and S. Nemat-Nasser, Mechanics of ma-

terials 1, 269 (1982).

8. K. Iwashita and M. Oda, Journal of engineering mechanics
124, 285 (1998).

9. R. Fuchs, T. Weinhart, J. Meyer, T. Staedler, X. Jiang, and

S. Luding, arXiv preprint arXiv:1401.2600 (2014).
10. K. Iwashita and M. Oda, Powder Technology 109, 192

(2000).

11. A. Tordesillas and D. Walsh, Powder Technology 124, 106
(2002).
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