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Notations

Introduction

Present paper aims at providing a robust and efficient algorithm for accurate simulation of explosive liquid-gas flows with fluid-structure interaction. Complex liquid-gas interface motion must be handled on 3D unstructured fluid mesh with large structural displacements and ALE grid motions. Target physics is illustrated by MARA series of tests [START_REF] Acker | MARA 01/02 -experimental validation of the SEURBNUK and SIRIUS containment codes[END_REF][START_REF] Fiche | Theoretical experimental study of flexible roof effects in an HCDA's simulation[END_REF][START_REF] Fiche | Theoretical experimental study of flexible roof effects in an HCDA's simulation[END_REF][START_REF] Louvet | MARA 10: an integral model experiment in support of LMFBR containment analysis[END_REF], corresponding to the expansion of a high pressure gas bubble inside a vessel partially filled with liquid.

Several objectives are considered, some of which being potentially antagonist: interfaces must be precisely located to capture liquid impact forces on structures, fluid-structure interaction must be taken into account with no restriction on structural motion and mechanical behavior, robustness and efficiency must be preserved for global simulation algorithm to cope with industrial requirements.

Current paper is thus divided into four parts. First part describes physical system and equations and the way these are discretized in space by means of hybrid Finite Element/Finite Volume formulation and integrated in time using explicit solver. Choice of a model for liquid-gas fluid material is discussed regarding implementation constraints expressed above, introducing problematic of numerical dissipation of component mass fractions. Second part is dedicated to controlling dissipation on generic unstructured fluid grid using Vofire algorithm [START_REF] Després | An Anti-dissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows[END_REF], with specific improvements imposed by high density ratio between components. Third part provides elementary validations for proposed approach for liquid-gas flows with interfaces, whereas fourth part corresponds to simulation of MARA 10 test, bringing all presented concepts together into an industrial framework.

Explosive liquid-gas flow with fluid-structure interaction

Representative physical problem: MARA 10 experiment

Although quite old, MARA series of tests still presents many challenging characteristics for actual programs in the framework of nuclear safety: high pressure levels, large liquid-gas interface motion, immersed structures, high speed large structural deformations.

MARA 10 test [START_REF] Robbe | Numerical simulation of a Hypothetical Core Disruptive Accident in a small-scale model of a nuclear reactor[END_REF] is considered in present paper, since it presents the most complete mock-up of the series (see Figure 1). The model represents a simplified vessel close to that of a fast neutron nuclear reactor with a scale factor of 1/30 (height is 55 cm and radius is 35 cm). A lowdensity low-pressure charge is placed at its center, to simulate the mechanical effects of a power incident inside reactor core. Vessel is partially filled with water, with an air blanket under the flexible vessel roof. Explosive charge is represented by a spheric bubble, with initial gas volume of 71.4 cm 3 and initial pressure of 2 880 bars. Basic internal structures replacing reactor immersed components are included:

Above Core Structures, represented by a tight cylinder filled with water, Radial Shield, Core Support Structure and Diagrid. accurate and robust interface tracking between explosive gas bubble and water on the one hand, and between water and air blanket on the other hand, which is necessary to reproduce correct water impact on vessel boundary, fully coupled fluid-structure interaction with large structural displacements and non-linear behavior, unstructured fluid mesh and ALE grid motion.

Equations and models

Global computational framework is fluid-structure fast transient dynamics (see detailed equations below).

Main modeling issue considered in present paper is liquid-gas flow and interface tracking. Following the criterion of a robust integration into generic software, let us roughly classify existing methods as follows, in decreasing order:

1. Component mixing is not allowed (i. e. conforms to physics): a.

ALE simulation and lagrangian mesh between components: interface is exactly located, but grid rezoning always fails for complex interface motion.

b.

Interface reconstruction and cell subdivision (Volume-of-Fluid [Lafaurie et al., 1994][Mosso and[START_REF] Mosso | A geometrical derived priority system for Young's interface reconstruction[END_REF], Level Set [START_REF] Sussman | A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow[END_REF]]…): interface is accurately located and complex interface motions are handled, but specific algorithms and operators must be implemented to describe the interface and very difficult as well as time consuming geometric operations are needed within a cell, especially in 3D.

2. Artificial mixing of components is allowed:

a.

With interface reconstruction: interface is still accurately located using external variables, for instance by means of Level-Sets or interface mesh [START_REF] Rider | Stretching and tearing interface tracking methods[END_REF][ [START_REF] Unverdi | A front-tracking method for viscous incompressible multi-fluid flows[END_REF]Tryggvason, 1992][Glimm et al., 1998], with the need for specific operators, but the state within a cell cut by interface is obtained through an artificial mixing model.

b.

Without interface reconstruction: interface is obtained a posteriori by locating the jumps of concentration variables and the state within a cell is again obtained through an artificial mixing model ; there is no need for extra operators in classical fast transient dynamics program, but a risk for numerical dissipation of concentrations and lack of accuracy concerning interface location and motion.

For the sake of both simplicity and robustness, approach with artificial mixing and no interface reconstruction is selected, yielding the need for an efficient scheme to control numerical dissipation of concentrations (see § 3.1). Such schemes have been proposed for cartesian grids and for a wide range of flows and equations of state by Després, Lagoutière, Kokh et al. [START_REF] Allaire | A five-equation model for the simulation of interfaces between compressible fluids[END_REF] [START_REF] Kokh | An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five equation model[END_REF]. Vofire approach is an extension of the former concepts to unstructured meshes [START_REF] Després | An Anti-dissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows[END_REF].

Considered fluid material model is thus composed of three components: first gas representing explosive gas bubble, with a polytropic equation of state: Mixing condition to achieve problem closure is mechanical equilibrium between liquid and gas, i.e. liquid pressure equals to the sum of gas partial pressures. Given total density and mass fractions of components within an arbitrary volume, closure condition allows to compute volume fraction occupied by gas(es) to ensure equilibrium.

These yields equations to be solved (Eulerian or ALE for fluid and Lagrangian for structure):

Total fluid mass conservation:

( ) u 0 ρ div ρ t ∂ + = ∂ (1-a)
Mass conservation for gas i (1 or 2):

( ) u 0 i i c ρ div c ρ t ∂ + = ∂ (1-b)
Total fluid momentum conservation:

u u u f f F S F vol ρ ρ P t → ∂ + ⋅∇ + ∇ + = ∂ (1-c) Structural equilibrium: ( ) q σ ε f f 2 2 S F S vol ρ div t → ∂   + + =   ∂ (1-d)
Relation giving stress tensor from structural strain tensor can be either linear or non-linear, with many material constitutive laws.

This system of equations is classically completed by total fluid energy conservation equation, but this is useless given considered fluid equations of state. Total fluid momentum equation is written in non-conservative form, to exhibit fluid-structure coupling forces.

Time and space discretization

As far as space discretization is concerned, Finite Elements are used structure for and hybrid Finite Elements/Finite Volumes for fluid. Conservation of momentum is approximated with Finite Element non-conservative approach, so that kinematic variables are located at mesh nodes, making it easy to write link conditions with structural Finite Elements. On the contrary, conservations of total mass and mass fractions are dealt with using Finite Volume conservative formalism, into which Vofire anti-dissipative scheme can be integrated without restriction (see § 3.2). Time integration is carried out through explicit central differences scheme for structure and explicit Euler scheme for fluids. From step n to step n+1 of discrete time scale, this writes: q q u q q u q q q q q q q q q u u u

2 2 1/2 1 1/2 1 1/2 1 1 ; ; 2 2 n n n n n n n n n n n n t t t t t t t + + + + + + + ∂ ∂ ∂ = = = ∂ ∂ ∂ ∆ = + = + ∆ ∆ = + = + ∆ ɺ ɺɺ ɺ ɺ ɺ ɺɺ ɺ ɺ ɺ ɺɺ ɺ ɺ ɺɺ (2) 
Finite Element discrete equations then express as follows:

F F F N U M Λ M F F N Q N U N Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 T T F n n n n n n vol transport internal F n F S n n n n S vol internal S n n n n F S + + + + + + + + + + + + + + +       - -   + =         -                 + = ɺ ɺɺ ɺ (3) Matrices L 1 n F + and L 1 n S
+ accounts for fluid-structure interaction nodal kinematic relations and corresponding forces are obtained by means of Lagrange Multipliers Λ 1 n+ . Fluid mesh may be conformant with lagrangian structural, yielding node-to-node relations and using an automated ALE rezoning algorithm to follow large structural displacements avoiding distorted cells. Mesh of internal structures may also be topologically disconnected from fluid mesh, using Coupled Euler-Lagrange type fluid-structure connections [START_REF] Casadei | Fast Transient Fluid-Structure Interaction with Failure and Fragmentation[END_REF]. Fluid-structure relations then couples one fluid node and nodes of structural facets located in its vicinity, so that fluid flow is blocked along structural normal direction.

Using Lagrange Multipliers to compute fluid-structure link forces associated to all types of connections ensures that no numerical parameter is needed, such as penalty coefficient.

Finite Volume scheme relies on Lagrange-Remap approach, to stick to Vofire hypotheses [START_REF] Després | An Anti-dissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows[END_REF]. Lagrangian step is straightforward using nodal velocities obtained from Finite Elements and is not discussed. Balance equations within cell j of fluid unstructured mesh during Remap phase then write (see. Figure 2):

( ) ( ) ( ) L u L u L u 1 , , , 1 1 1 , , , , , , , , 0 0 
n n n n n f n j j j j j k j k j k k n n n n n n n n f n n n n f n n j j i j j i j k j k j k i j r j r j r i j j j k j r k N r N S ρ S ρ t ρ S ρ c S ρ c t ρ c t ρ c + + + + + - ∈ ∈ - + ∆ ⋅ = - + ∆ ⋅ + ∆ ⋅ = ∑ ∑ ∑ ɶ ɶ ɶ ɶ (4) 
In ( 4), {N + } designates outgoing faces group for current cell ( L u 

, , 0 n n j k j k ⋅ > ), whereas {N -} designates incoming faces group ( L u , , 0 n n j r j r ⋅ < ).

Extended Vofire algorithm to control dissipation for liquid-gas fast transient flows

As evoked in § 2, controlling numerical dissipation of gas mass fraction is mandatory to perform accurate simulations involving liquid-gas interfaces without any reconstruction needing specific external variables. An illustration of this situation is given in next paragraph, whereas the following provide a description of an anti-dissipative strategy based on Vofire scheme with improvements imposed by physics considered in present paper. 

Basic illustration of numerical dissipation

Anti-dissipative principle

The main concept is presented using the simple case of monodimensional advection of a step function h in a constant velocity field u [START_REF] Després | Contact discontinuity capturing schemes for linear advection and compressible gas dynamics[END_REF]. The problem, after Finite Volume spatial discretization with cell size ∆x, is described by Figure 4. This situation classically exhibits two limit cases, as shown on Figure 5: Flux is non-zero as soon as hj is nonzero: discrete function propagates before its analytical front reaches boundary [j+1/2], yielding numerical dissipation.

(a)

Upwind: + = 1/2 j j h h j-1/2 j+1/2 j j-1 Continuous Discrete 1 1 u j-1/2 j+1/2 j+1 j j-1

Continuous values of h function

Discrete values of h function

Flux is always zero. Numerical dissipation is blocked. Discrete solution is wrong when theoretical front propagates beyond boundary [j+1/2], since no transport occurs between cells j and j+1, yielding unstable growth of h in cell j.

(b) Downwind: + + = 1/2 1 j j h h
Figure 5: Limit cases for choice of boundary value These limit cases introduce base concept and numerical method from Desprès & Lagoutière: provide a mostly downwind advection scheme to control dissipation, associated to constraints preserving stability when a step propagates through cell boundaries (Downwind Scheme with Constraints).

For present system, constraints express as follows:

Flux consistency:

( ) ( ) + + + + + = ≤ ≤ = 1/2 1 1/2 1 1/2 min , max , j j j j j j j m h h h h h M
(5-a)

Advection stability:

( ) ( ) - - - - = ≤ ≤ = * 1/2 1 1 1/2 min , max , j j j j j j j m h h h h h M (5-b) with ( ) - + = + - u * 1/2 1/2 j j j ∆t h h h h ∆x
Using inequation (5-a) on flux hj-1/2, a sufficient condition for stability is obtained:

( ) ( ) - - + - + -  ≤ + -     + - ≤   u u 1/2 1/2 1/2 1/2 1/2 1/2 j j j j j j j j ∆t m h m h ∆x ∆t h M h M ∆x (6)
This yields trust intervals for le hj+1/2:

( ) ( ) + + + - - + - - ≤ ≤ ∆ ∆ + - ≤ ≤ + - ∆ ∆ u u 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 j j j j j j j j j j m h M x x M M h h m m h t t (7)
Intersection of these intervals is non-empty since upwind is always stable. Anti-dissipation is then achieved by choosing hj+1/2 closest to downwind within this intersection. Schemes can be derived for multidimensional simulations on structured grid using Direction Splitting technique

Vofire algorithm for liquid-gas flow on unstructured grid

Three-component material from § 2.2 is now considered. Anti-dissipation is applied to capture interface between liquid and gas components, which means that variable c appearing in following formulae is in fact the sum of mass fraction of both gases. With this sum known on cell boundaries, transported mass fractions for each gas are deduced using upwind concentrations. Mass conservation Finite Volume equations during Remap phase thus write:

( ) ( ) ( ) L u L u L u 1 , , , 1 1 1 , , , , , , , , 0 0 
n n n n n f n j j j j j k j k j k k n n n n n n n n f n n n n f n n j j j j j j j k j k j k j k j r j r j r j r k N r N S ρ S ρ t ρ S ρ c S ρ c t ρ c t ρ c + + + + + - ∈ ∈ - + ∆ ⋅ = - + ∆ ⋅ + ∆ ⋅ = ∑ ∑ ∑ ɶ ɶ ɶ ɶ (8) 
Let us also notice that in most simulations, gases do not mix, c then being mass concentration of either one gas or the other.

In original Vofire scheme, total mass conservation is treated independently from advection of component mass fractions, using a reconstructed total density , f n j k ρ obtained from a second order finite volume scheme, so that total fluid mass transport equation can be solved and total fluid density in cell j is known at time step n+1. 

( ) ( ) ( ) ( ) L u L u L u L u , , , , , , , , , , , , , , ; 
;

n n f n n n f n j k j k j k j r j r j r j k j r n n f n n n f n j k j k j k j r j r j r k N r N ρ ρ p p L L L ρ L ρ + - + - + - ∈ ∈ ⋅ ⋅ = = = ⋅ = ⋅ ∑ ∑ (9)

Transverse reconstruction

First, transverse reconstruction provides slight anti-dissipation accounting for velocity field not aligning with mesh directions (see [START_REF] Després | An Anti-dissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows[END_REF] for detailed description of the phenomenon). Reconstructed concentration expresses as:

( ) , , , , , 0,1 R n n n j k j j k k j j k c c λ c c k N λ + = + - ∀ ∈ ∈     (10) 
, coefficients are chosen to minimize a functional J, measuring difference between reconstructed mass fractions and downwind mass fractions for corresponding faces, with total outgoing mass kept constant compared to upwind case, yielding:

+ ∈ = - ∑ , , R j k j k k k N J p c c (11) ( ) + ∈ - = ∑ , , 0 j k k j j k k N p c c λ (12)
Computation algorithm for coefficients , and complete geometric interpretation of transverse reconstruction are detailed in [START_REF] Després | An Anti-dissipative Transport Scheme on Unstructured Meshes for Multicomponent Flows[END_REF].

Longitudinal reconstruction

This step achieves most of anti-dissipative work. Main idea for Vofire scheme is to rewrite conservation of gas mass fraction equation into a convex sum of pseudo-monodimensional problems, each involving one incoming face and one outgoing face of current cell. To this extend, gas mass fraction on face k of cell j is decomposed as follows: Injecting decomposition (13) into balance (8) yields:

( ) , , , , , , , , ; 0,1 
n R n R j k j k j r j k r k j k j k r r N c c p µ c c µ - ∈ = + - ∈     ∑ ( 
( ) ( ) 1 1 1 , , , , , , , , , , , , , 1 1 1 
, , , 0 n n n n n n R n R j k j r j j j j j j j k j r j k j r j k r k j k k N r N k N r N r N n j r j k j r r N k N n n n n n n j k j r j j j j j j k N r N p p S ρ c S ρ c t L p p c p µ c c t L p p c p p S ρ c S ρ c + - + - - - + + - + + + + ∈ ∈ ∈ ∈ ∈ - ∈ ∈ + + + ∈ ∈       - + ∆ + -               +∆ =     ⇔ - + ∆ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ɶ ɶ ɶ ɶ ( ) { } , , , , , , 0 R n R n j k j k r j r k j k j r tL c µ p c c tL c + -   + - + ∆ =   (14) 
Sum is convex since

+ - ∈ ∈ = ∑ , , , 1 j k j r k N r N p p .
Consistency condition for flux of mass fraction c is: , , , min , max ,

n n n n n j k j k j k j k j k m c c c c c M     = ≤ ≤ =     (15) 
Stability for mass fraction advection is given by:

( ) ( ) 1 , , min ,min max ,max n n n n n j j j r j j j r j r N r N m c c c c c M - - + ∈ ∈     = ≤ ≤ =     (16) 
Thanks to convexity of sum ( 14), sufficient condition is obtained by imposing stability for each term:

1 , , , , min , max , n n n n n j r j j r j j j r j r m c c c c c M +     = ≤ ≤ =     (17) 
Inequalities ( 17) provide trust intervals for coefficient µ , , j k r associated to each incoming face, using 

If , R n j k k c c > : ( ) ( ) , , , , 1 1 1 1 , , , , 1 1 n n n R n n n R j r j j j j k j r j j j j k n n n n j j j j j k r R n R n j k k j k k m tL S ρ c tL c M tL S ρ c tL c S ρ S ρ µ tL c c tL c c - + - + + + + + + +     -∆ - -∆ -∆ - -∆             ≤ ≤ ∆ - ∆ - ɶ ɶ ɶ ɶ (18-a) If , R n j k k c c < : ( ) ( ) , , , , 1 1 1 1 , , , , 1 1 n n n R n n n R j r j j j j k j r j j j j k n n n n j j j j j k r R n R n j k k j k k M tL S ρ c tL c m tL S ρ c tL c S ρ S ρ µ tL c c tL c c - + - + + + + + + +     -∆ - -∆ -∆ - -∆             ≤ ≤ ∆ - ∆ - ɶ ɶ ɶ ɶ (18-b)
µ , , j k r is chosen closest to one in above intervals and final value for , n j k c with anti-dissipation is obtained taking inequality (15) into account.

Extension to handle large density ratio between components

Original Vofire scheme is independent from equations of state used for components, but in the case of large density ratio, it presents numerical problems that require fixing [Faucher and Kokh, 2011].

1.

Computing total density on outgoing faces independently from reconstructed mass fractions makes it impossible to completely empty a cell initially full of liquid by injecting pressured gas in it: total density for outgoing flux, which should remain equal to liquid density until all liquid has been chased, drops because of global reconstruction and too few liquid is pushed out of the cell at each time step, causing instability in the scheme. This can also be seen as the incapability of any second order scheme to reconstruct a sharp density step with several orders of magnitude between lowest and highest value.

2. Numerical dissipation is actually removed from simulation results, but artifacts appear on the interface when Vofire scheme is used on structured mesh (see Figure 6 for a basic illustration from example introduced in § 3.1), leading again to numerical instability. To fix problem 1, it is necessary to link mass fraction estimation and total density reconstruction. This is done by computing densities per component, evaluated upwind using component volume fractions, and a partition of an arbitrary volume of fluid considered on an outgoing face, into a liquid fraction and gas fraction:

( ) , , 1 1 n n n n j j gas gas j k j n j n n n n j j liq liq j k j n j c ρ ρ ρ α c ρ ρ ρ α = = - = = - (19) = + gas liq V V V ( 20 
)
with V an arbitrary volume considered on current outgoing face This yields:

( ) , , , , , , , 1 n n gas liq j k j k n n n n f n gas liq gas liq j k j k j k j k j k c m c m m m m ρ ρ ρ ρ ρ - = + = + ɶ (21)
with m the mass of fluid contained in volume V New total density then writes:

( ) , , , , , , , 1 n n gas liq j k j k f n j k n n n gas n liq j k j k j k j k c c = - + ɶ ρ ρ ρ ρ ρ (22)
To compute total mass flux, an iterative procedure should be used, because of , Problem 2 is caused by spurious interaction between pseudo-monodimensional flows within a cell, some of which being non-physical, like those written between two orthogonal faces. This interaction does not occur with direction splitting, producing correct results. Proposed solution is then to provide a geometric correction to Vofire scheme, modifying decomposition (13) into:

( ) , , , , , , , , ; 0,1 
n R n R j k j k j r j k r k j k j k r r N c c p µ c c µ - ∈ = + - ∈     ∑ ɶ (23) with , , , , , j k r j k r j r p β p = ɶ et - ∈ = ∑ ɶ , 1 j r r N p Then: ( ) , , , , , , , , , , ; 0,1 
n R n R j k j k j k r j r j k r k j k j k r r N c c β p µ c c µ - ∈ = + - ∈     ∑ (24)
This introduces a minor change into (14), which does not affect computation procedure for coefficients , ,

j k r µ : ( ) { } 1 1 1 , , , , , , , , , , , 0 n 
n n n n n R n R n j k j r j j j j j j j k j k r j k r j r k j k j r k N r N p p S ρ c S ρ c tL c β µ p c c tL c + - + + + + - ∈ ∈   - + ∆ + - + ∆ =   ∑ ɶ ɶ (25) 
New trust intervals are:

If , R n j k k c c > : ( ) ( ) , , , , 1 1 1 1 , , , , , , , , 1 1 
n n n R n n n R j r j j j j k j r j j j j k n n n n j j j j j k r R n R n j k r j k k j k r j k k m tL S ρ c tL c M tL S ρ c tL c S ρ S ρ µ β tL c c β tL c c - + - + + + + + + +     -∆ - -∆ -∆ - -∆             ≤ ≤ ∆ - ∆ - ɶ ɶ ɶ ɶ (26-a) If , R n j k k c c < : ( ) ( ) , , , , 1 1 1 1 , , , , , , , , 1 1 
n n n R n n n R j r j j j j k j r j j j j k n n n n j j j j j k r R n R n j k r j k k j k r j k k M tL S ρ c tL c m tL S ρ c tL c S ρ S ρ µ β tL c c β tL c c - + - + + + + + + +     -∆ - -∆ -∆ - -∆             ≤ ≤ ∆ - ∆ - ɶ ɶ ɶ ɶ (26-b)
The aim of replacing weights , j r p by weights ɶ , ,

j k r p
for outgoing face k is to remove from the sum all incoming faces with an angle higher than 90° with respect to face k. Physically, it means that it is not suitable to consider a fictitious monodimensional flow between two faces with opposite orientation. For the special case of a structured grid, faces are associated 2 by 2 as with direction splitting.

ɶ , , j k r p thus writes:

( ) n n , , , , , , max ,0 
j k r j k j k j r j r p γ p = ⋅ - ɶ (29) with ( ) n n , , , , max ,0 j 
k j k j q j q q N γ p - ∈ = ⋅ - ∑ and ( ) (
) 

n n n n , , , , , , , max ,0 max 
,0 j k j r j k r j k j q j q q N β p - ∈ ⋅ - = ⋅ - ∑ , j k γ equal

Elementary validations

All following tests are performed using EUROPLEXUS Software 1,2 (abbreviated EPX in the following paragraphs), a fast transient dynamics program co-owned by French Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) and European Commission.

As far as numerical performances are concerned, EPX relies on a distributed memory parallel solver with automatic domain decomposition [START_REF] Faucher | Advanced parallel computing for explosive fluid-structure interaction[END_REF]. Vofire reconstruction of mass fractions on cell boundaries is completely local to a cell and its immediate neighbors, so that it naturally benefits from parallel acceleration, which is more difficult to obtain with an external representation of interfaces.

Liquid-gas shock tube

First elementary test is a basic liquid-gas shock tube with high pressure ratio, designed to demonstrate program's capability to capture strong contact discontinuity between fluid components, even with a relatively coarse mesh. Setup is given by Figure 8.

Figure 8: Liquid-gas shock tube Figure 9 presents results in terms of both pressure and density fields along the tube, after 0.09 ms, 0.18 ms and 0.27 milliseconds. Shock wave propagates in liquid whereas rarefaction wave propagates in the opposite direction in gas. Density step should remain sharp if no spurious mixing occurs between components.

On Figure 9, reference solution is obtained with time and space second order finite volume scheme with very fine mesh (50 000 cells). Other solutions are obtained with 1 000 cells along the tube and with/without Vofire anti-dissipative scheme. As expected, anti-dissipation does not modify pressure field, as well as density profiles for shock wave and rarefaction wave. On the contrary, growing artificial mixing zone appears with no antidissipation, whereas Vofire allows a very accurate location of liquid-gas interface.

Sloshing in a decelerated tank

Second test illustrates the need for anti-dissipative techniques to correctly simulate the force applied by internal fluid to surrounding structure in the case of large fluid motion with severe external loading. Considered situation is a parallelepipedic rigid tank partially filled with liquid and submitted to a global deceleration close to those encountered during a car crash. Experimental data in this configuration is available from [START_REF] Nakano | Analysis of the Behavior of Liquid in a Fuel Tank[END_REF].

Model is bidimensional and described on Figure 10. Pressure in liquid is initialized with hydrostatic pressure. Figure 12 presents simulation results, again with and without Vofire anti-dissipative scheme. Regular mesh is used with 1 mm cell size. Pressure is plotted taking atmospheric pressure as reference (i.e 1 bar) for comparison with experiments. To locate the interface, density field is drawn with specific color bar, so that gas appears white, liquid appears gray and mid-value between reference densities of gas and liquid appears black. Despite a ~10 ms time shift, simulated pressure curves show good agreement with experimental reference and little improvement is provided by Vofire algorithm. On the contrary, anti-dissipation is compulsory to maintain gas cavity shape after complete fuel reversal, as shown by experimental results. Even with a relatively fine mesh, dissipation modify mass flow along walls, resulting in a nonphysical jet, composed of mixed liquid and gas, arriving too early at bottom right corner of the box at time 70 ms and then destroying cavity envelop.

Industrial application: simulation of MARA 10 experiment

Physical set-up is described in § 2.1. Corresponding numerical model is presented on Figure 13. Fluid mesh is conformant with lagrangian structural mesh along roof and vessel envelop, whereas internal structures are immersed into fluid mesh with topological disconnection (see § 2.3). Vofire scheme is used to control dissipation of component mass fractions, between explosive bubble and water on the one hand, and between water and gas blanket on the other hand. Interfaces are sharply captured, especially for water impact on the roof at time 2.5 ms and explosive gas bubble expanding through the opening between Above Core Structures and Radial Shield. Other bubbles appear in liquid domain behind Radial Shield, above Core Support Structure and under Diagrid. These come from a simplified cavitation model in liquid to handle situations where pressure tends to go down to negative values. Their potential interaction with explosive gas bubble is handled in Vofire scheme by correcting total density computation from reconstructed component mass fractions [Faucher and Kokh, 2011].

From structural point of view, a bulge appears at junction between roof and vessel, due to air blanket compression, which is a characteristic phenomenon for this series of tests. Radial buckling instability occurs in lower part of the vessel, consecutive to vessel bottom lowering, which shows interest for such 3D simulations even with axisymmetrical geometry. Simulation slightly overestimates structural displacements near the bulge on the one hand and underestimates vessel bottom vertical displacement on the other hand. This is mainly due to large structural strain rates with sharp water impacts, which is not taken into account in material behavior for this illustrative calculation and has less influence with smoother impacts when no anti-dissipation is used. Consequently, material behavior is too soft at vessel top, whereas vessel bottom is protected by excessive plastic strain dissipation within Diagrid and Core Support Structure.

Agreement between experimental data and calculation is yet satisfactory.

Conclusion

An algorithm is proposed to simulate fast transient liquid-gas flows in interaction with structures without explicitly describing interfaces between components, which provides robustness and numerical efficiency necessary to handle generic industrial simulations with large structural displacements.

Accuracy in interface location is achieved by improved Vofire scheme, based on downwind mass fraction reconstruction to prevent numerical dissipation, with theoretically mastered constraints to maintain stability of advection scheme. Difficulties with original Vofire scheme specific to high density ratio between liquid and gas are identified and solved. Method is validated on elementary tests and its industrial potential is illustrated through the simulation of MARA 10 experiment. Further work will be dedicated to extending the scheme to any number of components, only one interface between liquid and equivalent gas being currently considered, to generalize approach for other equations of state and to analyze potentialities of high order anti-dissipative schemes.
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Figure 1 :

 1 Figure 1: MARA 10 test Main objectives of test simulation are listed below:

  gas cover above liquid domain, with an adiabatic equation of state:

Figure 2 :

 2 Figure 2: Typical cell of an unstructured mesh Equation (4) requires reconstructed quantities , f n j k ρ and , n i j k c on outgoing faces to build fluxes for total fluid mass and fluid mass fractions. Defining a reconstruction strategy to control dissipation for mass fraction of gases is the main issue for next paragraph.

Figure 3

 3 Figure3presents a simple 2D-plane simulation of an underwater explosion. A 20 bars bubble is immersed in liquid with free surface. Fluid is enclosed in a 1 m wide rigid square box. No antidissipation is used, i. e. reconstructed quantities are simply upwind quantities.

Figure 4 :

 4 Figure 4: Monodimensional step function advection in constant velocity field
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  designates downwind value for outgoing face k (i.e. value in neighbor cell). If µ , , j k r equals to 1 for all incoming faces r, , i.e. upwind value after transverse reconstruction.

  consistency for face r):

  Figure 6: Artifacts on liquid-gas interface with Vofire scheme of structured grid

  used to compute total mass flux and per component mass fluxes on outgoing faces.

  to zero means that no incoming face remains for outgoing face k. Anti-dissipation is then useless and . Stability of associated monodimensional problems given by (26-a&b) tends to impose upwind solution, which converges continuously towards solution with , j k γ equal to zero.

Figure 7

 7 Figure 7 shows results with corrected Vofire algorithm on previous test case compared to original Vofire solution, demonstrating artifacts disappearance.

Figure 9 :

 9 Figure 9: Liquid-gas shock tube solutions

Figure 10 :

 10 Figure 10: Model for decelerated tank simulation Figure 11 presents experimental results extracted from original paper in terms of pressure time history for points A1 and A2 located on Figure 10 and interface location measured with fast camera (tank is transparent). Several tests were performed with different filling levels. Simulated test among those appearing on Figure 11 is named "75 %". Pressure unit is kgf/cm 2 , i.e. 10 5 Pa, i.e. 1 bar. Reference pressure is atmospheric pressure.

  Figure 11: Experimental results

  Figure 12: Sloshing simulation results

  Figure 13: MARA 10 numerical modelMaterial behavior law for structures is elasto-plastic steel, except for massive part of Core Structure Support, made of elasto-plastic copper-aluminium alloy AU4G. Isotropic Von Mises criterion is used in both cases for plastic hardening. Elastic limits are given on Table1and structural shell thicknesses on Table2. Table3presents values for fluid equations of state parameters. Geometry is axisymmetrical and a 3D simulation is carried out, 1/4 of the model being meshed with suitable symmetry conditions.

Figure 14 Figure 14 :

 1414 Figure14presents results in terms of structural deformed shape and density field in fluid. Same colorbar is used as in § 4.2, to locate interfaces between liquid and gases.

Table 3 :

 3 Table 1 and structural shell thicknesses on Table 2. Table 3 presents values for fluid equations of state parameters. Geometry is axisymmetrical and a 3D simulation is carried out, 1/4 of the model being meshed with suitable symmetry conditions. Parameters for fluid equations of state

		Elastic limit
		(MPa)
	Vessel lateral surface	336
	Vessel corner	600
	Vessel bottom surface	450
	Above Core Structures	336
	Diagrid	312
	Radial Shield	378
	Thin Core Support Structure	274
	Massive Core Support Structure	220
	Roof	245
	Table 1: Material elastic limits

Table 4

 4 provides basic comparisons between simulation and experimental results.

		Experiment		Simulation	
		Maximum	Final	Maximum	Final
	Vessel bottom	3.8	2.7	2.6	2.4
	vertical				
	displacement (cm)				
	Vessel bulge radial	0.10	0.09	0.11	0.10
	displacement (cm)				
	Vessel bulge		6.3		7.2
	distance to the roof				
	(cm)				

Table 4 :

 4 Comparisons between experiments and simulation