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Abstract In many mechanical engineering applications,
the interactions of a structure through its boundary is
modelled by a dynamic boundary stiffness matrix. Nev-
ertheless, it is well known that the solution of such com-
putational model is very sensitive to the modelling un-
certainties on the dynamic boundary stiffness matrix.
In a recent work, the "hidden state variables method"
is used to identify mass, stiffness and damping matrices
associated with a given deterministic dynamic bound-
ary stiffness matrix which can be constructed by us-
ing experimental measurements. Such an identification
allows the construction of the probabilistic model of a
random boundary stiffness matrix by substituting those
identified mass, stiffness and damping matrices by ran-
dom matrices. Nevertheless, the numerical cost of the
"hidden state variables method" increases drastically
with the dimension (number of degrees of freedom) of
the interface. We then propose an enhanced approach
which consists in a truncated spectral representation of
the displacements on the boundary and with a parti-
tion of the frequency band of analysis. A collection of
mass, stiffness and damping matrices is then identified
for each sub-frequency band of analysis. A probabilis-
tic model is constructed in substituting each of those
matrices by random matrices. A numerical application
is proposed.
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1 Introduction

The uncertainties quantification of complex mechani-
cal systems is a challenge for engineers and researchers.
This paper deals with an inverse method in the Fourier
space for the uncertainty quantification in a structural
linear visco-elasto dynamics system in low frequency
band.

The mechanical system under study is composed by
Ω2 which is coupled with Ω1. It is assumed that a nu-
merical model of Ω2 can be constructed, while it is not
the case for Ω1. The coupling between Ω1 and Ω2 is
performed on an interface Γ . For example, it is the case
for the design of a building (Ω2) whose foundations are
coupled with an unknown soil (Ω1). Nevertheless, it is
usual to model the dynamical response of Ω1 on the
interface Γ by a boundary dynamical stiffness matrix
which can be obtained by experimental measurements
or by numerical computations.

The numerical derivation of the boundary stiffness
matrix requires the resolution of a classical mixed bound-
ary value problem. A large set of usual methods is there-
fore usable, among which the finite-elements method [1]
is the most often used. When the domain Ω1 becomes
large, or unbounded, an artificial boundary has to be
introduced. The truncation of the domain means that
waves would reflect on the artificial boundary and pol-
lute the solution in the domain Ω2. Many techniques
have been derived in the literature to prevent this prob-
lem. Some of them are reviewed in [2,3], or in special
journal issues on absorbing boundary conditions [4–6].



2 Pierre Ropars, Christophe Desceliers

These techniques can be gathered into three groups:
global absorbing boundary conditions, local absorbing
boundary conditions, and absorbing layer. Besides these
finite-elements-based methods stands the boundary el-
ements method [7]. Then, it appears quite natural for
the computation of the boundary stiffness matrix, since
the formulation is directly performed on the bound-
ary and in case of an unbounded domain, the radi-
ation conditions are directly taken into account. The
scaled boundary elements method [8] is an alternative
approach which does not require a fundamental solu-
tion, and only requires the meshing of the boundary and
enforces naturally the radiation condition. The main re-
quirement for this method is a particular type of radial
symmetry of the domain. When the boundary stiffness
matrices of Ω1 and Ω2 are computed separately, the
mobility method allows the response of both Ω1 and
Ω2 to be simulated when the two domains are coupled
[9–11]. In an other point of view, the subsystem Ω1

transposes on Γ a distant boundary condition. Several
authors introduce a Dirichlet-to-Neumann map to de-
scribe, in the time domain, the external forces due to
Ω1 that are applied to Γ [2,12].

In addition, many methods have been proposed to
reduce the number of degrees of freedom in a model
[23]. We can cite the condensation techniques [24], or
the truncated expansion techniques which are very pop-
ular. They are proposed in any computational problem
which is concerned by large numerical cost. In the scope
of soil-structure interaction problem, the boundary fi-
nite element method has received several significant
advances [25,26]. Recent developments in the bridging
scale method proposed an efficient response to a dynam-
ical interface problem [27]. Also, in the time domain and
in the scope of the Dirichlet-to-Neumann mapping, sev-
eral authors have developed efficient methods [28–30].
This paper is concerned by a problem in the Fourier
domain, and the method used hereinafter is based on
an ad-hoc truncated expansion of eigenfunctions.

However, in the framework of the robust concep-
tion of Ω2, it is necessary to quantify the uncertainties
induced by the lack of knowledge on Ω1. In this aim,
a probabilistic approach is very efficient, and a proba-
bilistic model of the uncertainties related to Ω1 can be
constructed by modelling the boundary dynamical stiff-
ness matrix as a random matrix. In the last decade, a
new probabilistic approach has been developed in linear
visco-elasto dynamic in order to model the uncertain-
ties related to the modelling of a mechanical system in
constructing an ad hoc probabilistic model of the mass,
damping and stiffness matrices [13,14]. In [15–17], such
a probabilistic approach has been applied to construct
the model of the random boundary dynamical stiffness

matrix. It has been achieved with the identification of
mass, damping and stiffness matrices corresponding to
a dynamical stiffness matrix for which the Shur com-
plement is equal to the boundary dynamical stiffness
matrix of Ω1.

The hidden state variables method [15,16,18,19] is
an efficient method devoted to such an identification.
Among all the degrees of freedom associated with the
identified mass, damping and stiffness matrices, those
that do not belong to interface Γ are called hidden
variables. It should be noted that they are not phys-
ical degrees of freedom, but "meta" degrees of freedom
which give an equivalent description of the dynami-
cal response of Ω1 on the interface. It is assumed that
(1) the unknown complete dynamical model of Ω1 is a
second-order differential equation; (2) the boundary dy-
namic stiffness matrix is symmetric and continuous on
the frequency band of analysis Bf ; (3) the mass, damp-
ing and stiffness matrices to be identified are real, sym-
metric and positive-definite. These assumptions have
physical interpretation, and assure the preservation of
principles of reciprocity [20] and causality [21].

Despite numerous advantages, some numerical diffi-
culties occur with an extensive use of the hidden state
variables method: the stability and the numerical cost.
In [22] and [19], the stability issue has been addressed.
The numerical cost increases with the dimension of the
problem (number of degrees of freedom of the interface).
Indeed, computational time increases drastically when
the dimension is greater than 10, even with a reasonable
frequency band of analysis. The extension of the hid-
den state variables method in high dimension remains a
challenge. This would allow a realistic mechanical sys-
tem with a high dimension to be studied. Consequently,
we propose hereinafter a formulation that allows such
an extension without modification of the numerical al-
gorithms used in the hidden state variable method in
order to carry out the identification. This is achieved by
introducing a reduced representation of the displace-
ments field on interface Γ for sub-frequency bands of
analysis included in Bf .

In the second section of the paper, the boundary dy-
namic stiffness matrix and the dynamic equation of Ω2

are presented. The following section deals with the re-
duction of the problem and its decomposition on several
sub-frequency bands of analysis. Then, in the fourth
section, the hidden state variables method is briefly
presented. Then, a probabilistic model for the random
boundary dynamic stiffness matrix is formulated for
each sub-frequency bands of analysis. It should be noted
that the proposed approach yields a set statistically in-
dependent random mass, damping and stiffness matri-
ces for each sub-frequency bands of analysis. Some nu-
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Fig. 1 Geometry of domain Ω.

merical applications are given in section 5.3, 5.4, 5.5, 5.6
and 6.2 in order to study the efficiency of the proposed
approach.

2 Boundary dynamic stiffness matrix and
dynamic equation of Ω2

We consider a structure modelled in Fourier space by a
visco-elastic medium and that is occupying a bounded
domain denoted by Ω. Domain Ω is made up of two
distinct sub-domains denoted by Ω1 and Ω2. Let Γ
be the interface between Ω1 and Ω2 (see Fig. 1). A
finite-element interpolation basis is used to calculate
a numerical approximation of the displacement field
x 7→ u(x, ω) in Ω2 in which x is the vector of coor-
dinates of any generic point in Ω2 and ω is the angular
frequency. For all ω in the frequency band of analysis
Bf , let u2(ω) ∈ Rn2 be the vector of all the degrees of
freedom of the finite-element interpolation and let the
mass, damping and stiffness real (n2 × n2) matrices be
denoted by [M2], [D2] and [K2]. For all frequency ω in
Bf , the dynamic stiffness matrix [A2(ω)] of domain Ω2

is then written as

[A2(ω)] = −ω2[M2] +  ω[D2] + [K2] . (1)

The coupling between the two visco-elastic media occu-
pying Ω1 and Ω2 is taken into account in constructing
the boundary dynamic stiffness [AΓ (ω)] associated with
the displacements on interface Γ and which is a sym-
metric (nΓ × nΓ ) matrix where nΓ is the number of
degree of freedom on Γ for the finite element model of
Ω2. Let us assume that the numbering of the degrees
of freedom is such that u2(ω) is written as

u2(ω) =

(
uΩ2(ω)
uΓ (ω)

)
, (2)

where uΩ2(ω) is the vector of the n2 − nΓ degrees of
freedom related to nodes of the finite-element mesh in
Ω2 and uΓ (ω) is the vector of the nΓ degrees of freedom
related to the nodes on interface Γ . We then have, for
all ω in Bf ,

([A2(ω)] + [A(ω)])u2(ω) = f(ω) , (3)

where f(ω) ∈ Rn2 is the finite-element vector of the
external forces applied on structure and in which the
block diagonal matrix [A(ω)] is written as

[A(ω)] =

(
[02]

[AΓ (ω)]

)
, (4)

where the (n2 − nΓ × n2 − nΓ ) real matrix [02] is the
null matrix.

3 Reduced representation of the displacement
at the interface

3.1 Spectral functional basis adapted for domain Ω2

with a coupled interface Γ

The main idea of the proposed approach is to reduce
the number of degrees of freedom representing the dis-
placements on interface Γ . Such a reduction is carried
out in rewriting the dynamical system in using an ad
hoc functional basis. A very efficient functional basis
that is widely used in the literature consists in the
eigenfunctions associated with the generalized eigen-
value problem for the whole domain Ω. In our situation,
the numerical model of sub-domain Ω1 is assumed to
be not given. Another functional basis can be made
up of the eigenfunctions associated with the general-
ized eigenvalue problem of sub-domain Ω2 with fixed
interface Γ or with free interface Γ . Nevertheless, the
additional mass, damping and stiffness due to the cou-
pling with sub-domain Ω1 are not taking into account.
Consequently, a high number of eigenfunction should be
used in order to represent accurately the displacement
field on the interface. It is the reason why we intro-
duce the following generalized eigenvalue problem: find
eigenvectors φα ∈ Rn2 and eigenvalues λα such as

[K2]φα = λα[M2]φα , (5)

in which

[K2] = [K2] +R{[A(0)]} , (6)

and

[M2] = [M2] +
1

c

∫
Bf

R{[A(ω)]− [A(0)]} dω , (7)
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where R{[a]} means the real part of any complex ma-
trix [a] and c = −

∫
Bf

ω2 dω. The additional terms in
the right side of Eqs (6) and (7) corresponds to addi-
tional mass and stiffness due to the coupling of inter-
face Γ with sub-domain Ω1. Similarly, we introduce a
damping matrix D2 defined as

[D2(ω)] = [D2] + I{[A(ω)]} , (8)

where I{[a]} means the imaginary part of any com-
plex matrix [a]. The additional term in the right side of
Eq (8) corresponds to an additional damping due the
coupling of interface Γ with subdomain Ω1. It is as-
sumed that matrices [M2] and [K2] are definite-positive.
Consequently, this generalized eigenvalue problem yields
an increasing sequence of eigenvalues 0 < λ1 ≤ λ2 ≤
. . . ≤ λn2 , associated with the eigenvectors φ1, . . .,
φn2 in Rn2 . For any given α = 1, . . . , n2, the eigen-
frequency ωα (in rad/s) is defined as ωα = λ

1/2
α . The

numbering of the degrees of freedom is such that, for
any α = 1, . . . , n2 eigenvector φα is written as

φα =

(
φα

Ω2

φα
Γ

)
, (9)

where φα
Ω2

is the vector of the n2 − nΓ degrees of free-
dom related to nodes in Ω2 and φα

Γ is the vector of the
nΓ degrees of freedom related to the nodes on interface
Γ . The set of vectors φ1

Γ , . . . ,φ
n2

Γ can be used in order
to construct a spectral representation of vector uΓ but
it should be noted that this set of vectors are linearly
dependent and consequently, they do not define an ad
hoc functional basis.

3.2 Decomposition of the frequency band of analysis
Bf

For using the hidden state variables method with vec-
tors φ1

Γ , . . . ,φ
n2

Γ as spectral functional basis of the dis-
placements on interface Γ , we introduce a decomposi-
tion of the frequency band of analysis Bf into nf fre-
quency bands B1, . . . , Bnf

which are not necessarily dis-
joints and such that Bf = ∪nf

k=1Bk. Let the mk eigenfre-
quencies ωk,1 ≤ . . . ≤ ωk,mk

be all the eigenfrequencies
belonging to Bk. Then, for k = 1, . . . , nf , the construc-
tion of the k-th frequency band Bk is such that

[ωk,1 −
Hk,1

2
, ωk,mk

+
Hk,mk

2
] ⊂ Bk , (10)

where Hα = πξαωα

√
1− ξ2α with ξα = Dα/2

√
Mα Kα

and Mα = (φα)T [M2]φ
α, Dα = (φα)T [D2(ωα)]φ

α and
Kα = (φα)T [K2]φ

α. Two special cases can be consid-
ered. The first special case is obtained with nf = 1

(k = 1 and mk = n2) and the second special case is

obtained with mk = 1 (nf = n2 and mk = 1 for all
1 ≤ k ≤ n2). Beside these two cases, any other combi-
nation is also possible. Note that, when mk is constant
for all Bk, the number of frequency bands nf is fixed.
This configuration is used hereinafter in Sections 5 and
6.2. In order to ensure that all frequencies of Bf are
contained at least in one Bk, each frequency band Bk

can be taken as :

Bk = [(ωk−1,mk−1
+

Hk−1,mk−1

2
+ ωk,1 −

Hk,1

2
)/2,

(ωk,mk
+

Hk,mk

2
+ ωk+1,1 −

Hk+1,1

2
)/2] . (11)

3.3 Reduced interface displacement model in each
frequency band Bk

We introduce the (nΓ × mk) interface modal matrix
[φΓ,Bk

] which is such that its `-th column is vector φk,`
Γ

(see Eq. 9) associated with ωk,` which is the `-th eigen-
frequency in Bk. An orthogonal basis is deduced by the
singular value decomposition of matrix [φΓ,Bk

] written
as

[φΓ,Bk
] = [UΓ,Bk

][ΣΓ,Bk
][VΓ,Bk

]T , (12)

where [UΓ,Bk
] is an unitary (nΓ ×nΓ ) matrix, [ΣΓ,Bk

] is
a (nΓ ×mk) matrix whose only elements on its diagonal
are non zero and where [VΓ,Bk

] is an unitary (mk ×
mk) matrix. It is assumed that the singular values of
[φΓ,Bk

] are listed in descending order on the diagonal
of [ΣΓ,Bk

]. Consequently, we have the following block
decomposition of [UΓ,Bk

],

[UΓ,Bk
] =

(
[U+

Γ,Bk
] [U0

Γ,Bk
]
)
, (13)

where the columns of [U+
Γ,Bk

] are all the vectors asso-
ciated with all the non-zero singular values of [φΓ,Bk

].
Let m+

Bk
be the number of non-zero singular values of

[φΓ,Bk
]. Note that, in general, m+

Bk
= min(nΓ ,mk), but

in the following m+
Bk

= mk. For any given frequency
ω in Bk, we introduce the m+

Bk
-order approximation

uΓ,Bk
(ω) of vector uΓ (ω) defined as

uΓ,Bk
(ω) = [U+

Γ,Bk
]qBk

(ω) , (14)

where qBk
(ω) is the vector of the m+

Bk
generalized in-

terface displacements on interface Γ for the frequency
band Bk. For any given ω in Bk, we then have the fol-
lowing approximation u2,Bk

(ω) of vector u2(ω),

u2,Bk
(ω) = [PBk

]u2,Bk
(ω) , (15)

in which the block diagonal matrix [PBk
] and the re-

duced representation u2,Bk
(ω) of u2,Bk

are written as

[PBk
] =

(
[I2]

[U+
Γ,Bk

]

)
and u2,Bk

(ω) =

(
uΩ2(ω)

qBk
(ω)

)
,
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(16)

where [I2] is the (n2 − nΓ × n2 − nΓ ) identity matrix.
Multiplying each side of Eq. (3) by [PBk

]T and in using
Eq. (16), we then obtain

([A2,Bk
(ω)] + [ABk

(ω)])u2,Bk
(ω) = fBk

(ω) , (17)

in which fBk
(ω) = [PBk

]T f(ω) and where the square
matrices of dimension (n2 − nΓ +m+

Bk
) [A2,Bk

(ω)] and
[ABk

(ω)] are defined as

[A2,Bk
(ω)] = [PBk

]T [A2(ω)] [PBk
] , (18)

and

[ABk
(ω)] = [PBk

]T [A(ω)] [PBk
] =

(
[02]

[AΓ,Bk
(ω)]

)
,

(19)

in which the symmetric (m+
Bk

×m+
Bk

) matrix [AΓ,Bk
(ω)] =

[U+
Γ,Bk

]T [AΓ (ω)] [U
+
Γ,Bk

] is the reduced boundary dy-
namic boundary stiffness matrix associated with the
displacements on interface Γ .

4 The hidden state variable method

Hereinafter, a short overview of the hidden state vari-
ables method is presented. For more details, the reader
can refer to [15,16].

4.1 Algebraic representation of the boundary stiffness
matrix [AΓ (ω)]

For a large range of engineering applications, bound-
ary stiffness matrix [AΓ (ω)] (see Eqs. (3) and (4)) is
obtained in using experimental measurements in dy-
namics. It is the case when a numerical model of Ω1

is tricky to be constructed. The hidden states variables
method can be used in order to identify a symmetric
positive definite (n1 × n1) matrix [M1] and two sym-
metric positive (n1 × n1) matrices [D1] and [K1] such
that

[AΓ (ω)] = [A1Γ (ω)]− [A1c(ω)] [A1h(ω)]
−1[A1c(ω)]

T ,

(20)

in which the symmetric (nΓ × nΓ ) matrix [A1Γ (ω)],
the (n1 − nΓ × nΓ ) matrix [A1c(ω)] and the symmetric
(n1−nΓ ×n1−nΓ ) matrix [A1h(ω)] are obtained from
the block decomposition of the dynamic stiffness matrix
[A1(ω)] = −ω2[M1] +  ω[D1] + [K1] written as

[A1(ω)] =

(
[A1h(ω)] [A1c(ω)]
[A1c(ω)]

T [A1Γ (ω)]

)
, (21)

where the numbering of the degree of freedom are such
that the nΓ last rows and the nΓ last columns of [A1(ω)]
are related to the nΓ degrees of freedom of nodes on Γ .

4.2 Step 1 : Interpolation of the given boundary
dynamic stiffness matrix

The first step of the method consists in constructing an
interpolation of ω 7→ [AΓ (ω)]. Boundary dynamic stiff-
ness matrix is rewritten as [AΓ (ω)] = [Nopt(ω)]/qopt(ω)
in which [Nopt] belongs to S(nΓ , dN ) and qopt belongs
to S(1, dq) where S(n, d) means the set of all polyno-
mial functions of degree d with values in the set of all
the symmetric (n × n) matrices. The two polynomial
functions [Nopt] and qopt are then defined as the op-
timal functions solving an optimization problem. We
then have, in [15],

([Nopt], qopt) = arg min
q∈S(1,dq)

[N]∈S(nΓ ,dN )

ε([N ], q) , (22)

with dN = dq + 2 and where

ε([N ], q) =

∫
Bf

c(ω)2
∥∥∥∥ [N(ω)]

q(ω)
− [AΓ (ω)]

∥∥∥∥2
F

dω , (23)

and ω 7→ c(ω) is a regularizing function [31] and ‖.‖F
is the Frobenius norm of symmetric matrices. The al-
gorithm presented in [15] to solve Eq. (22) requires
to perform the numerical orthogonalization of mh =

(n2
Γ + nΓ )(dq +3)/2+ (dq +1) vectors belonging to Cd

with d = (n2
Γ+nΓ )/2+1. This numerical orthogonaliza-

tion is carried out in using a Gram-Schmidt algorithm.

4.3 Step 2: Identification of a matrix model for the
hidden variables

The last step of the hidden state variables method con-
sists in identifying a set of matrices [Mopt

1 ], [Dopt
1 ] and

[Kopt
1 ] such that

[Nopt(ω)]

qopt(ω)
= [Aopt

1Γ (ω)]−[Aopt
1c (ω)] [Aopt

1h (ω)]−1[Aopt
1c (ω)]T ,

(24)

where the symmetric (nΓ × nΓ ) matrix [Aopt
1Γ (ω)], the

complex (n1 −nΓ ×nΓ ) matrix [Aopt
1c (ω)] and the sym-

metric (n1−nΓ×n1−nΓ ) matrix [Aopt
1h (ω)] are obtained

from the block decomposition of the dynamic stiffness
matrix

[Aopt
1 (ω)] = −ω2[Mopt

1 ] +  ω[Dopt
1 ] + [Kopt

1 ] , (25)
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which is then written as

[Aopt
1 (ω)] =

(
[Aopt

1h (ω)] [Aopt
1c (ω)]

[Aopt
1c (ω)]T [Aopt

1Γ (ω)]

)
. (26)

An algorithm presented in [15] seeks for a block diago-
nal matrix [Mopt

1 ] written as

[Mopt
1 ] =

(
[Inh

]

[Mopt
1Γ ]

)
, (27)

where [Inh
] is the (nh × nh) identity matrix with nh =

dq/2. It should be noticed that Eq. (27) is justified in
[15]. Since that for any given frequency band of analysis
Bf , any given polynomial degree dq and for any given
boundary dynamic stiffness matrix [AΓ ], it is possible
to find a set of three matrices [Mopt

1 ], [Dopt
1 ] and [Kopt

1 ]
which is constructed in solving (see [22,19,32]), then, it
means that ([Mopt

1 ], [Dopt
1 ], [Kopt

1 ]) is the output value
of a mapping C,

([Mopt
1 ], [Dopt

1 ], [Kopt
1 ]) = C(Bf ; dq, [AΓ ])) . (28)

Hence, giving the identified matrices [Mopt
1 ], [Dopt

1 ] and
[Kopt

1 ], then the matrix [Aopt
Γ (ω)] which is defined as

[Aopt
Γ (ω)] = [Aopt

1Γ (ω)]− [Aopt
1c (ω)] [Aopt

1h (ω)]−1[Aopt
1c (ω)]T

(see Eqs (25) and (26)), can be used as an approxima-
tion of the boundary dynamic boundary stiffness matrix
[AΓ (ω)].

4.4 Remark on the numerical cost of the method

The computational cost of the hidden state variables
method is mostly due to the numerical orthogonaliza-
tion of mh = (n2

Γ +nΓ )(dq +3)/2+(dq +1) vectors be-
longing to Cd with d = (n2

Γ+nΓ )/2+1 (see section 4.2).
Consequently, the greater nΓ is and the more expensive
is the hidden state variables method. For example, the
Table 1 shows the computational time for performing
the step 1 with respect to the number of degree of free-
dom nΓ on the interface Γ for a very small problem
(only 60 points in the frequency band and with dq = 2).
Such a computational cost for performing step 1 in-
creases exponentially and consequently such a method
is extremely expensive for dynamical systems with a
high number of freedom on the interface Γ .

In this paper, the proposed approach is to decrease
such numeral cost in using the ad hoc functional basis
presented in Section 3.

Table 1 Computational cost of step 1 against the number of
degree of freedom nΓ on interface Γ .

nΓ Computational times (s)
2 6,5538
4 12,4342
6 55,3256
8 183,9891
10 510,1938
14 3214,5
18 14132,0
22 50331,0
28 360820,0

4.5 Hidden state variables method applied on the
boundary dynamic stiffness matrices of Ω1 for each
frequency band Bk

For each frequency band Bk, the hidden state variables
method is applied, with a polynomial degree dq,Bk

, yield-
ing the construction of matrices [Mopt

1,Bk
], [Dopt

1,Bk
] and

[Kopt
1,Bk

] defined as

([Mopt
1,Bk

], [Dopt
1,Bk

], [Kopt
1,Bk

]) = C(Bk; dq,Bk
, [AΓ,Bk

])) .

(29)

For each frequency band Bk, a stiffness matrix [Aopt
1,Bk

(ω)]
is introduced as follows

[Aopt
1,Bk

(ω)] =

− ω2[Mopt
1,Bk

] +  ω[Dopt
1,Bk

] + [Kopt
1,Bk

] . (30)

The boundary stiffness matrix [Aopt
Γ,Bk

(ω)] is then de-
fined as

[Aopt
Γ,Bk

(ω)] =

[Aopt
1Γ,Bk

(ω)]− [Aopt
1c,Bk

(ω)] [Aopt
1h,Bk

(ω)]−1[Aopt
1c,Bk

(ω)]T ,

(31)

where matrices [Aopt
1Γ,Bk

(ω)], [Aopt
1c,Bk

(ω)], [Aopt
1h,Bk

(ω)] and
[Aopt

1c,Bk
(ω)] are extracted from the block decomposition

of matrix [Aopt
1,Bk

(ω)]. We then have

[Aopt
1,Bk

(ω)] =

(
[Aopt

1h,Bk
(ω)] [Aopt

1c,Bk
(ω)]

[Aopt
1c,Bk

(ω)]T [Aopt
1Γ,Bk

(ω)]

)
. (32)

Hence, for each frequency band Bk, the reduced rep-
resentation u2,Bk

(ω) of u2,Bk
(ω) in Eq. (15) is con-

structed by solving Eq. (17) and in substituting the
boundary dynamic boundary stiffness matrix [AΓ,Bk

(ω)]

in Eq.(19) by matrix [Aopt
Γ,Bk

(ω)].
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5 Examples of mass, dumping and stiffness
matrices identification

In this section we propose four examples. In the two
first, the mass, damping and stiffness matrices of do-
main Ω1 are identified in using the hidden state vari-
ables method that is briefly recalled in Section 4 (ini-
tial method), and in using the hidden state variables
method applied on the boundary dynamic stiffness ma-
trices of Ω1 for each frequency band Bk as it is pre-
sented in Section 4.5 (modified method). In third and
fourth example, only results of modified method are
presented because of the lack of accuracy and because
of the computational cost of the initial method.

5.1 Description of the examples

For the following examples, domain Ω (see Section 2)
is composed of two sub-domains Ω1 and Ω2 (see Fig. 1)
that are assumed to be occupied by two homogeneous
isotropic viscoelastic media in 2D plane strains. Let
E1 = 26 × 106 Pa, ν1 = 0.3, ρ1 = 1600 kg/m3 be the
Young modulus, the Poisson coefficient and the mass
density in Ω1 and let E2 = 26×109 Pa, ν2 = 0.257 and
ρ2 = 2400 kg/m3 be the Young modulus, the Poisson
coefficient and the mass density in Ω2. Two points of Ω2

(see Fig. 1) are blocked and the density of frequencies
is 20 points per Hertz.

5.2 Boundary frequency response function

In order to compare the initial method and the mod-
ified method that we propose, the boundary dynamic
stiffness matrix has to be written in the same func-
tional basis. Nevertheless, it is not possible to rewrite
matrices [Aopt

Γ,Bk
(ω)] on the same basis as [Aopt

Γ (ω)] be-
cause we used a projection on interface displacement. It
is the reason why we construct the boundary dynamic
response function for each method.

As explained in Section 2, it is assumed that the
numbering of the degrees of freedom is such that u2(ω)
is written as

u2(ω) =

(
uΩ2(ω)

uΓ (ω)

)
, (33)

where uΩ2(ω) is the vector of the n2 − nΓ degrees of
freedom related to nodes of the finite-element mesh in
Ω2 and uΓ (ω) is the vector of the nΓ degrees of free-
dom related to the nodes on interface Γ . Consequently,
the block decomposition of vector f(ω) of the external
forces is written as

f(ω) =
(

fΩ2(ω)
fΓ (ω)

)
. (34)

Let fj(ω) be the value of vector f(ω) for which fΩ2(ω) =

0 and {fΓ (ω)}i = δij . The boundary frequency response
function [TΓ (ω)] is the complex (nΓ × nΓ ) matrix for
which the components [TΓ (ω)]ij are such that, for each
0 < j ≤ nΓ

[TΓ (ω)]ij = {uj
Γ (ω)}i , (35)

in which uj
Γ (ω) is the value of vector uΓ (ω) that is cal-

culated in using Eq. (2) for which u2(ω) is the solution
of Eq. (3) with f(ω) = fj(ω). The boundary frequency
response function [T opt

Γ (ω)] is the complex (nΓ × nΓ )
matrix for which the components [T opt

Γ (ω)]ij are such
that, for each 0 < j ≤ nΓ

[T opt
Γ (ω)]ij = {uj

Γ (ω)}i , (36)

in which uj
Γ (ω) is the value of vector uΓ (ω) that is cal-

culated in using Eq. (2) for which u2(ω) is the solution
of Eq. (3) with f(ω) = fj(ω) and [AΓ (ω)] = [Aopt

Γ (ω)]
(see Section 4) in Eq. (4). The boundary frequency re-
sponse function [T opt

Γ,Bk
(ω)] is the complex (nΓ × nΓ )

matrix for which the components [T opt
Γ,Bk

(ω)]ij are such
that, for each 0 < j ≤ nΓ

[T opt
Γ,Bk

(ω)]ij = {uj
Γ,Bk

(ω)}i , (37)

in which uj
Γ,Bk

(ω) is the value of uΓ,Bk
(ω) in Eq. (14)

for which qBk
(ω) is calculated in using the second ex-

pression in Eq. (16) where u2,Bk
(ω) is the solution of

Eq. (17) with fBk
(ω) = [PBk

]T fj(ω) and [AΓ,Bk
(ω)] =

[Aopt
Γ,Bk

(ω)] (see Section 4.5) in Eq. (19). Furthermore,
distances between the three boundary frequency response
functions [TΓ ], [T

opt
Γ ] and [T opt

Γ,Bk
] defined by Eq. (35)

to Eq. (37) are denoted by εr([T
opt
Γ,Bk

], [TΓ ], Bk) and
εr([T

opt
Γ ], [TΓ ], Bk) where

εr([T1], [T2|, B) =

∑
ω∈B

‖[T1(ω)]− [T2(ω)]‖F∑
ω∈B

‖[T2(ω)]‖F
, (38)

in which ‖[A]‖F =
√

Tr([A][A]T ) is the Frobenius norm
of matrix [A]. In addition, for given degrees of freedom
numbered as i and j, we compute the following relative
errors εr([T

opt
Γ,Bk

]i j , [TΓ ]i j , Bk) and εr([T
opt
Γ ]i j , [TΓ ]i j , Bk).

These distances are related to a given frequency band
Bk. A more global distance between [TΓ ], [T opt

Γ ] and
[T opt

Γ,Bk
] can be defined as

εmodif = max
1≤k≤nf

εr([T
opt
Γ,Bk

], [TΓ ], Bk) , (39)

εi jmodif = max
1≤k≤nf

εr([T
opt
Γ,Bk

]ij , [TΓ ]ij , Bk) , (40)

εinitial = εr([T
opt
Γ ], [TΓ ], Bf) , (41)

εi jinitial = εr([T
opt
Γ ]ij , [TΓ ]ij , Bf) . (42)
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5.3 First application, a simple case

For this example, sub-domains Ω1 and Ω2, which model
respectively a soft soil and a stiffen structure, are rect-
angles with dimensions 3 × 9 m2 (subdomain Ω1) and
3× 3 m2 (sub-domain Ω2). The finite-element mesh of
domain Ω1 is constituted of 6 × 18 quadrangles and
the finite-element mesh of Ω2 is constituted of 6 × 6
quadrangles. Consequently, the number of degrees of
freedom in Ω1 is n1 = 452 and the number of degree of
freedom in Ω2 is n2 = 184. The total number of free-
dom in interface Γ is nΓ = 14. The frequency band is
Bf = 2π × [20; 34] rad/s.

Table 2 shows the values of εmodif , ε
i j
modif , εinitial and

εi jinitial for i and j equal to I or J and where the degrees
of freedom {u2}I and {u2}J are respectively the dis-
placement along the horizontal axis of a point located
at the center of interface Γ and the displacement along
the vertical axis of a point located at distance 0.75 me-
ters from the center. For each computation, the number
of modes per band is constant mk = m for all Bk, where
m is a chosen number of modes. The number of hidden
variables, which is the half of degree dq,Bk

= dq, is also
constant for all Bk. In addition, the computational du-
ration t is given in Table 2.

A convergence analysis with respect to dq has been
carried out but it is not presented in this paper. Conse-
quently, the value of dq at convergence depends on m,
but in this example, dq is constant. In addition, results
presented in Table 2 show that the values of εmodif and
εi jmodif tend to decrease when m increases and the com-
putational time t increases with m. Consequently, it is
possible to adjust the value of m to get a compromise
between values of εmodif or εi jmodif , and the computa-
tional cost t. Such adjustment is not possible for the
value of εinitial and εi jinitial for the initial method. A rea-
sonable value of m can be taken when εmodif is less than
0.01. For this example, the values of εmodif and εi jmodif

with m = 12 for the modified method are of same or-
der than the values of εinitial and εi jinitial for the initial
method but the computational cost is 20 times smaller.
It can be noted than the modified method yields also
small values of εmodif for m = 4 and for which the
computational cost t = 67 seconds which is 2900 times
smaller than the computational time obtained with the
initial method.

Figure 2 shows the graphs of ‖[TΓ (ω)]‖F , ‖[T opt
Γ (ω)]‖F

and ‖[T opt
Γ,Bk

(ω)]‖F with m = 4 (bottom figure), the
graphs of [TΓ (ω)]II , [T

opt
Γ (ω)]II and [T opt

Γ,Bk
(ω)]II with

m = 4 (middle figure), and finally the graphs of [TΓ (ω)]IJ ,
[T opt

Γ (ω)]IJ and [T opt
Γ,Bk

(ω)]IJ with m = 4 (top figure).

It can be seen that the graphs match each other and
consequently the identifications of the mass, dumping
and stiffness matrices by the initial method and by the
modified method are very good. In addition, it shows
that a mean square estimation of the distance between
[TΓ (ω)]ij , [T

opt
Γ (ω)]ij and [T opt

Γ,Bk
(ω)]ij with i and j equal

to I or J would be very small.
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Fig. 2 Comparison between the solution of reference (finite ele-
ments method in red solid line with circular markers), the initial
method (green dashed line with cross markers) and the modi-
fied method (blue dotted line with square markers) with m = 4.
Horizontal axis: ω in Hertz. Vertical axis, on the bottom graph:
‖[TΓ (ω)]‖F , ‖[Topt

Γ (ω)]‖F and ‖[Topt
Γ,Bk

(ω)]‖F , on the middle

graph: real parts of [TΓ (ω)]II , [Topt
Γ (ω)]II and [Topt

Γ,Bk
(ω)]II

and on the top graph: real parts of [TΓ (ω)]IJ , [Topt
Γ (ω)]IJ and

[Topt
Γ,Bk

(ω)]IJ .

Moreover, for this first example, the use of several
frequency bands Bk (nf > 1) does not bring any advan-
tage with respect to the initial method. Nevertheless,
the reduction of the displacement at the interface (Sec-
tion 3.3) allows to decrease the computational cost by
a factor 20.

5.4 Second application, case with an extended
frequency band Bf

In the second example, sub-domains Ω1 and Ω2, which
model respectively a soft soil and a stiffen structure,
are rectangles with dimensions 3 × 9 m2 (sub-domain
Ω1) and 3× 3 m2 (sub-domain Ω2). The finite-element
mesh of domain Ω1 is constituted of 6 × 18 quadran-
gles and the finite-element mesh of Ω2 is constituted of
6×6 quadrangles. Consequently, the number of degrees
of freedom in Ω1 is n1 = 452 and the number of degree
of freedom in Ω2 is n2 = 184. The total number of free-
dom in interface Γ is nΓ = 14. The frequency band is
Bf = 2π × [20; 100] rad/s.
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Table 3 shows the values of εmodif , ε
i j
modif , εinitial and

εi jinitial for i and j equal to I or J and where the degrees
of freedom {u2}I and {u2}J are respectively the dis-
placement along the horizontal axis of a point located
at the center of interface Γ and the displacement along
the vertical axis of a point located at distance 0.75 me-
ters from the center. For each computations, the num-
ber of modes per band is constant mk = m for all Bk.
The number of hidden variables, which is the half of de-
gree dq,Bk

= dq, is also constant for all Bk. In addition,
the computational duration t is given in Table 3.

As in the first example, a convergence analysis with
respect to dq has been carried out but it is not presented
in this paper. Consequently, the value of dq at conver-
gence depends on m, but in this example, dq is constant.
In addition, results presented in Table 3 show that the
values of εmodif and εi jmodif tend to decrease when m
increases and the computational time t increases with
m. For this example, the values of εmodif and εi jmodif

with m = 12 for the modified method are of same or-
der than the values of εinitial and εi jinitial for the initial
method but the computational cost is 10 times smaller.
It can be noted than the modified method yields also
small values of εmodif for m = 6 and for which the com-
putational cost t = 3688 seconds which is 345 times
smaller than the computational time obtained with the
initial method.

Figure 3 shows the graphs of ‖[TΓ (ω)]‖F , ‖[T opt
Γ (ω)]‖F

and ‖[T opt
Γ,Bk

(ω)]‖F with m = 6 (bottom figure), the
graphs of [TΓ (ω)]II , [T

opt
Γ (ω)]II and [T opt

Γ,Bk
(ω)]II with

m = 6 (middle figure) and finally the graphs of [TΓ (ω)]IJ ,
[T opt

Γ (ω)]IJ and [T opt
Γ,Bk

(ω)]IJ with m = 6 (top figure).
It can be seen that the graphs match each other and
consequently the identifications of the mass, dumping
and stiffness matrices by the initial method and by the
modified method are very good. In addition, it shows
that a mean square estimation of the distance between
[TΓ (ω)]ij , [T

opt
Γ (ω)]ij and [T opt

Γ,Bk
(ω)]ij with i and j equal

to I or J would be very small. It can be noted that
continuity between frequency bands Bk is apparently
respected.

In this case, the decomposition of frequency band
Bf and the interface reduction allow a reduction of the
computational cost by a factor 10. In addition, for an
equivalent accuracy the initial method doesn’t yields
causal model of boundary dynamic stiffness matrices.
And consequently, the identified mass, damping and
stiffness matrices can not be used for constructing a
probabilistic model of random boundary dynamic stiff-
ness matrices.
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Fig. 3 Comparison between the solution of reference (finite ele-
ments method in red solid line with circular markers), the initial
method (green dashed line with cross markers) and the modi-
fied method (blue dotted line with square markers) with m = 6.
Horizontal axis: ω in Hertz. Vertical axis, on the bottom graph:
‖[TΓ (ω)]‖F , ‖[Topt

Γ (ω)]‖F and ‖[Topt
Γ,Bk

(ω)]‖F , on the middle

graph: real parts of [TΓ (ω)]II , [Topt
Γ (ω)]II and [Topt

Γ,Bk
(ω)]II

and on the top graph: real parts of [TΓ (ω)]IJ , [Topt
Γ (ω)]IJ and

[Topt
Γ,Bk

(ω)]IJ .

5.5 Third application, case with an extended
interface Γ

In this third example, sub-domains Ω1 and Ω2, which
model respectively a soft soil and a stiffen structure,
are rectangles with dimensions 6× 18 m2 (sub-domain
Ω1) and 6× 6 m2 (sub-domain Ω2). The finite-element
mesh of domain Ω1 is constituted of 12 × 36 quadran-
gles and the finite-element mesh of Ω2 is constituted of
12 × 12 quadrangles. Consequently, the number of de-
grees of freedom in Ω1 is n1 = 902 and the number of
degree of freedom in Ω2 is n2 = 366. The total number
of freedom in interface Γ is nΓ = 26. The frequency
band is Bf = 2π × [20; 34] rad/s.

Table 4 shows the values of εmodif and εi jmodif for
i and j equal to I or J and where the degrees of free-
dom {u2}I and {u2}J are respectively the displacement
along the horizontal axis of a point located at the center
of interface Γ and the displacement along the vertical
axis of a point located at distance 1.5 meters from the
center. For each computations, the number of modes
per band is constant mk = m for all Bk, with m a cho-
sen number of modes. The number of hidden variables,
which is the half of degree dq,Bk

= dq, is also constant
for all Bk. In addition, the computational duration t is
given in Table 4.

Results presented in Table 4 show that the values
of εmodif and εi jmodif tend to decrease when m increases
and the computational time t increases with m. Nev-
ertheless, for m = 1 and m = 2, the modal density
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leads to very small frequency bands Bk. The number of
available frequency points inside such bands Bk is then
less that needed for applying the hidden state variables
method. This explains numbers of band nf which are
lower or equal than the nf indicated for m = 3. It can
be noted than the modified method yields also small
values of εmodif for m = 4 and for which the computa-
tional cost is t = 736 seconds.

Figure 4 shows graphs of ‖[TΓ (ω)]‖F and ‖[T opt
Γ,Bk

(ω)]‖F
with m = 8 (bottom figure), the graphs of [TΓ (ω)]II
and [T opt

Γ,Bk
(ω)]II with m = 8 (middle figure) and the

graphs of [TΓ (ω)]IJ and [T opt
Γ,Bk

(ω)]IJ with m = 8 (top
figure). It can be seen that the graphs match each other
and consequently the identification of the mass, dump-
ing and stiffness matrices by the modified method is
good. In addition, it shows that a mean square estima-
tion of the distance between [TΓ (ω)]ij and [T opt

Γ,Bk
(ω)]ij

with i and j equal to I or J would be small. The iden-
tified values in the middle of Figure 4 are moved from
the references values but have similar behaviour than
the solution of reference.
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Fig. 4 Comparison between the solution of reference (finite el-
ements method in red solid line with circular markers) and the
modified method (blue dotted line with square markers) with
m = 8. Horizontal axis: ω in Hertz. Vertical axis, on the bottom
graph: ‖[TΓ (ω)]‖F and ‖[Topt

Γ,Bk
(ω)]‖F , on the middle graph: real

parts of [TΓ (ω)]II and [Topt
Γ,Bk

(ω)]II and on the top graph: real

parts of [TΓ (ω)]IJ and [Topt
Γ,Bk

(ω)]IJ .

In this case, initial method is not able to identify
the mass, damping and stiffness matrices because of a
computational cost that is too much important and it
is not worth it. Nevertheless, the modified method is
able to identify the mass, damping and stiffness matri-
ces which yields a causal model of boundary dynamic
stiffness matrices.

5.6 Fourth application, case with an extended
interface Γ and an extended frequency band Bf

In this last example, sub-domains Ω1 and Ω2, which
model respectively a soft soil and a stiffen structure,
are rectangles with dimensions 6× 18 m2 (sub-domain
Ω1) and 6× 6 m2 (sub-domain Ω2). The finite-element
mesh of domain Ω1 is constituted of 12 × 36 quadran-
gles and the finite-element mesh of Ω2 is constituted of
12 × 12 quadrangles. Consequently, the number of de-
grees of freedom in Ω1 is n1 = 902 and the number of
degree of freedom in Ω2 is n2 = 366. The total number
of freedom in interface Γ is nΓ = 26. The frequency
band is Bf = 2π × [10; 45] rad/s.

Table 5 shows the values of εmodif and εi jmodif for
i and j equal to I or J and where the degrees of free-
dom {u2}I and {u2}J are respectively the displacement
along the horizontal axis of a point located at the center
of interface Γ and the displacement along the vertical
axis of a point located at distance 1.5 meters from the
center. For each computations, the number of modes
per band is constant mk = m for all Bk. The number of
hidden variables, which is the half of degree dq,Bk

= dq,
is also constant for all Bk. In addition, the computa-
tional duration t is given in Table 5.

Results presented in Table 5 show that the values
of εmodif and εi jmodif tend to decrease when m increases
and the computational time t increases with m. Con-
sequently, a compromise between values of εmodif or
εi jmodif , and the computational cost t is possible. As pre-
viously, for m = 1 and m = 2 the frequency bands Bk

can be very small. In such cases, the density of frequen-
cies has to be high. It can be noted than the modified
method yields also small values of εmodif for m = 6 and
for which the computational cost is t = 8325 seconds.

Figure 5 shows graphs of ‖[TΓ (ω)]‖F and ‖[T opt
Γ,Bk

(ω)]‖F
with m = 8 (bottom figure), the graphs of [TΓ (ω)]II
and [T opt

Γ,Bk
(ω)]II with m = 8 (middle figure) and the

graphs of [TΓ (ω)]IJ and [T opt
Γ,Bk

(ω)]IJ with m = 8 (top
figure). It can be seen that the graphs match each other
and consequently the identification of the mass, dump-
ing and stiffness matrices by the modified method is
good. In addition, it shows that a mean square estima-
tion of the distance between [TΓ (ω)]ij and [T opt

Γ,Bk
(ω)]ij

with i and j equal to I or J would be small.

In this case, initial method is not able to identify
the mass, damping and stiffness matrices because of a
computational cost that is too much important and it
is not worth it. Nevertheless, the modified method is
able to identify the mass, damping and stiffness matri-
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Fig. 5 Comparison between the solution of reference (finite el-
ements method in red solid line with circular markers) and the
modified method (blue dotted line with square markers) with
m = 8. Horizontal axis: ω in Hertz. Vertical axis, on the bottom
graph: ‖[TΓ (ω)]‖F and ‖[Topt

Γ,Bk
(ω)]‖F , on the middle graph: real

parts of [TΓ (ω)]II and [Topt
Γ,Bk

(ω)]II and on the top graph: real

parts of [TΓ (ω)]IJ and [Topt
Γ,Bk

(ω)]IJ .

ces which yields a causal model of boundary dynamic
stiffness matrices.

6 Probabilistic model of boundary dynamic
stiffness matrix

6.1 Random boundary dynamic stiffness matrix

For each frequency band Bk, we define the random stiff-
ness matrix [A1,Bk

(ω)] as

[A1,Bk
(ω)] = −ω2[M1,Bk

] +  ω[D1,Bk
] + [K1,Bk

] , (43)

where random matrices [M1,Bk
], [D1,Bk

] and [K1,Bk
]

belong to the stochastic set of random matrices SE+

introduced by C. Soize in [14,13]. Introducing those
random matrices allows the uncertainties related to the
modelling of matrices [Mopt

1,Bk
], [Dopt

1,Bk
] and [Kopt

1,Bk
] to be

taken into account. Their probabilistic models depend
on three dispersion parameters δM,Bk

, δD,Bk
, δK,Bk

which
control the level of uncertainties related to [Mopt

1,Bk
],

[Dopt
1,Bk

], and [Kopt
1,Bk

]. In addition random matrices
[M1,Bk

], [D1,Bk
], and [K1,Bk

] are written as

[M1,Bk
] = [Lopt

M,Bk
] [GM,Bk

] [Lopt
M,Bk

]T , (44)

[D1,Bk
] = [Lopt

D,Bk
] [GD,Bk

] [Lopt
D,Bk

]T , (45)

[K1,Bk
] = [Lopt

K,Bk
] [GK,Bk

] [Lopt
K,Bk

]T , (46)

in which matrices [M1,Bk
] = [Lopt

M,Bk
] [Lopt

M,Bk
]T , [D1,Bk

] =

[Lopt
D,Bk

] [Lopt
D,Bk

]T , and [K1,Bk
] = [Lopt

K,Bk
] [Lopt

K,Bk
]T are

the Cholesky factorizations of matrices [Mopt
1,Bk

], [Dopt
1,Bk

],
and [Kopt

1,Bk
] and in which the random real (mk × mk)

matrices [GM,Bk
], [GD,Bk

], and [GK,Bk
] belong to the

set SG+ introduced by C. Soize in [14,13]. A probabilis-
tic model of uncertainties related to the boundary dy-
namic stiffness matrices [AΓ (ω)] is then constructed for
each frequency band Bk in substituting the determin-
istic matrix [ABk

(ω)] in Eq. (17) by a random matrix
[ABk

(ω)] and in substituting the deterministic vector
u2,Bk

(ω) by a random vector U2,Bk
(ω) such that

([A2,Bk
(ω)] + [ABk

(ω)])U2,Bk
(ω) = fBk

(ω) , (47)

The random matrix [ABk
(ω)] is written as

[ABk
(ω)] =

(
[02]

[AΓ,Bk
(ω)]

)
, (48)

in which [AΓ,Bk
(ω)] is a random symmetric (m+

Bk
×

m+
Bk

) matrix such that

[AΓ,Bk
(ω) =

[A1Γ,Bk
(ω)]− [A1c,Bk

(ω)] [A1h,Bk
(ω)]−1[A1c,Bk

(ω)]T ,
(49)

where random complex matrices [A1Γ,Bk
(ω)], [A1c,Bk

(ω)],
[A1h,Bk

(ω)] and [A1c,Bk
(ω)] are extracted from the fol-

lowing block decomposition of random matrix [A1,Bk
(ω)]

[A1,Bk
(ω)] =

(
[A1h,Bk

(ω)] [A1c,Bk
(ω)]

[A1c,Bk
(ω)]T [A1Γ,Bk

(ω)]

)
. (50)

Consequently, for each frequency band Bk, the finite
element vector of the degree of freedom in domain Ω2

is modelled by a random vector U2,Bk
(ω) which is con-

structed in substituting u2,Bk
(ω) byU2,Bk

(ω) in Eq. (15).
We then have

U2,Bk
(ω) = [PBk

]U2,Bk
(ω) . (51)

It should be noted that without any additional informa-
tion concerning the statistics between [AΓ,Bk

(ω)] and
[AΓ,B`

(ω)] with ` 6= k then, for all ` and k, matri-
ces [GM,Bk

], [GM,B`
], [GD,Bk

], [GD,B`
], [GK,Bk

], and,
[GK,B`

] are six statistical independent random matrices
for all ` and k.

6.2 Example of random boundary frequency response
function

For same case as in section 5.3, we compute 200 stochas-
tic realizations of random boundary dynamic stiffness
matrix [AΓ,Bk

(ω)]. It allows to construct 200 random
boundary frequency response matrices [TΓ,Bk

(ω)] by
Eq. (37) where the displacement interpolation is ob-
tained by Eq. (51). The number of modes per band m
is chosen as m = 6 and dispersion parameters are equal,
δM,Bk

= δD,Bk
= δK,Bk

= 0.3 for both frequency bands
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Bk (nf = 2).
Figure 6 shows three parts, relative to the norm of the
boundary frequency response matrix ‖[Topt

Γ,Bk
(ω)]‖F , and

the two components [Topt
Γ,Bk

(ω)]II and [Topt
Γ,Bk

(ω)]IJ . On
the three parts, the values of reference ‖[TΓ (ω)]‖F , [TΓ (ω)]II
and [TΓ (ω)]IJ are plotted in red lines. One stochastic
realization of ‖[Topt

Γ,Bk
(ω)]‖F , [Topt

Γ,Bk
(ω)]II and [Topt

Γ,Bk
(ω)]IJ

are also presented in dashed black line. In addition, de-
terministic values ‖[T opt

Γ,Bk
(ω)]‖F , [T opt

Γ,Bk
(ω)]II and [T opt

Γ,Bk
(ω)]IJ

are plotted in dashed blue lines. The 90% confidence
intervals computed with 200 realizations are shown in
green solid line. With Figure 6, it can be noted that
constant δ parameters on Bf seems allow the keeping
of the continuity on each stochastic realizations (near
29Hz). Because of the large values of δM,Bk

, δD,Bk
and

δK,Bk
, the dispersion indicated by the 90% confidence

interval is large compared with the variation of deter-
ministic values. The dispersion in Forbenius norm is
less accented, but respects the aspect of the dispersions
of components.

The new stochastic model exposed in this numerical
example is not similar to the initial model. The cross-
correlation between the different frequency bands have
no meaning. In state, the stochastic model allows to
choose different deviation parameters for each groups
of eigen modes. This can be interpreted by a variation
of the own dimensions of the structure. It allows to mea-
sure the impact of variations of the eigen modes of the
structure on its dynamical behaviour.

7 Conclusion

We present a reduction method of the hidden state vari-
ables method which is subdivided on smallest frequency
bands with restrained number of modes. The polyno-
mial bases, used in the identification process, are now
dimensioned by the number of modes chosen for each
sub-problems. Besides the fact that each sub-problem
can be treated in parallel, substantial gain of the com-
putational time is possible. For a equivalent precision
the computational cost is 10 to 20 times less than in the
initial method. For an acceptable precision, the compu-
tational cost could be more than 1000 times smaller.
Then, we show that the loss of precision is acceptable
in terms of spared time. In addition, when size of the
boundary dynamical stiffness matrix grows up, the pre-
cision stay good with enough modes. In such cases ini-
tial method is not able to identify the mass, damping
and stiffness matrices because of a computational cost
that is too much important.

Nevertheless, the approach needs several eigen modes
and a sufficient density of frequencies in respect to the
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Fig. 6 Statistical results; Horizontal axis: ω in Hertz. Vertical
axis, on bottom graph norms of: matrix of reference (red solid line
with circular markers) ‖[TΓ (ω)]‖F , deterministic reduced matrix
(blue dotted line with square markers) ‖[Topt

Γ,Bk
(ω)]‖F , a random

realization of ‖[Topt
Γ,Bk

(ω)]‖F (black dashed line with diamond
markers) and 90% confidence interval (green solid lines with cross
markers), on middle graph the II components of: [TΓ (ω)] (red
solid line with circular markers), [Topt

Γ,Bk
(ω)] (blue dotted line

with square markers), ‖[Topt
Γ,Bk

(ω)]‖F (black dashed line with
diamond markers) and 90% confidence interval (green sold line
with cross markers), on top graph the IJ components of: [TΓ (ω)]
(red solid line with circular markers), [Topt

Γ,Bk
(ω)] (blue dotted

line with square markers), [Topt
Γ,Bk

(ω)]|F (black dashed line with
diamond markers) and 90% confidence interval (green sold line
with cross markers).

density of modes. However, further study should be
done to obtain equivalent statistical characteristics as
the initial method.
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Table 2 Convergence analysis with respect to the number of modes per band m

m nf dq εmodif εI I
modif εJ J

modif εI J
modif t (s)

1 7 4 0,4667 0,9893 0,8490 0,9868 27
2 4 4 0,1025 0,9957 0,9832 0,9926 37
3 3 4 0,0248 0,4244 0,9767 2,0145 55
4 2 4 0,0003206 0,0454 0,0160 0,0088 67
6 2 4 0,0001670 0,0412 0,0051 0,0176 255
8 1 4 0,00000895 0,0213 0,0015 0,0010 954
10 1 4 0,00000608 0,0261 0,0009 0,0127 2759
12 1 4 0,00000296 0,0028 0,0004 0,0047 9747

nΓ nf dq εintial εI I
initial εJ J

initial εI J
initial t (s)

14 1 4 0,000000509 0,0000677 0,0003452 0,0008712 194234

Table 3 Convergence study of the reduced method in respect to number of modes per band m

m nf dq εmodif εI I
modif εJ J

modif εI J
modif t (s)

1 42 4 0,5693 162,9618 10,3921 206,3245 154
2 30 4 0,1813 11,4529 8,1665 32,5976 321
3 21 4 0,0445 4,8319 10,2162 38,6399 852
4 16 4 0,0135 8,7591 2,5721 30,5562 1016
6 11 4 0,0055 1,0313 1,1461 1,4587 3688
8 8 4 0,000475 0,6813 0,2395 0,2296 12367
10 8 4 0,000218 0,5239 0,2114 0,2037 40863
12 6 4 0,0000386 0,1584 0,0147 0,0244 130725

nΓ nf dq εintial εI I
initial εJ J

initial εI J
initial t (s)

14 1 8 0,0000084588 0,0011 0,0002 0,0011 1272042

Table 4 Convergence study of the reduced method in respect to number of modes per band m

m nf dq εmodif εI I
modif εJ J

modif εI J
modif t (s)

1 8 4 0,2638 13,2821 0,9994 42,4894 106
2 9 4 1,2161 1,6721 11,9184 82,8458 199
3 9 4 0,1125 5,2505 1,9853 11,2665 617
4 7 4 0,0014 2,5034 0,8715 21,3065 736
6 5 4 0,0004933 1,5117 0,1491 3,0762 3765
8 4 4 0,0002532 1,0135 0,0853 1,2228 9310
10 3 4 0,0001112 0,8393 0,0705 0,2563 27709
12 3 4 0,0000533 0,7776 0,0368 0,1006 132549

Table 5 Convergence study of the reduced method in respect to number of modes per band m

m nf dq εmodif εI I
modif εJ J

modif εI J
modif t (s)

1 14 4 1,6641 114,1307 5,7465 875,0511 198
2 21 4 1,4433 144,4693 7,3431 49,5112 387
3 22 4 0,9317 57,1797 7,0027 47,8213 1251
4 17 4 0,2688 12,3305 3,2065 20,3804 1522
6 12 4 0,0048 7,6171 0,9880 4,5339 8325
8 9 4 0,0028 1,6416 0,9888 1,3611 22552
10 8 4 0,00080232 1,0051 0,1582 0,2669 69114
12 7 4 0,00026208 1,1289 0,1391 0,0952 415586


