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PERIODIC-COEFFICIENT DAMPING ESTIMATES, AND STABILITY OF
LARGE-AMPLITUDE ROLL WAVES IN INCLINED THIN FILM FLOW

L.MIGUEL RODRIGUES AND KEVIN ZUMBRUN

ABSTRACT. A technical obstruction preventing the conclusion of nonlinear stability of large-Froude
number roll waves of the St. Venant equations for inclined thin film flow is the ”slope condition” of
Johnson-Noble-Zumbrun, used to obtain pointwise symmetrizability of the linearized equations and
thereby high-frequency resolvent bounds and a crucial H® nonlinear damping estimate. Numerically,
this condition is seen to hold for Froude numbers 2 < F' < 3.5, but to fail for 3.5 $ F'. As hydraulic
engineering applications typically involve Froude number 3 < F' < 5, this issue is indeed relevant to
practical considerations. Here, we show that the pointwise slope condition can be replaced by an
averaged version which holds always, thereby completing the nonlinear theory in the large-F' case.
The analysis has potentially larger interest as an extension to the periodic case of a type of weighted
“Kawashima-type” damping estimate introduced in the asymptotically-constant coefficient case for
the study of stability of large-amplitude viscous shock waves.

1. INTRODUCTION

The St. Venant equations of inclined thin film flow, in nondimensional Lagrangian form, are

atT — @Cu = O,
(1.1) T2\ 9 2
Opu + Oy <W> =1—7u”+ v, (7" “0yu),

where 7 = 1/h is the reciprocal of fluid height h, u is tangential fluid velocity averaged with
respect to height, = is a Lagrangian marker, F' is a Froude number given by the ratio between a
chosen reference speed of the fluid and speed of gravity waves, and v = R, !, with R, the Reynolds
number of the fluid. The terms 1 and 7u? on the righthand side of the second equation model,
respectively, gravitational force and turbulent friction along the bottom. Roughly speaking, F
measures inclination, with /' = 0 corresponding to horizontal and F' — oo to vertical inclination of
the plane.

An interesting and much-studied phenomenon in thin film flow is the appearance of roll-waves,
or spatially periodic traveling-waves corresponding to solutions

(1.2) (ryu)(z,t) = (T,u)(x — ct)

of (1.1). These are well-known hydrodynamic instabilities, arising for (1.1) in the region F' > 2
for which constant solutions, corresponding to parallel flow, are unstable, with applications to
landslides, river and spillway flow, and topography of sand dunes and sea beds [BMO04].

Nonlinear stability of roll-waves themselves has been a long-standing open problem. However,
this problem has recently been mostly solved in a series of works by the authors together with
Barker, Johnson, and Noble; see [JZN11, BJRZ11, BJN*10, JNRZ14, BJN'15]. More precisely, it
has been shown that, under a certain technical condition having to do with the slope of the traveling-
wave profile (7,a), spectral stability in the sense of Schneider [Sch98, Sch96, JZN11, JNRZ14],
implies linear and monlinear modulational stability with optimal rates of decay, and, moreover,
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asymptotic behavior is well-described by a system of second-order Whitham equations obtained by
formal WKB expansion.

In turn, spectral stability has been characterized analytically in the weakly unstable limit F — 2
and numerically for intermediate to large F' in terms of two simple power-law descriptions, in the
small- and large-F' regimes, respectively, of the band of periods X for which roll waves are spectrally
stable, as functions of F' and discharge rate ¢ (an invariant of the flow describing the flux of fluid
through a given reference point) [BJNT15]. That is, apart from the technical slope condition, there
is at this point a rather complete theory of spectral, linear, and nonlinear stability of roll wave
solutions of the St. Venant equations. However, up to now it was not clear whether failure of the
slope condition was a purely technical issue or might be an additional mechanism for instability.

Precisely, this slope condition reads, in the Lagrangian formulation (1.1)—(1.2), as

(1.3) Wi, < F72,

where @ is the velocity component of traveling wave (1.2). It is seen numerically to be satisfied
for ' < 3.5, but to fail for F 2 3.5 [BINT15]. For comparison, hydraulic engineering applications
typically involve Froude numbers 2.5 $ F' 5 20 [AeM91, Bro69, Bro70]; hence (1.3) is a real physical
restriction. From the mathematical point of view, the distinction is between small-amplitude, slowly
varying waves for which (1.3) is evidently satisfied and large-amplitude, rapidly-varying waves, such
as appear in the spectrally stable regime for small and large F', respectively [BJNT15].

The role of condition (1.3) in the stability analysis is to obtain pointwise symmetrizability of the
linearized equations and thereby high-frequency resolvent bounds and a crucial nonlinear damping
estimate used to control higher derivatives in a nonlinear iteration scheme. The purpose of the
present brief note is to show, by a refined version of the energy estimates of [JZN11, BJRZ11],
that the pointwise condition (1.3) can be replaced by an averaged version that is always satisfied,
while still retaining the high-frequency resolvent and nonlinear damping estimates needed for the
nonlinear analysis of [JZN11, JNRZ14], thus effectively completing the nonlinear stability theory.

The remainder of this paper is devoted to establishing the requisite weighted energy estimates,
first, in Sections 2-3, in the simplest, linear time-evolution setting then, in Sections 4.1 and 4.2,
respectively, in the closely related high-frequency resolvent and nonlinear time-evolution settings.
The estimates so derived may be seen to be periodic-coefficient analogs of weighted “Kawashima-
type” estimates derived in the asymptotically-constant coefficient case for the study of stability
of large-amplitude viscous shock waves [Zum04, Zum07, GMWZ06], to our knowledge the first
examples of such estimates specialized to the periodic setting. We discuss this connection in
Sections 5 & 6. More, this seems to be the first instance of a proof of hypocoercive! decay where
periodicity is used in a crucial way. We note, finally, the relation between these weights and the
“gauge functions” used for similar purposes in short-time (i.e., well-posedness) dispersive theory
[LP02, BGDDO06, Miel5], a connection brought out further by our choice of notation in the proof.
This indicates perhaps a potential for wider applications of these ideas in the study of periodic
wave trains.

2. PRELIMINARY OBSERVATIONS
Making the change of variables z — x — ¢t to co-moving coordinates, we convert (1.1) to
Tt — CTy — Uy = 0,

2.1
(2.1) Up — CUy + ((25’2)717'72)m =1—71u’+ 1/(7'72ux)m,

IThe reader interested in replacing Kawashima-type estimates in the more general context of hypocoercive decay
estimates is referred to [Vil09, Remark 17] and references in [Rod13, Appendix A], especially [BZ11].
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and the traveling-wave solution to a stationary solution U(z,t) = (7(z,t),u(z,t)) = (7(z),u(z))
convenient for stability analyis.
We note for later that the traveling-wave ODE becomes

(2.2) — Ty — Uiy = 0, —ciiy + (2F) 71772, =1 — 70® + v(7 %y,
yielding the key fact that
(2.3) [Ty = cf (T)Ts

is a perfect derivative for any function f(-), hence zero mean over one period. We note also as in
[JZN11] that ¢ # 0, else u = constant and the equation for 7 reduces to first order, hence does not
admit nontrivial periodic solutions. Linearizing about U = (7, u) gives the linearized equations

T — CTp — Uy = 0,

24

(24) up — cuy — (1), = 1/(7_'7214,3):r — @21 — 2uTu,
where

(2.5) =7 3(F2 + 2wi,).

With this notation, the slope condition of [JZN11] appears as 73 > 0. We note that, by (2.3),
the mean over one period of g(7)a is positive for any positive g:

(2.6) (9(T)a) = (g(1)T°F %) > 0.

That is, (any reasonable version of) the slope condition holds always in an averaged sense.? An
approximate asymptotic diagonalization in the large spectrum regime— see [BJRZ11, BJN*15], in
particular [BJNT15, Appendix A]- reveals that the sharp?® relevant averaged conditions is

(o7?)

14

> 0.

We shall show in the rest of the paper that this averaged condition is in fact sufficient for the
nonlinear analysis of [JZN11, JNRZ14].

3. LINEAR DAMPING ESTIMATE

Introduce now some ‘gauge’ functions ¢1, ¢ and ¢3 and define for U = (7, u) the energy

(31) eW) = [ (borr2 + dour® + goru,).

A brief computation yields that solutions U of (2.4) satisfy

SEO) = [(= (5602 + ags) 72 = (B0a) u + (91— a2 + 00) Tt

+O((lullgz + 7l ) (lullz +1I7l22))-
The original gaugeless strategy that works when « is positive may be achieved by choosing ¢; = 1,
¢2 = ¢1/a and 0 < ¢3 = constant < 1. The possibility of choosing ¢2 = ¢1/a while keeping
both ¢1 and ¢o positive is a direct manifestation of the fact that in this case the first-order part of
system (2.4) is symmetrizable. For the general case, of interest here, we instead take

(3.2)

(3.3) g(¢l)x + (Oé—T2 _ o)

14 14

)le = 0’ ¢1(0) > 0’

2Here and elsewhere we use (h) to denote mean over one period of a function h.
3In the sense that there exist curves of spectrum for the operator L— defined below— that are going to infinity and
whose real parts converge to —(a7?)/v.
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(3.4) ¢1 — agps + %qﬁg =0, 0 < ¢ = constant < 1,

so that ¢3 is chosen to kill the indefinite cross-term and the fact that ¢ is not constant and thus
does not commute with the generator of system (2.4) is used to average and cancel the “bad”

oscillating part of O‘T%Q through the arising nontrivial commutator.
With these choices, we obtain after another brief computation

d 2q 272 v
Le@0) = [ [(B2o1 - 2205) 22+ (r02) 2]
+ Ol + Il )l s + 7l2))
< (el + I7al3a) + Cr (lullgz + Il el + llz2)).

(3.5)

1/2) 111/2

for some positive 71 and C1, whence, by interpolation inequality [ul|z1 < [Jul|}% ||ull ;2 and the
fact that E(U) ~ (HumH%2 + ||TxH%2) modulo H7'||%2,

d
(3.6) ZEU®) < —nEU ) + CIU ML,

for some positive n and C, a standard linear damping estimate.
Note that, in the step E(U) ~ (|luz|72 + [|72]|72) modulo L?, we have used in a critical way that

-

hence ¢; and 1/¢7, remains bounded, a consequence of periodicity plus zero mean.
To derive a first corollary from the key estimate (3.6), one may combine it with the standard L2
bound

d | 4
G [ G+ 3) = = [ 5 + o(Uullm + il lulla + I7122))
to obtain the following lemma.

Lemma 3.1. There exist positive 8 and C' such that any U solving (2.4) satisfies for any t > 0

t
WOl < Ce UO) g + C/ e VU ()l 2 ds -
0

4. APPLICATIONS

Lemma 3.1 by itself is not of much direct practical use. However, as we will now show, we
can readily adapt its proof, and especially estimate (3.6), to obtain various useful forms of high-
frequency damping estimates. The reader unfamiliar with these considerations may benefit from
first having a look at [Rod13, Appendix A] for a terse introduction to this approach. Indeed what
follows stems directly from the mere introduction in the classical strategy described there of gauges
leading to (3.6). See also [Zum04, Zum07] for related estimates in the shock wave case.

4.1. High-frequency resolvent bound. An important part of the proofs in [JZN11, JNRZ14] is
dedicated to estimates of semigroups generated by linearization around a given wave, to be used
in an integral formulation of the original nonlinear systems. These estimates are deduced from
spectral considerations and the noncritical part of the linearized evolution is directly controlled by
an abstract spectral gap argument that only requires uniform bounds on certain resolvents. Our
claim is that a spectral version of Lemma 3.1 does provide these uniform bounds.

To be more specific let L denote the operator generating the linearized evolution around U, that
is, such that system (2.4) reads Uy — LU. The operator L is a differential operator with periodic
coefficients but acting on functions defined on the full line. We do not apply directly spectral

4



considerations to L but rather to its operator-valued Bloch symbols L, associated with the Floquet-
Bloch transform— see [JNRZ14, Rod13] for instance. Explicitly, if = denotes the fundamental
period of U, for any Floquet exponent ¢ in the Brillouin zone [—7/Z,7/E), the operator L acts
on functions of period ZE by L¢ := e Lt

The operator 0, itself has Bloch symbols 9, + ¢{. As a result, when dealing with L¢, the

per

1/2
(equivalent) norm of interest on H%,,.(0,Z) is Hf”Hg = (22:0 |(0x + if)kfuiz(o,g)> . Consider

now the resolvent equation
(4.1) A=L)U = F.

Letting (-,-) denote complex inner product, we find by computations essentially identical to those
in Section 3, substituting AU for U; and 0, + i€ for 0, that, defining ¢; as in (3.3)—(3.4), and

Ee(U) = 5(01(0x +i&)7, (05 +1€)T) + 5(02(05 + i)u, (O + i€)u) + R(¢sT, (95 + i6)u),
one derives
2R(N) E(U) = R(2A&E(U))
= R((¢1(0z + i&)u, (0z + 1§)(Mu)) + (#2(0z + &) T, (O + i) (AT))
+ <¢37'7 (ax + 25)()‘u)> + <¢3(8$ + Z§)u7 )‘T>)

(4.2) =" / (5(61)z + 063)|(0: +i€)7? — / (£62)|(00 + i) *uf?

+ [61-avn + HouR (@ 7 (@, + i€)7u)
+O(lullgg + Illgg) Ul g + il22)) + OV Il
< —n&(U) + OV + |FI3)

for some positive n and C' uniform with respect to A and &.
Combining (4.2) with the easy estimate

1

Ull7. = —

H HL2 | )\|

for some C', we obtain for ®A > —n/2 and |A| sufficiently large, the estimate

(U AU)| < CIATHIU NG + IF 172,
13

U7 < CIFI,

for some uniform C'. Incidentally, since L¢ has compact resolvents hence discrete spectrum com-
posed entirely of eigenvalues, the above estimate also implies that such A do not belong to the
spectrum of L.

More generally, by adapting the previous computations to higher-order estimates, along the lines
of the method expounded in next subsection, one proves the following result required by the analysis
of [JZN11, JNRZ14].

Proposition 4.1 (Resolvent bounds). For any positive integer s, there exist positive n, C' and R
such that if A € C is such that |\| > R and R(\) > —n then, for any [-7/Z,7/E), we have

ANdoms, 0z)(Le)  and (A= L) mpsmp < C.

This offers a direct replacement for [JZN11, Appendix B] without assuming any condition on the
background wave U.
5



4.2. Nonlinear damping estimate. The other place where high-frequency estimates play a role
in the arguments of [JZN11, JNRZ14] is in providing a nonlinear slaving bound that shows that
high-regularity norms are controlled by low-regularity ones and enables us to close in regularity a
nonlinear iteration. With the strategy implemented above we are also able to reproduce this bound
without assuming the slope condition (1.3).

To be more specific let us first warn the reader that, because of the complex spatio-temporal
dynamics that take place around periodic waves, the appropriate notion of stability is neither the
standard one nor the simpler orbital stability but space-modulated stability, as recalled in the next
subsection. For this reason, following [JZN11, JNRZ14], instead of directly estimating U—U, where
U = (7,1) is a solution of (2.1), we need to introduce (V1)) such that

(4.3) V(x,t) = U(x —(z,t),t) — U(z),

intending to prove that V' and the derivatives of ¢ remain small provided that they are sufficiently
small initially. Mark that even if ¢ is initially zero, as assumed in [JZN11], one may not achieve
the latter goal while imposing ¥ = 0. In other words a modulation in space, encoded by a space-
time dependent phase is in any case needed in the argument. See the detailed discussions in
[JNRZ14, Rod13]. Our new unknowns, which have to be determined together in a nonlinear
way, are then V = (r,u) and 1, and a specific educated choice, that we shall not detail here,
is then needed to obtain concrete equations for those. However, let us at least mention that in
constructions of [JZN11, JNRZ14] the phase shift ¢ is always slow so that only high regularity
control on V remains to be proved. This is what we provide now.

To do so in a precise but concise way, we set f(7) = (2F?)" 1772, g(7) = v7=2 and h(1,u) =
1 —7u% Then U in (4.3) solves (2.1) provided that V = (7,u) and 1 satisfy
(4.4)

— 0 0
(I=¥2)Vi =LV = —U+V)e + (—% h(U + U)) + (1—_% g(7+7)(u+ u)m>x
0
T \E+1) -9 + GF+7)—9(7) — ¢ (P,

Defining the modified energy

(4.5) E,(U) = /(1 ) (%@Tg T ¢3m$> ,

repeating the argument of Section 3, absorbing nonlinear terms into the linear ones and separating
out ¥ terms using Sobolev’s embeddings in Gagliardo-Nirenberg form and Young’s inequality, we
obtain, in analogy to (3.6), that solutions to (4.4) satisfy the nonlinear estimate

d

7Ee(V) < =n&u(V) + C(IVIL2 + 100 va) )

for some positive C' and 7, provided that we know in advance some sufficiently small upper bound
on ||(V; 1, %z)| g1 and thus are allowed to use Lipschitz bounds for f, g and h and their derivatives
on a fixed neighborhood of U. Differentiating the equations and performing the same estimate on
85 V', with higher-order interpolation inequalities, we obtain likewise when k is a positive integer

d k k
(4.6) & (0V) < =&V + C (VI + 110 ) e) »
so long as |V|| g1 and ||(¥y,¥4)|| gx remain sufficiently small.

6



Applying Gronwall’s inequality and recalling that Ex(9FV) ~ [|0FV[|2, modulo lower-order
terms, with constants uniform with respect to 1, satisfying constraints above, we obtain the follow-
ing key estimate showing that higher Sobolev norms ||V|| g+ are slaved to ||V z2 and ||(¢+, ¥z ) g*»
the final nonlinear estimate needed for the analysis of [JZN11, JNRZ14]. This provides a result anal-
ogous to [JNRZ14, Proposition 2.5] and directly replacing [JZN11, Appendix A], without making
any use of a pointwise symmetrization hence dropping the slope constraint (1.3).

Proposition 4.2 (Nonlinear damping). For any positive integer s there exist positive constants 6,
C and e such that if V and ¢ solve (4.4) on [0,T] for some T > 0 and

sup [[(V, e, ¥2) ()| s (m) < €
te[0,7

then, for all 0 <t < T,

t
(4.7) ||v(t)\|§{S(R)gce9t||v(0)\|§{5(R)+C/O e =) (Hv(s)ll%Q(R)+H(wt,wm)(s)llip(m)) ds.

4.3. Asymptotic stability. As discussed with great detail in [JNRZ14, Appendix D], uniform
resolvent bounds of Proposition 4.1 and nonlinear slaving estimates of Proposition 4.2 are the only
structural conditions needed to apply almost word-by-word the arguments of [JNRZ14] to a periodic
wave of a given 'parabolic’ system. Our foregoing analysis shows that system (1.1) satisfies those
around any given wave so that all conclusions of [JNRZ14] apply to any spectrally-stable periodic
wave of (1.1). In particular, any spectrally-stable roll-wave is also nonlinearly-stable, provided that
one uses definitions of stability adapted to periodic waves of parabolic systems, as we now briefly
recall.

A given periodic wave solution to (1.1) U, of period Z, is said to be diffusively spectrally stable
provided that the generator L of the linearized evolution and its Bloch symbols Lg, as defined in
Subsection 4.1, satisfy

(D1) o(L) C {\ | RA < 0} U{0}.
(D2) There exists 6 > 0 such that for all £ € [—7/Z,7/Z) we have o(L¢) C {\ | RN < —6|¢[*}.
(D3) A =0 is an eigenvalue of Ly with generalized eigenspace of dimension 2.

(H) With respect to the Floquet exponent £, derivatives at 0 of the two spectral curves passing

through zero are distinct.

From the pioneering work [Sch98, Sch96] to the recent [JNRZ14], conditions (D1)—(D3) have slowly
emerged as essentially sharp spectral stability conditions for periodic waves of dissipative systems.
Some form of (H) is also needed but the present form could well be slightly relaxed in a near future,
see precise discussion in [Rod13, Chapter 5]. All together, conditions (D1)—(D3) and (H) express
that the spectrum of L is as noncritical and nondegenerate insofar as allowed by the presence
around U of a two-dimensional family of periodic waves.

The spatial complexity of the periodic background U precludes any hope for a simple notion
of nonlinear stability. Over the years there has arisen the concrete remedy implemented in (4.3),
consisting in introducing a space-time dependent phase shift, though with various possible strategies
in the prescription of separate— but coupled— equations for V' and . One obvious inspiration for
introducing a phase in the nonlinear study comes from classical analysis of simpler, asymptotically-
constant patterns such as fronts, kinks, solitary waves or shock waves, for which the relevant notion
of stability— orbital stability— already requires the introduction of a time-dependent phase. As
formalized in [JNRZ14] the corresponding notion of stability for periodic waves— space-modulated
stability— is obtained by measuring proximity of a function u from a function v in a given functional
space X with

ox (u,v) = ir\Illf luoW —v|lx + [|0,(¥—1d)|x.
7



and not with ||u — v||x. At a given time this allows for a space-dependent phase synchronization
provided that the synchronization differs from the identity by a sufficiently slow phase shift. The
interested reader is again referred to [JNRZ14, Rod13] for a detailed discussion of this concept.
However, we stress again here that there is no hope for a better notion of stability unless the original
system exhibits some nongeneric null conditions, denoted “phase uncoupling” in [JNRZ14].

With these definitions in hands, our analysis combined with the arguments of [JNRZ14] yield
the following stability result.

Theorem 4.3 (Nonlinear stability). For any integer K, K > 4, a diffusively spectrally stable
periodic wave of (1.1) is nonlinearly asymptotically stable from L'(R) N H*(R) to HX(R) in a
space-modulated sense.

More explicitly, if U satisfies (D1)-(D3) and (H) then, for any K > 4, there exist positive € and
C such that any Uy such that 6,15k (Ug, U) < € generates a global solution U to (1.1) such that

VteRy, 5HK(U("t)’U) < C 5L10HK(UO’U)

and
d — t—o00

Sy (U(,1),0) =% 0.

The actual proof provides a much more precise statement including, for instance, a bound of

dre(U(-,1),U) by C (1+ t)_%(l_l/p) similar to those for LP-norms of a heat kernel or of self-similar
solutions of viscous Burgers’ equations. The reader is referred to [JNRZ14, Theorem 1.10] for
such a precise statement. Once Theorem 4.3 is proved, the second part of the analysis [JNRZ14]
may also be applied to (1.1). This yields a very precise description of the large-time asymptotic
behavior in terms of a slow modulation in local parameters varying near constant parameters of
the original wave, and obeying some averaged system of partial differential equations, as derived to
various order of precision in [Whi74, Ser05, NR13, JNRZ14]. For the sake of conciseness, we do not
state such a result here but rather refer the reader to [JNRZ14, Theorem 1.12] and accompanying
discussions in [JNRZ14, Rod13].

5. THE SHOCK WAVE CASE

As a sample of the potential wider use of the strategy expounded here, we next turn to the
connection with viscous shock theory, showing that the same linear damping estimate (3.6) may
be obtained by essentially the same argument in the asymptotically-constant, viscous shock wave
case, thus recovering the bounds established in [Zum04, Zum07, GMWZ06] by related but slightly
different weighted Kawashima-type energy estimates.* The equations of isentropic gas dynamics in
Lagrangian coordinates, expressed in a comoving frame are

Oy — €O — Ogu = 0,

5.1
(5.1) Oyu — cOpu + Opp(T) = y(?x(T_l@wu),

where 7 is specific volume, u is velocity, and p is pressure.
Traveling waves (7,u)(z,t) = (7, u)(z) satisfy the profile ODE

—Ar—p(r) +q=cd /T, g = constant.

We note as in the periodic case that ¢ # 0, else u, p(7) = constant, yielding 7 = constant, a trivial
solution. Assume that the shock is noncharacteristic, i.e., —p’(7+) # 2, hence 7+ are nondegenerate
equilibria and the shock profile decays exponentially to its endstates as x — +oo.

4The weights used in [Zum04, Zum07, GMWZ06] are effectively ¢1 = ¢2 > @3, (¢1)2 = —C(a—jZ - (O‘—jz))qﬁl,
C>1



The linearized equations are

(5.2) Ty — €Ty — Uy = 0, up — cuy — (aT), = V(%_lum)x
where o := p/(7) + v&. Define I(O‘T ) to be a smooth interpolant between a—|m +oo such that
a7? at?
5.3 — —I(—) =0(e
(5.3 T (9T = (et

for some positive 6.

Taking as before £(U) := / (%(ﬁﬁf + %¢27_'3u33 + ¢3Tux), we find again

d
(5.4) i / ( o+ agy) T — (Fé2) uly + (61 — ags + £¢3) ngum)
((”“Hm ) Qlullgr + 17l 22))-
Taking 5(¢1)a < ¢1 =0, p1—apa+2¢3 =0, ¢1(0) > 0, and 0 < @2 = constant < 1,

we thus have
d 2 a?72 v
Tewe) = - / [(1(222)61 — =2226,) 72 + (2102) ]
+ O ((lull gz + 7l (lull g+ 117lz2)
< =1 ([ taall72 + 172 l172) + C'(Jull g2 + 7)) (el e + (701 22),

for some positive C’ and 7/, and thereby the same linear damping estimate as in the periodic-
coefficient case:

(5.5)

(5.0 LEW(D) < ~nEU ) +CIUWIE:

for some positive n and C.
xT

-2
aT aT
As in the periodic case, a crucial point is that / <— — I(—)), hence ¢ and 1/¢1, remains
v v

bounded, so that E(U) ~ (|lugl|22 + [|72/|32) modulo ||7[|2,, a property following in this case by
exponential decay, (5.3).

The above may be recognized as exponentially weighted Kawashima-type estimates similar to
those used in the study of viscous shock stability in [Zum04, Zum07, GMWZ06], reflecting the
growing analogy between the periodic and asymptotically-constant cases. Actually, part of the
recent activity of the authors, jointly with others, focused on dynamics around periodic waves,
and culminating more or less in [JNRZ14], was motivated by the will to put its analysis on a par
with classical ones on asymptotically-constant waves. With this respect the present contribution
that provides analytical tools necessary to consider large-amplitude periodic waves of hyperbolic-
parabolic systems should be compared with [MZ04], where, motivated by some clever ”transverse”
energy estimates of Goodman [Goo91] in the study of small-amplitude stability, the treatment of
large-amplitude viscous shock waves was first carried out. In the reverse direction the Conjugation
Lemma of [MZ05] on asymptotically constant-coefficient coordinate transformations from asymp-
totically constant- to constant-coefficient systems may be thought as analogous to the classical
Floquet Lemma on periodic coordinate transformation of periodic- to constant-coeflicient systems
of equations.

6. DISCUSSION

At the linear level, for a general second-order hyperbolic-parabolic principal part U; + AU, =
(BU.)z, RB > 0, a Kawashima-type estimate is on an energy combining £(U) := (U, A°U,) +
9



(U, KU,), with the lower-order (U, A°U), where A" is symmetric positive definite and K is skew
symmetric, chosen, where possible, so that

(6.1) RA’B+ KA) > 0.

When A and B are constant, as arising from linearization around a constant state, and the original
nonlinear system admits a strictly convex entropy, (6.1) may be reduced to a simple-looking con-
dition that is satisfied by most of systems of physical interest; see [Kaw83, LZ97]|. As a result, for
small-amplitude waves, a suitable choice of K may typically be achieved globally with a constant
K. However, for large-amplitude shocks, this can be done typically only near x — +oo where A is
symmetrizable, and one needs to recover coercivity in the near field |z| < C in a different way.

As exemplified here— for the first time in a periodic context, the key to the treatment of large-
amplitude waves, is to choose the ”symmetrizer” Ay jointly with the ”compensator” K so that one
may use a clever choice for Ag to relax constraints on K and vice versa. In the present case,

—c —1
= (2 %),

for either of the St. Venant or isentropic compressible Navier—Stokes equations. The issue in the
latter case is that symmetrizability holds in general only in the limits x — 400, in the former that
it holds only on average, but in any case not pointwise. However, we have seen that energy esti-
mates can be recovered by modulating classical symmetrizers and compensators with appropriate
asymptotically-constant, or periodic exponential weights.

Mark that our analysis, while apparently quite robust, leaves widely open the question of de-
termining, for general systems, what kind of notion of symmetrizability on average could lead to
similar periodic-coefficient high-frequency damping.
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