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Abstract

We take interest in a reaction-di�usion system which has been recently
proposed [11] as a model for the e�ect of a road on propagation phenomena
arising in epidemiology and ecology. This system consists in coupling a classical
Fisher-KPP equation in a half-plane with a line with fast di�usion accounting
for a straight road. The e�ect of the line on spreading properties of solutions
(with compactly supported initial data) was investigated in a series of works
starting from [11]. We recover these earlier results in a more general spatially
periodic framework by exhibiting a threshold for road di�usion above which the
propagation is driven by the road and the global speed is accelerated. We also
discuss further applications of our approach, which will rely on the construction
of a suitable generalized principal eigenvalue, and investigate in particular the
spreading of solutions with exponentially decaying initial data.

Keywords. Reaction-di�usion systems, asymptotic spreading speed, generalized
principal eigenvalues.

1 Introduction

The study of the large time behavior of solutions of reaction-di�usion equations
has been motivated by a wide range of applications, in particular in ecology and
epidemiology. Indeed, it is well understood that propagation phenomena arise from
the combining e�ect of di�usion (which accounts in an ecological context for the
motion of individuals) and reaction (reproduction of the species), thus providing a
mathematical model for ecological invasions or epidemics [25].

The most classical example is the so-called Fisher-KPP equation

∂tv = d∆v + f(v), t > 0, x ∈ RN , (1.1)

where d > 0 and the nonlinearity f ∈ C1,r
loc ([0,∞)), 0 < r < 1, satis�es

f(0) = f(1) = 0, v 7→ f(v)

v
is decreasing, and

f(v)

v
→ −∞ as v → +∞. (1.2)
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The typical example is f(v) = v(1−v) and was investigated in the seminal papers [16,
19]. In particular, this equation is well-known to admit positive traveling waves,
namely planar solutions moving with a constant shape and speed through the domain
and connecting the two constant steady states 0 and 1 [1, 16, 19]. The minimal wave
speed, which can be explicitly computed as

c∗KPP = 2
√
df ′(0),

is also the asymptotic spreading speed of solutions of the Cauchy problem (1.1)
with compactly supported initial data [2]. The striking feature of these results is
that, under the KPP assumption (1.2), the speed c∗KPP is fully determined by the
linearization of (1.1) around v = 0.

Various extensions of the KPP equation have been investigated in the past years.
In particular, a tremendous e�ort has been dedicated to the inclusion of heterogene-
ity, which is a common yet mathematically challenging feature of more realistic eco-
logical models [25]. Among the vast literature, we refer in particular to [5, 6, 7, 8, 27]
for generalizations of the results mentioned above in the spatially periodic framework,
in which we will also place ourselves below. Let us also mention that further hetero-
geneous problems, as well as other types of nonlinearities have also been studied: we
refer again to [5] and the references therein, as well as to the thorough reviews [3, 28].

More recently, Berestycki, Roquejo�re and Rossi proposed a new model specif-
ically devised for studying the role of roads in biological invasions [11]. This issue
was motivated by the empirical observation that not only diseases, but also various
ecological species, tend to spread faster along roads and other transport lines.

Their model is a system of two parabolic equations, whose unknowns u(t, x) and
v(t, x, y) should be interpreted as the density of a same population but on di�erent
domains, respectively the road and the �eld:

∂tu−D∂2
xu = ν(x)v(t, x, 0)− µ(x)u, t > 0, x ∈ R,

∂tv − d∆v = f(v), t > 0, (x, y) ∈ Ω,
−d∂yv(t, x, 0) = µ(x)u− ν(x)v(t, x, 0), t > 0, x ∈ R.

(1.3)

From now on and consistently with this interpretation, we will refer to the upper
half plane Ω = {(x, y) ∈ R2 : y > 0} as the �eld, and to the line {(x, 0) : x ∈ R}
as the road.

In [11] as well as throughout this work, the �eld equation (second line of (1.3)) is
still assumed to be of the KPP type in the sense that the function f satis�es (1.2).
However, it is coupled with the road equation (�rst line of (1.3)) through a Robin
type boundary condition at y = 0 (last line of (1.3)). Roughly speaking, µu is the
proportion of individuals jumping from the road to the �eld, and νv the proportion
of individuals jumping from the �eld to the road. Note that the �eld boundary
condition is normalized so that, when no reproduction takes place (f ≡ 0), then the
total mass of the population is conserved (we refer to [11] for a complete argument).

When µ and ν are positive constants, Berestycki, Roquejo�re and Rossi [11]
proved that the solution (with compactly supported initial data) spreads along the
road with some speed c∗(D) ≥ c∗KPP = 2

√
df ′(0) and that, moreover, this inequality

is strict if and only if D > 2d. This in particular means that, to accelerate the propa-
gation, fast di�usion on the road is enough even though individuals do not reproduce
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there. One may also note that this di�usion threshold D = 2d for acceleration does
not depend on the values of the constants µ and ν, an observation which will be
strengthened by our results.

A more general formula for the di�usion threshold, including the case when
transport or reproduction take place on the road, was given in [10]: in particular,
when reproduction rates are identical on the road and in the �eld, then acceleration
occurs as soon as D > d. Related results were also obtained in various frameworks
such as fractional di�usion [4], ignition type nonlinearities [14, 15] and nonlocal
exchange [23]. The issue of the spreading speed in oblique directions away from the
road was investigated in [4, 12] and revealed interesting properties where the shape
of the propagation is no longer dictated by a Huygens principle, and may not even
be convex. Lastly, we refer to [26] where the restriction of the KPP problem (1.3)
to a truncated �eld, with a Dirichlet boundary condition and constant exchange
coe�cients, was studied. It turns out that such a truncation plays an essential role
in our arguments.

While all the above papers dealt with systems that are invariant in the x-direction
(let us point out here that the presence of the road itself entails strong heterogeneity
with respect to the y-direction), our work will stand in a more general spatially
periodic framework where the results of [11] (as well as some of [10, 26]) will be
extended. Even though the heterogeneity will be limited to the exchange terms, we
believe our arguments could be extended to more general periodic systems and will
brie�y discuss this in the last section.

1.1 Main results

From now on, we consider the system (1.3) where D, d > 0, the function f satis�es
the KPP assumption (1.2), and µ(x), ν(x) are L-periodic exchange coe�cients in
C1,r(R) such that

µ ≥6≡ 0, ν ≥6≡ 0.

As mentioned above the main di�erence with the original model of [11] lies in the
x-dependence of the exchange terms, which is motivated by the ubiquity of het-
erogeneity in the applications. The periodicity provides a suitable mathematical
framework, while still requiring a new approach avoiding explicit computations. We
also point out that µ and ν may occasionally be 0, which of course could not hap-
pen in the homogeneous exchange case. This can be interpreted as the presence of
"walls" blocking locally the motion of individuals between the �eld and the road
(but not necessarily both ways simultaneously).

For convenience, we introduce the notations

µ0 := minµ ≤ µ(x) ≤ µ1 := maxµ, ν0 := min ν ≤ ν(x) ≤ ν1 := max ν.

The system (1.3) is supplemented with bounded and non-negative initial data{
u|t=0 = u0 in R,
v|t=0 = v0 in Ω.

(1.4)

As will be shown in Section 2, this problem is well-posed under generic conditions
on the initial data.
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In this paper, we take interest in the large time behavior of the solution and
more speci�cally in its spreading speed in the x-direction or, in other words, along
the road. By spreading, we mean here that the solution should converge to a positive
steady state on some expanding in time domains. Therefore, we will begin with a
Liouville type result to describe such positive steady states:

Theorem 1.1. There exists a unique positive and bounded stationary solution (U, V ).
This solution is L-periodic in x, has a positive in�mum and satis�es V (x,+∞) ≡ 1
where the limit is uniform with respect to x ∈ R.

Unlike in the homogeneous exchange case, it is not possible to explicitly compute
this positive steady state and, therefore, both its existence and uniqueness will be
inferred from the (linear) instability of 0 and the KPP assumption. The proof, which
will be performed in Section 2.2, relies on the fact that the road-�eld system satis�es
a comparison principle, namely Propositions 2.1 and 2.2. Indeed, although it is
non-standard due to the 1D-2D coupling through a boundary condition, this model
shares many features with monotone systems. We refer the reader to [21] and the
references therein for a study of abstract monotone systems.

From the proof of Theorem 1.1 it will be clear that this steady state is stable. One
may thus expect it to attract solutions of (1.3), leading to the spreading dynamics
that we wish to investigate:

Theorem 1.2. There exists c∗(D) ≥ c∗KPP = 2
√
df ′(0) > 0 such that any solution

(u, v) of (1.3)-(1.4) with non-negative, continuous and compactly supported initial

data (u0, v0) 6≡ (0, 0) satis�es:

� for all c > c∗(D) and R > 0,

lim
t→+∞

sup
x≤−ct , 0≤y≤R

(u(t, x) + v(t, x, y)) = 0;

� for all 0 < c < c∗(D) and R > 0,

lim
t→+∞

sup
0≥x≥−ct , 0≤y≤R

(|u(t, x)− U(x)|+ |v(t, x, y)− V (x, y)|) = 0.

The above statement deals with spreading in the left direction. As the symmetric
problem x↔ −x satis�es the same assumptions, there clearly also exists a spreading
speed in the right direction. However, the left and right spreading speeds may be
di�erent.

The proof is directly inspired by the single (spatially periodic) equation. It relies
on the construction of a family of principal eigenvalues denoted by Λ(α), which arises
when looking for exponential solutions

eα(x+ct)(U, V )

of the linearized problem around the invaded unstable state (u = 0, v = 0), where
α > 0 and U(x), V (x, y) are positive and L-periodic with respect to x. Due to the
unboundedness of the domain, the usual notion of principal eigenvalue is not uniquely
de�ned and there exist several de�nitions of "generalized" principal eigenvalues [13].
Our generalized principal eigenvalue Λ(α) (see Theorem 3.1 for its main properties)

4



will be constructed in Section 3 by truncating the �eld in the y-direction and passing
to the limit to the whole road-�eld domain.

Then in Section 4, we will prove Theorem 1.2 and show that the spreading speed
c∗(D) is characterized by the following formula:

c∗(D) = min
α>0

−Λ(α)

α
.

This is the natural extension of a similar formula for the minimal wave speed of the
single spatially periodic equation [5, 7], which in the homogeneous case (1.1) easily
reduces to

c∗KPP = min
α>0

dα2 + f ′(0)

α
. (1.5)

Therefore, whether the road accelerates the propagation or not depends on how
−Λ(α) compares to dα2 + f ′(0) (note that it is already stated in Theorem 1.2 that
c∗(D) ≥ c∗KPP ). In fact we will prove that −Λ(α) is strictly larger than dα2 + f ′(0)

if and only if D > d and α >
√

f ′(0)
D−d , see Proposition 5.1. Recalling that α denotes

the exponential decay of the ansatz as x → −∞, the formal argument reads as
follows: when looking at the linearized problem (3.3) later on, the intrinsic growth
rate of the road population is Dα2 (due to motion of road individuals in the original
problem) and, in the �eld, it is dα2 + f ′(0) (due to both the motion of individuals in
the �eld and their reproduction). Thus, one may indeed expect the road to lead the

propagation if and only if α >
√

f ′(0)
D−d . Notice then that, as the exponential decay

of the KPP traveling wave with minimal speed is

√
f ′(0)
d , which is also where the

minimum in (1.5) is reached, the di�usion threshold D = 2d immediately arises.
The above argument will be made rigorous in Section 5, leading to the following

theorem:

Theorem 1.3. The strict inequality c∗(D) > c∗KPP holds if and only if D > 2d.
Furthermore,

0 < lim inf
D→∞

c∗(D)√
D
≤ lim sup

D→∞

c∗(D)√
D

< +∞.

We highlight the fact that we recover the exact same di�usion threshold D = 2d
as in [11], not only in spite of the heterogeneous exchange, but also in spite of the
fact that µ and ν may occasionally be 0.

The above discussion also leads one to expect that if the initial data are slowly
exponentially decaying as x→ −∞, then the solution may no longer be accelerated
by the road. This can be easily interpreted since the e�ect of di�usion gets weaker
as the solution is relatively �at. More generally we will prove in Section 5.3 that, as
in the single equation case, the family of eigenvalues −Λ(α) also characterizes the
spreading speed of solutions of (1.3) with any exponential decay:

Proposition 1.4. Let α∗ > 0 be the smallest solution of c∗(D)α = −Λ(α), and (u, v)
be the solution of (1.3)-(1.4) with non-negative, bounded and continuous initial data

(u0, v0) satisfying also

∀x ≤ 0 :

{
m(0)eαx ≤ u0(x) ≤Meαx,
m(y)eαx ≤ v0(x, y) ≤Meαx,
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for some 0 < α < α∗, M > 0, and m a continuous and positive function of y ∈
[0,∞).

Then (u, v) spreads along the road (in the same sense as in Theorem 1.2) with

speed

c(α) :=
−Λ(α)

α
.

In particular, if either D ≤ d or D > d and α ≤
√

f ′(0)
D−d , then c(α) = dα + f ′(0)

α is

also the speed of solutions of (1.1) with exponential decay of order eαx.

Combining Theorem 1.2 and Proposition 1.4, it is clear by a simple comparison
argument that any solution which decays at least as eα

∗x as x→ −∞ at time t = 0
spreads with the speed c∗(D). In particular, it turns out that the behavior of the
initial data in the y-direction barely matters, which is in some sense natural but also
not trivial as the eigenfunctions associated with −Λ(α) may decay as y → +∞.

Outline of the paper. The paper is organized as follows: in Section 2 we inves-
tigate well-posedness of the Cauchy problem (1.3) and its stationary solutions. In
Section 3 we construct the principal eigenvalue of the linearized problem and the
associated exponential solutions. Section 4 contains the proof of the main spreading
Theorem 1.2. We investigate in Section 5 the acceleration properties and the limit as
D →∞ of large di�usion on the road, that is Theorem 1.3, as well as the spreading
properties for exponentially decaying initial data.

Lastly we will discuss in Section 6 some possible extensions of our work. We will
focus in particular on the truncated �eld case, i.e. the restriction of (1.3) to the
domain {0 ≤ y < R}, and on the case when reproduction also takes place on the
road. We will see that most of our results can be extended in both those frameworks
with only minor modi�cations. We will then discuss the general spatially periodic
problem and point out some remaining open questions.

2 The Cauchy problem and stationary solutions

2.1 Preliminaries: the evolution problem

We begin by noting that the parabolic system satis�es the comparison principle.
From now on, we say that (u, v) is a subsolution (respectively supersolution) of (1.3)
if it is satis�ed with inequalities ≤ (respectively ≥) instead of equalities, and if both
functions u and v are continuous.

Proposition 2.1. Let (u, v) and (u, v) be respectively a subsolution bounded from

above and a supersolution bounded from below such that (u, v) ≤ (u, v) at time t = 0.
Then, either (u, v) < (u, v) for all t > 0, or there exists T > 0 such that (u, v) ≡

(u, v) for all t ≤ T .

Proof. The proof is the same as in [11] and we omit the details. The argument relies
on a combination of the strong parabolic maximum principle and parabolic Hopf
lemma, together with the key assumption that µ and ν are non-negative.

This comparison principle also extends to generalized sub and supersolutions.
We again omit the proof and refer to Proposition 3.3 in [11] for the details. We write
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their result below for the convenience of the reader and because we will use it several
times throughout this paper:

Proposition 2.2. Let E ⊂ (0,+∞)×R and F ⊂ (0,+∞)×Ω be two open sets. Let

(u1, v1) and (u2, v2) be two subsolutions of (1.3), bounded from above and satisfying

u1 ≤ u2 on ∂E ∩ ((0,+∞)× R), v1 ≤ v2 on ∂F ∩ ((0,+∞)× Ω),

and de�ne the functions

u(t, x) :=

{
max{u1, u2} in E,
u2 otherwise,

v(t, x) :=

{
max{v1, v2} in F ,
v2 otherwise.

If it satis�es

u(t, x) > u2(t, x)⇒ v(t, x, 0) ≥ v1(t, x, 0),

v(t, x, 0) > v2(t, x, 0)⇒ u(t, x) ≥ u1(t, x),

then, any supersolution (u, v) of (1.3) such that u ≤ u and v ≤ v at time t = 0, also
satis�es u ≤ u and v ≤ v for all time t > 0.

Thanks to those comparison principles, we can prove as announced that the
Cauchy problem is well-posed.

Theorem 2.3. The Cauchy problem (1.3)-(1.4), where the initial datum is bounded,

non-negative and Hölder continuous, has a unique global non-negative and bounded

solution.

Proof. Note that uniqueness immediately follows from the previous proposition, so
it only remains to prove the existence part. The proof is again very similar to [11],
by constructing in the spirit of [24] a monotonic sequence of solutions (un, vn)n≥1 to{

∂tu
n −D∂2

xu
n + µ(x)un = ν(x)vn−1(t, x, 0), t > 0, x ∈ R,

un|t=0 = u0, x ∈ R,
(2.1)

and 
∂tv

n − d∆vn = f(vn), t > 0, (x, y) ∈ Ω,

−d∂yvn(t, x, 0) = µ(x)un − ν(x)vn(t, x, 0), t > 0, x ∈ R,
vn|t=0 = v0, x ∈ R,

(2.2)

where v0 ≥ 0 will be suitably initialized when n = 1 in (2.1) later on.
By classical parabolic theory [20] both problems shall be solvable at each step,

and the minimum principle ensures that un, vn stay non-negative. In order to pass to
the limit and obtain a solution of (1.3), we need some L∞ estimates on (un, vn) uni-
formly with respect to n. This is done by exhibiting a bounded supersolution (which
will also serve in the initialization of the sequence) and applying the comparison
principle.
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First let Ũ0(x) be the (positive) principal eigenfunction of the periodic problem{
−DŨ ′′0 + µ(x)Ũ0 = λ0Ũ0, x ∈ R,
Ũ0 is L-periodic.

Note that from our assumptions on µ, it is clear that this principal eigenvalue λ0 > 0.
Now let

(U(x), V (x, y)) := K
(
Ũ0(x), C(1 + e−ωy)

)
(2.3)

for some parameters K,C, ω > 0 to be adjusted shortly. Fix �rst C ≤ λ0 min Ũ0
2ν1

and

then ω ≥ µ1 max Ũ0

Cd . By the KPP hypothesis (1.2) we can next choose K > 0 large

enough such that f(KC)
KC ≤ −dω2, and some straightforward computations show that

(U, V ) satis�es 
−DU ′′ + µ(x)U ≥ ν(x)V (x, 0),
−d∆V ≥ f(V ),
−d∂yV (x, 0) + ν(x)V (x, 0) ≥ µ(x)U.

Note that this positive stationary supersolution is bounded from above and away
from zero: up to increasing K > 0 (for �xed C,ω) we can therefore assume that the
initial data 0 ≤ (u0, v0) ≤ (U, V ).

Initializing v0(t, x) = V (x) in (2.1), a straightforward inductive application of
the comparison principle, Proposition 2.1, shows that

U ≥ . . . ≥ un ≥ un+1 ≥ . . . ≥ 0 and V ≥ . . . ≥ vn ≥ vn+1 ≥ . . . ≥ 0

for all n ≥ 1, and therefore

∀t ≥ 0, x ∈ R, y ≥ 0 : un(t, x, y)↘ u(t, x, y) and vn(t, x)↘ v(t, x)

as n→∞ pointwise.
In order to show that the pair (u, v) satis�es (1.3) together with the initial con-

dition (1.4), we claim now that the sequence {un, vn}n≥1 is relatively compact in
the local uniform, the C0,1

loc ((0,∞)× Ω), and the C1,2
loc ((0,∞)× Ω) topologies. More

precisely, for any R > 0 and T > 0, the uniform boundedness of vn implies uniform
W 1,2
p ((0, T ) × BR) estimates on the sequence un for any large p, and in particular

it is locally uniformly Hölder continuous by Morrey's inequality. Then by parabolic
estimates [20] on the �eld equation the sequence vn is locally uniformly Hölder con-
tinuous, as well as its spatial derivatives of order 1 for all t > 0 and up to the
road boundary {y = 0}. Furthermore, by standard interior Schauder estimates, its
time derivative and space derivatives up to the order 2 are locally uniformly Hölder
continuous inside the �eld. This is enough to obtained the desired compactness.

Clearly any cluster point must agree with the previous pointwise limit (un, vn)↘
(u, v), so by standard uniqueness and separation arguments we conclude that the
whole sequence converges in the strong topologies. This is enough to pass to the limit
in (2.1)-(2.2) and retrieve (1.3) for all positive times. Moreover, (u, v) = lim(un, vn)
is continuous up to time t = 0, and the proof is achieved.
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2.2 The Liouville type result

We look now for stationary solutions, i.e. solutions (U, V ) of
−D∆U = ν(x)V (x, 0)− µ(x)U, x ∈ R,
−d∆V = f(V ), (x, y) ∈ Ω,

−d∂yV (x, 0) = µ(x)U(x)− ν(x)V (x, 0), x ∈ R,
(2.4)

and prove Theorem 1.1. Observe that, in the statement of Theorem 1.1, the peri-
odicity of (U, V ) immediately follows from uniqueness since any (lattice) translation
of (U, V ) is again a solution. Moreover, the limit V (x,+∞) ≡ 1 is a straightforward
consequence of the positivity of the in�mum: indeed, up to extraction of a subse-
quence, V converges as y → +∞ to a positive and bounded stationary solution of
−d∆V = f(V ), which may only be 1 by the KPP assumption.

Let us now begin the proof of Theorem 1.1 with the existence part:

Lemma 2.4. There exists at least one non-trivial, non-negative and bounded solution

of (2.4).

Proof. We construct below some non-negative subsolution (U, V ) of (1.3) which is
bounded and non-trivial. We use the classical method and �rst let R > 0 large
enough such that the principal eigenvalue λ(R) of −d∆ in the ball BR(0, 0) ⊂ R2

with Dirichlet boundary condition is less than f ′(0)/2. If ΦR(x, y) ≥ 0 is the corre-
sponding principal eigenfunction, set

Ũ(x) := 0, Ṽ (x, y) :=

{
ΦR(x, y −R− 1) if (x, y) ∈ BR(0, R+ 1),
0 elsewhere.

Choosing then a constant C > 0 small enough and thanks to the regularity of f ,
(U, V ) = C(Ũ , Ṽ ) will automatically be a subsolution of (2.4).

By Theorem 2.3, there exists a solution (u, v) of (1.3) with initial datum (U, V ).
Furthermore, as (1.3) satis�es a comparison principle (see Propositions 2.1 and 2.2),
it lies above (U, V ) for all time and, furthermore, it is non-decreasing with re-
spect to time. On the other hand, up to decreasing C, we can also assume that
(U, V ) ≤ (U, V ) where (U, V ) is the supersolution (2.3) constructed in the pre-
vious section. In particular, (u, v) is bounded from above, hence it converges as
t→ +∞. Recalling that this supersolution is uniformly bounded, one can use stan-
dard parabolic estimates (see also the end of the proof of Theorem 2.3) to get that
(u, v) converges locally uniformly to a stationary solution (U, V ) of (2.4). It is clear
by construction that (U, V ) is non-trivial, non-negative and bounded.

Lemma 2.5. Let (U, V ) be a non-negative, non-trivial, and bounded solution of

(2.4): then infR U > 0 and infΩ V > 0.

Proof. We show �rst that V ≥ 0 is bounded away from zero, and positivity of U will
follow.

If V ≥ 0, then the classical strong maximum principle, applied in the �eld,
implies V > 0. Using again the �rst Dirichlet eigenfunction of −d∆ in a large ball
BR ⊂ Ω and moving the ball it is easy to show as in [11, Proposition 4.1] that

∀r > 0, inf
y≥r

V > 0. (2.5)
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In other words, V is uniformly positive far from the road. Arguing by contradiction,
assume that V (xn, yn)↘ 0 for some sequence (xn, yn)n≥0 such that yn ↘ 0. Shifting

Un(x) := U(x+ xn), Vn(x, y) := V (x+ xn, y + yn),

µn(x) := µ(x+ xn), νn(x) := ν(x+ xn),

elliptic estimates [17] and periodicity of µ and ν show, up to extraction of a sub-
sequence, that Un, Vn, µn, and νn converge locally uniformly to some Ũ , Ṽ , µ̃, ν̃
satisfying the same system in the same domains, and

Ṽ ≥ 0 in Ω, Ṽ (0, 0) = 0.

In fact (2.5) implies that Ṽ > 0 in Ω. Since−d∆Ṽ = f(Ṽ ) ≥ 0 in some neighborhood
of (0, 0), Hopf lemma �nally yields the following contradiction

0 > −d∂yṼ (0, 0) = µ̃(0)Ũ(0)− ν̃(0)Ṽ (0, 0) ≥ 0.

Therefore, infΩ V > 0 as announced.
Assume now there exists (xn)n≥0 such that U(xn) ↘ 0. As above, up to trans-

lating in x and up to extraction of a subsequence, we may assume that

U(x) ≥ 0 in R, U(0) = 0.

Here, abusing of notations, we still denote by U , V , µ and ν the shifted functions
satisfying the same system. Since V is positive, we have

−D∆U + µU = νV (·, 0) ≥ 0.

Hence, by the strong maximum principle, we get that U ≡ 0. But then, ν(·)V (·, 0) ≡
0, and choosing any x0 such that ν(x0) > 0 contradicts the fact that V has positive
in�mum. This completes the proof.

As mentioned above, it follows from the positive in�mum of V and the KPP
assumption that

V (·,+∞) ≡ 1.

As explained at the beginning of this section, it only remains to prove the uniqueness
of positive and bounded stationary solutions.

Lemma 2.6. There exists at most one non-negative and non-trivial bounded solution

to (3.1).

Proof. The idea is similar to [8] (we refer more speci�cally to the proof of their The-
orem 2.4). The argument strongly relies on the uniform positivity from Lemma 2.5,
which followed from the instability of (0, 0) as a steady state of (1.3). As this insta-
bility may be reinterpreted in terms of the generalized principal eigenvalue de�ned
in Section 3, we also refer to the deeply related Liouville type results of [9] for the
general heterogeneous KPP equation.

Assume (U1, V1) and (U2, V2) are two such solutions, and let

θ∗ := sup{θ > 0 : (U1, V1) > θ(U2, V2)}.

10



Since both solutions are bounded away from zero (Lemma 2.5) and from above, θ∗ is
�nite and positive. We show below that θ∗ ≥ 1 and therefore (U1, V1) ≥ (U2, V2). By
symmetry we would also retrieve the opposite inequality, hence (U1, V1) ≡ (U2, V2).

We proceed by contradiction and assume that θ∗ < 1. By continuity there holds

P (x) := U1(x)− θ∗U2(x) ≥ 0, Q(x, y) := V1(x, y)− θ∗V2(x, y) ≥ 0,

and by de�nition of θ∗ there exists a sequence (xn, yn)n≥0 such that P (xn) ↘ 0 or
Q(xn, yn)↘ 0 (or both).

We �rst consider the second case. Note that

Q(x, y)→ 1− θ∗ > 0

as y → +∞, thus we may assume without loss of generality that the sequence yn is
bounded and converges to some y∞ ≥ 0.

Assuming �rst that y∞ > 0, shifting in the x direction as before, and extracting
a subsequence we can assume that Q(0, y∞) = 0 and Q ≥ 0 satis�es

−d∆Q = f(V1)− θ∗f(V2) > f(V1)− f(θ∗V2).

Here we took advantage of the KPP hypothesis (f(v)/v decreasing) and of the in-
equality θ∗ < 1. Thus

− d∆Q+ aQ > 0 (2.6)

in R× (0,+∞), where

a(x, y) = −f(V1)− f(θ∗V2)

V1 − θ∗V2

is bounded uniformly in x, y because V1, V2 are and f is Lipschitz. Since Q attains an
interior minimum point (0, y∞) ∈ Ω, the strong maximum principle implies Q ≡ 0,
which contradicts the strict inequality in (2.6).

Assuming now that y∞ = 0 and shifting again, we may take without loss of
generality Q(0, 0) = 0 and, according to the previous argument, Q > 0 in Ω. Since
(2.6) still holds, Hopf lemma shows that ∂yQ(0, 0) > 0, which is impossible since

0 > −d∂yQ(0, 0) = µ(0)P (0)− ν(0)Q(0, 0) = µ(0)P (0)

and P ≥ 0 by de�nition of θ∗.
Since we just proved that Q > 0 up to the boundary we only have to prove

that P > 0, which will yield the desired contradiction. If not, then shifting again,
extracting a subsequence, and with the same abuse of notations, we may assume
that P (0) = 0, where P still satis�es the �rst equation

−D∆P + µ(x)P = ν(x)Q(x, 0), x ∈ R.

Since Q ≥ 0 and µ(x), ν(x) ≥ 0 the strong maximum principle implies P (x) ≡
P (0) = 0. The previous equality immediately implies ν(·)Q(·, 0) ≡ 0, thusQ(x0, 0) =
0 at any point x0 such that ν(x0) > 0. According to the previous argument this is
a contradiction, and the proof is complete.
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3 A generalized principal eigenvalue

In this section, we take interest in the linearized problem of (1.3):
∂tu−D∆u = ν(x)v(t, x, 0)− µ(x)u, t > 0, x ∈ R,
∂tv − d∆v = f ′(0)v, t > 0, (x, y) ∈ Ω,

−d∂yv(t, x, 0) = µ(x)u− ν(x)v(t, x, 0), t > 0, x ∈ R.
(3.1)

We will seek for exponential solutions of (3.1) moving with constant speed, i.e. of
the form

(u, v) = eα(x+ct) (U(x), V (x, y)) , c > 0, α > 0 (3.2)

for some x-periodic and positive U, V . By analogy with the single equation, we ex-
pect that there exists a critical speed c∗(D) such that these exponential pulsating
wave solutions exist if and only if c ≥ c∗(D). Furthermore, we expect this critical
speed c∗(D) to be also the spreading speed of solutions of (1.3) with compactly sup-
ported initial data.

Fixing a parameter α ≥ 0, we will denote for convenience

L1(U, V ) := −DU ′′ − 2DαU ′ + (−Dα2 + µ(x))U − ν(x)V (x, 0),

L2(U, V ) := −d∆V − 2dα∂xV + (−dα2 − f ′(0))V,

E(U, V ) := −d∂yV (x, 0) + ν(x)V (x, 0)− µ(x)U(x).

Then, plugging the previous ansatz into (3.1) leads to the following eigenvalue prob-
lem 

L1(Uα, Vα) = ΛUα in R,
L2(Uα, Vα) = ΛVα in R× (0,+∞),

E(Uα, Vα) = 0 in R,
(3.3)

together with the conditions{
Uα is L-periodic and positive,

Vα is L-periodic and positive,

and
Λ = −αc.

In this section, we will deal with the well-posedness of this eigenvalue problem. The
main di�culty comes from the unboundedness of the domain, which typically entails
the non-uniqueness of the eigenvalue associated with positive eigenfunctions; thus
the need of some well-chosen "generalized" eigenvalues. We refer to [13] and the
references therein for many results on such eigenvalues and their applications (for
single equations).

Here, we will construct a generalized principal eigenvalue by �rst truncating the
domain in the y-direction, then passing to the limit. This will lead us to the following
theorem.

Theorem 3.1. There exists a concave (hence continuous) function α ≥ 0 7→ Λ(α)
such that :
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(i) the system (3.3) with Λ = Λ(α) admits a positive and L-periodic solution

(Uα, Vα) such that, up to some normalization,

Uα(x) ≤ 1, Vα(x, y) ≤ C(1 + y),

for some C > 0 (possibly depending on α);

(ii) the system (3.3) admits no positive and L-periodic solution for any Λ > Λ(α).

The rest of this section is devoted to the proof of Theorem 3.1.

3.1 Principal eigenvalue on truncated �elds

Here and henceforth, α ≥ 0 is a �xed parameter. As announced, we �rst seek for a
principal eigenvalue in the truncated �elds

ΩR := T× (0, R),

where T denotes with some slight abuse of notations the one dimensional torus R/LZ.
More precisely, we seek ΛR(α) ∈ R such that there exists

(Uα,R, Vα,R) > 0 periodic with respect to x

solution of the following system:
L1(Uα,R, Vα,R) = ΛR(α)Uα,R in T,
L2(Uα,R, Vα,R) = ΛR(α)Vα,R in ΩR,

E(Uα,R, Vα,R) = 0 = Vα,R|y=R in T.
(3.4)

The compactness of the domain, together with the cooperative nature of the road-
�eld system, now provides a much more convenient mathematical framework where
the classical Krein-Rutman theory applies. However, because of the non-standard
coupling through a boundary condition, and anticipating the need to pass to the
limit as R→ +∞, we include the details of the proof.

Proposition 3.2. There exists Mα such that, for any M > Mα and given any

functions g1 ∈ C0,r(T) and g2 ∈ C0,r(ΩR), there exists a unique solution U, V to
L1(U, V ) +MU = g1 in T,
L2(U, V ) +MV = g2 in ΩR,

E(U, V ) = 0 = V |y=R in T,
(3.5)

with U ∈ C2,r(T) and V ∈ C2,r(ΩR) ∩ C1,r(ΩR).
Moreover, (3.5) enjoys a strong maximum principle: g1, g2 ≥ 0 implies U, V ≥ 0,

and if either g1 6≡ 0 or g2 6≡ 0 then U > 0 in T and V > 0 in T× [0, R).

Proof. Our proof is divided into three steps. The �rst step consists in constructing
families of sub and supersolutions, which will serve in proving both the maximum
principle (step 2), and the existence of a solution (step 3).

Step 1: construction of barriers. We �rst seek positive supersolutions of the form(
U(x), V (x, y)

)
= K

(
1, C(1 + e−ωy)

)
13



for some large K > 0. Choosing for example ω = 1, C = µ1/d, an explicit compu-
tation shows that if

M > Mα := max
{
d(α2 + 1) + f ′(0), Dα2 + 2

µ1ν1

d

}
(3.6)

then we can choose K > 0 large enough (depending only on max g1 and max g2 if
positive) such that the pair (U, V ) > 0 is indeed a supersolution of (3.5). By linearity
and up to increasing K (depending on min g1 and min g2 if negative), (U, V ) =
−
(
U, V

)
< 0 is also a negative subsolution. Moreover, it is easy to check that these

are strict sub and supersolutions, i.e. they are not solutions.
Step 2: strong maximum principle and uniqueness. For �xed data g1, g2 ≥ 0, let

(U, V ) be any solution of (3.5). One can then easily check that (U, V ), as de�ned
above, is a strict subsolution of (3.5) for any K > 0. Now assume by contradiction
that U or V take negative values somewhere in their respective domain. Because
the previous subsolutions (U, V ) are negative up to the boundary we can de�ne

θ∗ = min{θ > 0 : (U, V ) ≥ θ(U, V )} ∈ (0,+∞).

Then (U − θ∗U, V − θ∗V ) ≥ 0 is a supersolution of (3.5) and attains zero either on
the road or in the �eld. In the former case, the strong maximum principle implies
that U ≡ θ∗U , which in turn implies that V (y = 0) ≡ θ∗V (y = 0) and, thanks to
the Hopf lemma, V ≡ θ∗V . This contradicts the fact that (U, V ) is not solution of
(3.5). A similar argument leads to the same contradiction in the latter case, and we
conclude that (U, V ) ≥ 0.

The same argument as above shows that (U, V ) > 0 as soon as g1 6≡ 0 or g2 6≡ 0
and we omit the details. Moreover, by the linearity of (3.5), it immediately follows
that (0, 0) is the unique solution when g1 ≡ 0 and g2 ≡ 0 and, therefore, the
system (3.5) always admits at most one solution.

Step 3: existence. Arguing as in the proof of Theorem 2.3 it is easy to see that
the linear evolution problem

∂tu = −(L1 +M)(u, v) + g1 in T× (0,+∞),

∂tv = −(L2 +M)(u, v) + g2 in ΩR × (0,+∞),

E(u, v) = 0 = v|y=R in T× (0,+∞),

(u, v)t=0 = (U, V ),

is solvable. Since the initial data (U, V ) = −(U, V ) is a subsolution of the stationary
problem the solution (u, v) is non-decreasing in time, and by the maximum principle

∀ t ≥ 0 : (U, V ) ≤ (u, v) ≤ (U, V ).

Letting t→∞ we get by standard parabolic estimates and monotonicity that (u, v)
converges to a stationary solution (U, V ) of (3.5). Standard elliptic estimates give
the desired regularity for U(x), V (x, y) and the proof is complete.

According to Proposition 3.2 above, the system (3.5) is well-posed for M large
enough. By the Krein-Rutman theory, we will get as a consequence that:
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Proposition 3.3. For any R > 0 and α ≥ 0 there exists a unique principal eigen-

value ΛR(α) of (3.4) associated with positive and periodic eigenfunctions (Uα,R, Vα,R)
of (3.4), which are also unique up to multiplication by a positive factor.

Furthermore, −ΛR(α) ≤ Mα, where Mα is de�ned by Proposition 3.2 and more

precisely in (3.6).

Proof. Let us �x any 0 ≤ r′ < r. De�ne �rst the Banach space

X := {(U, V ) ∈ C1,r′(T)× C1,r′(T× [0, R]) : V |y=R = 0}

with its natural Hölder norm, and the positive cone

X+ := {(U, V ) ∈ C1,r′(T)× C1,r′(T× [0, R]) : U, V ≥ 0, V |y=R = 0}.

Note thatX+ has non-empty interior inX (take for instance U(x) = 1 and V (x, y) =
1− y/R).

Choose now any M > Mα: by Proposition 3.2 one can de�ne the operator
T : X 7→ X, which to any given pair (g1, g2) associates the unique solution (U, V )
of (3.5). Note that T is compact. This follows from elliptic estimates [17] and the
fact that, for any functions g1 and g2, the L

∞ norm of (U, V ) = T (g1, g2) is bounded
from above by some constant which only depends on ‖g1‖∞ and ‖g2‖∞ (see the proof
of Proposition 3.2 above). Moreover, using again Proposition 3.2, T (X+) ⊂ X+,
and T is even strongly positive in the sense that : if (g1, g2) ∈ X+ \ {(0, 0)} and
(U, V ) = T (g1, g2), then (U, V ) > 0 for y ∈ [0, R) as well as ∂yV (x,R) < 0 (by Hopf
lemma), which implies that (U, V ) is an interior point of X+.

By the Krein-Rutman theorem we conclude that there exists a positive eigenvalue
σM > 0 of T associated with positive (and bounded) eigenfunctions UM , VM > 0.
Transferring as usual in terms of the original PDE we have therefore an eigenvalue

ΛR(α) =
(

1
σM
−M

)
of (3.4), associated with the same positive and periodic eigen-

functions.
It now remains to check that such a ΛR(α) is unique (in particular, it did not

depend on the choice of M > Mα above). Let Λ1 and Λ2 be two eigenvalues of
(3.4) associated with positive and periodic eigenfunctions, respectively (U1, V1) and
(U2, V2), and set

θ∗ := min{θ > 0 : θ(U1, V1) ≥ (U2, V2)}.

If θ∗V1 ≡ V2, then trivially Λ1 = Λ2 (the �eld equation does not depend on U). Oth-
erwise, we know that θ∗(U1, V1) ≥ (U2, V2) and, by Hopf lemma and x-periodicity,

∂y(θ
∗V1 − V2)|y=R < 0.

Hence, by construction, either θ∗U1 = U2 for some x0 ∈ T, or θ∗V1 = V2 for some
(x0, y0) ∈ T× [0, R).

In the former case, then

0 ≥ θ∗L1(U1, V1)(x0)− L1(U2, V2)(x0) = (Λ1 − Λ2)U2(x0),

hence Λ1 ≤ Λ2. One gets the same conclusion in the latter case if the contact
point occurs in the interior, namely y0 > 0. Otherwise, θ∗V1 > θ∗V2 in ΩR and
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θ∗V1(x0, 0) = V2(x0, 0), which leads to a contradiction by Hopf lemma. We conclude
that Λ1 ≤ Λ2, and thus by symmetry Λ1 = Λ2. Using the usual combination of the
strong maximum principle and Hopf lemma, it is now straightforward to check that
θ∗(U1, V1) ≡ (U2, V2), namely that the principal eigenfunction pair is unique up to
multiplication by a positive factor.

Finally, we end the proof by noting that the upper bound −ΛR(α) ≤Mα follows
from the fact that ΛR(α) = 1

σM
−M > −M for any M > Mα.

3.2 Passage to the whole �eld

Before we pass to the limit as R→ +∞, we need some monotonicity and bounds on
the function R 7→ ΛR(α). This is the purpose of the proposition below:

Proposition 3.4. For any α ≥ 0, the function R > 0 7→ −ΛR(α) is increasing.

Moreover,

max

{
dα2 + f ′(0)− d π

2

R2
, Dα2 − λα

}
< −ΛR(α) ≤Mα,

where Mα was de�ned in Proposition 3.2, and λα ∈ [minµ,maxµ] is the principal

eigenvalue of −D d2

dx2
− 2αD d

dx + µ(x) on the torus.

Proof. Let us brie�y sketch the proof of the monotonicity with respect to R. Fix
R1 > R2 > 0 and let Λ1 = ΛR1(α), Λ2 = ΛR2(α) be associated with the positive
and periodic eigenfunctions (U1, V1) and (U2, V2). Since R1 > R2, one can proceed
as before and, multiplying (U1, V1) by a well-chosen constant θ > 0, assume without
loss of generality that (U1, V1) ≥ (U2, V2) in ΩR2 = T × (0, R2) and that there is
a contact point either between U1, U2 at some x0 ∈ T, or between V1, V2 at some
(x0, y0) ∈ ΩR2 (or both simultaneously). Proceeding exactly as in the proof of
Proposition 3.3, we conclude that Λ1 ≤ Λ2. Furthermore, since V1 6≡ V2 (thanks to
the Dirichlet condition of V2 at y = R2), it even follows from the strong maximum
principle that Λ1 < Λ2.

Let us now prove the lower bounds on −ΛR(α) (the upper bound was proved in
Proposition 3.3). Let Ũα(x) > 0 be the principal eigenfunction associated with λα.

Letting z =
Uα,R
Ũα

one can check that L1(Uα,R, Vα,R) = ΛR(α)Uα,R in (3.4) can be
rewritten as

−Dz′′ − 2D

(
α+

Ũ ′α
Ũα

)
z′ + (−Dα2 + λα − ΛR(α))z = ν

Vα,R

Ũα
≥ 0.

We proceed by contradiction and assume that −Dα2 + λα − ΛR(α) ≤ 0. Then any
positive constant is a subsolution of the above equation satis�ed by z. In particular,
since z > 0 is periodic, we infer that it is identically equal to its minimum and thus
constant. It then follows that

ν
Vα,R

Ũα
= (−Dα2 + λα − ΛR(α))z ≤ 0,

which contradicts the positivity of Vα,R.

16



It only remains to prove the other lower bound, namely

−ΛR(α) > dα2 + f ′(0)− d π
2

R2
.

For �xed R > 0, denote ωR = π
R . Arguing again by contradiction, if our lower bound

does not hold then

ω :=

√
dα2 + f ′(0) + ΛR(α)

d
≥ ωR > 0.

Averaging in x the equation for Vα,R we see that ΦR(y) :=
∫
T Vα,R(x, y)dx solves

Φ′′R(y) + ω2ΦR(y) = 0.

Since ΦR(y) > 0 for y ∈ [0, R) and ΦR(R) = 0 (recall that the eigenfunction
Vα,R(x, y) is positive up to the road and satis�es zero Dirichlet boundary condi-
tions at y = R), we get that

ΦR(y) = C sin(ω(R− y))

for some constant C > 0. If ω ≥ ωR then [0, R) contains at least half a period of
ΦR, hence ΦR must have a non-positive value in [0, R). This contradicts the strict
positivity up to the road and the proposition is proved.

We can now infer from the previous proposition that for any α �xed ΛR(α)
converges as R→ +∞, and we thus de�ne the generalized principal eigenvalue

Λ(α) := lim
R→+∞

ΛR(α). (3.7)

It remains to prove that the associated pair of eigenfunctions also converges to a
non-trivial limit as R→ +∞. From now on, we will denote by (UR, VR) and ΛR the
principal eigenfunction pair and eigenvalue of the truncated problem (omitting the
α dependence for convenience).

Lemma 3.5. Assume that ‖UR‖L∞(T) = 1, then there exists a positive constant C1,

which is independent of R large enough, such that

‖VR(·, 0)‖L∞(T) > C1.

Proof. We argue by contradiction. If the proposition does not hold, then we can �nd
a sequence Rk →∞ such that

‖VRk(·, 0)‖L∞(T) → 0.

Moreover, we assumed that ‖UR‖L∞(T) = 1. In particular, for all k, there exists xk
such that

‖URk‖L∞(T) = U(xk) = 1.

Then the sequences of functions (URk)k and (VRk(·, 0))k are uniformly bounded in
L∞(T). By standard elliptic estimates [17], one can extract a subsequence such that
URk → U∞ and xk → x∞ as k → +∞, where U∞ ≥ 0 satis�es

−DU ′′∞ − 2DαU ′∞ + (−Dα2 + µ(x))U∞ = Λ(α)U∞,
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together with
U∞(x∞) = 1.

By the strong maximum principle U∞ is positive, and by construction it is also
periodic. By uniqueness of the principal eigenvalue λα of the periodic operator

−DU ′′ − 2DαU ′ + µ(x)U,

we get that
Λ(α) = −Dα2 + λα.

Because ΛR(α) is decreasing with respect to R, it follows that for all R > 0:

ΛR(α) > −Dα2 + λα,

which contradicts the previous proposition.

Lemma 3.6. Normalizing with ‖VR(·, 0)‖L∞(T) = 1, we have the upper estimate

0 ≤ VR(x, y) ≤ 1 +
ν1

d
y, (x, y) ∈ ΩR.

Proof. Note that, if there exists some R0 such that ΛR0(α) + dα2 + f ′(0) ≤ 0, then
by monotonicity ΛR(α) + dα2 + f ′(0) < 0 for all R > R0. In this case, one can
apply the maximum principle and conclude that VR cannot reach a positive interior
maximum. Therefore, recalling that 0 ≤ VR|y=0 ≤ 1 and VR|y=R = 0 ≤ 1, we get
that VR(x, y) ≤ 1 and our statement holds.

However, we only know that ΛR(α) + dα2 + f ′(0)− d π2

R2 < 0 by Proposition 3.4.
Thus it remains to consider the case

ω2 =
ΛR(α) + dα2 + f ′(0)

d
> 0

with 0 < ω < ωR := π
R . We denote again the average ΦR(y) =

∫
T VR(x, y)dx, which

satis�es as before Φ′′R + ω2ΦR = 0 and thus

ΦR(y) = C sin(ω(R− y))

for some C > 0. The fact that 0 < ω < ωR = π/R of course ensures that ΦR(y) is
positive for y ∈ [0, R), but we also require that

dΦ′R(0) < ν1ΦR(0),

because of d∂yV (x, 0) = ν(x)V (x, 0)− µ(x)U(x) ≤ ν1V (x, 0). Thus,

−ω cotan(ωR) ≤ ν1

d
.

It is then easy to see that ω ∈ [0, ω], where ω = ω(R) is the unique solution of

−ω cotan(ωR) =
ν1

d
> 0

in (0, πR).
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Introducing the function

V R(x, y) :=
1

sin (ωR)
sin (ω(R− y)) ,

we claim now that this gives an upper barrier, that is

∀(x, y) ∈ T× [0, R] : VR(x, y) ≤ V R(y). (3.8)

Note �rst that VR, V R > 0 for y ∈ [0, R) and both are C1 up to the boundary
{y = R} where ∂yV R < 0, thus

θ∗ := min{θ > 0 : θV R ≥ VR for (x, y) ∈ ΩR} ≥ 1

is well-de�ned. The inequality θ∗ ≥ 1 immediately follows from our normalization
on the road.

We establish now (3.8). Assuming by contradiction that θ∗ > 1 and letting the
elliptic operator L = −∆ − 2α∂x, then L[VR] = ω2VR and L[V R] = ω2V R. As a
consequence z := θ∗V R − VR ≥ 0 satis�es

L[z] = ω2θ∗V R − ω2VR = (ω2 − ω2)θ∗V R + ω2(θ∗V R − VR) ≥ 0 in ΩR,

because ω ≤ ω and z = θ∗V R − VR ≥ 0.
Since V R ≥ VR on the road and as θ∗ > 1 clearly z|y=0 > 0, so the strong

maximum principle shows that z > 0 for y ∈ [0, R). By the Hopf lemma and x-
periodicity we also get ∂yz|y=R < 0. This easily implies that z ≥ εV R in ΩR for
some small ε > 0 and (θ∗ − ε)V R ≥ VR, which in turn contradicts the minimality of
θ∗ and thus entails our claim (3.8).

Recalling that 0 < ω < ωR = π/R, we see that V R(y) = C sin(ω(R − y)) is
concave in y ∈ [0, R]. Thus by de�nition of ω:

VR(x, y) ≤ V R(y) ≤ V R(0) + V
′
R(0)y = 1− ω cotan(ωR)y = 1 +

ν1

d
y

for all y ∈ [0, R] and x ∈ T, and the proof is complete.

Lemma 3.7. Normalizing with ‖UR‖L∞(T) = 1, we have

‖VR(·, 0)‖L∞(T) ≤ C2

for some C2 > 0 independent of R.

Proof. Assume by contradiction that our statement does not hold. Suitably nor-
malizing, we can therefore assume that ‖VRj (·, 0)‖L∞(T) = 1 and ‖URj‖L∞(T) → 0
for some subsequence Rj → +∞. By (3.7), Lemma 3.6, and using standard elliptic
estimates as before, we get up to extraction of a subsequence that VRj converges

(locally uniformly on compact sets of Ω) to a non-trivial function V∞ ≥ 0, which
satis�es{

−d∆V∞ − 2dα∂xV∞ − (dα2 + f ′(0) + Λ(α))V∞ = 0, x ∈ T, y > 0,

d∂yV∞(x, 0) = ν(x)V∞(x, 0), x ∈ T.
(3.9)
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Moreover, standard elliptic estimates also allow to pass to the limit on the road
equation and get

ν(x)V∞(x, 0) ≡ 0.

Choose now any x0 such that ν(x0) > 0. Then V∞(x0, 0) = 0, and by Hopf lemma
∂yV∞(x0, 0) > 0. This contradicts the boundary condition in (3.9) and the proof is
complete.

Proof of Theorem 3.1. We recall that Λ(α) was de�ned as the limit of ΛR(α) as
R→ +∞ in (3.7), and postpone the proof of its concavity to the next subsection.

Combining the above Lemmas 3.5, 3.6 and 3.7, together with elliptic estimates [17],
we can now pass to the limit as R→ +∞. We get a pair of non-negative and periodic
eigenfunctions (Uα, Vα) of (3.3) in the whole �eld with Λ = Λ(α), which satisfy

Uα(x) ≤ 1, Vα(x, y) ≤ C(1 + y),

after a suitable renormalization. The fact that these eigenfunctions are positive is
a straightforward application of the strong maximum principle and Hopf lemma, as
we already used extensively, and part (i) in Theorem 3.1 is proved.

Let us now brie�y check part (ii). Let some Λ be such that there exists a
positive and periodic eigenfunction (U, V ) of (3.3). Proceeding as in the proof of
Proposition 3.4 (more precisely, the proof of the monotonicity of ΛR with respect
to R), one can check that Λ < ΛR(α) for any R > 0. Passing to the limit R→ +∞,
it immediately follows that Λ ≤ Λ(α).

3.3 Further properties

In order to complete the proof of Theorem 3.1, it only remains to prove the concavity
of Λ(α), which will play an important role in the study of the spreading speeds for
exponentially decaying initial data. We exploit again the construction of Λ(α) via
the more convenient framework of truncated problems.

Proposition 3.8. The functions α 7→ Λ(α) and α 7→ ΛR(α), for all R > 0, are
concave.

Proof. Since the pointwise limit of concave functions is again a concave function, we
only need to prove the concavity of ΛR(α). Following the steps of [5, Proposition 5.7],
we begin by showing that

ΛR(α) = sup
(φ,ψ)∈E

min

{
inf
T

L1(φ, ψ)

φ
, inf

ΩR

L2(φ, ψ)

ψ

}
, (3.10)

where

E =
{

(φ, ψ) ∈ C2(T)× (C2(ΩR) ∩ C1(ΩR)) :

φ > 0, ψ > 0 in T× [0, R), ψ(y = R) = 0 > ∂yψ(y = R), E(φ, ψ) ≥ 0} .

Note that the pair (Uα,R, Vα,R) ∈ E and, therefore,

ΛR(α) ≤ sup
(φ,ψ)∈E

min

{
inf
T

L1(φ, ψ)

φ
, inf

ΩR

L2(φ, ψ)

ψ

}
.
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Now proceed by contradiction and assume that there exists (φ, ψ) ∈ E such that

ΛR(α) < min

{
inf
T

L1(φ, ψ)

φ
, inf

ΩR

L2(φ, ψ)

ψ

}
.

Proceeding as before and thanks to the de�nition of the admissible set E , one can
�nd some critical θ > 0 such that Uα,R ≤ θφ and Vα,R ≤ θψ with either Uα,R(x0) =
θφ(x0), Vα,R(x0, y0) = θψ(x0, y0) or ∂yVα,R(x0, R) = θ∂yψ(x0, R) for some x0 ∈ T
and y0 ∈ [0, R).

Note that (θφ− Uα,R, θψ − Vα,R) ≥ 0 satis�es
L1(θφ− Uα,R, θψ − Vα,R) > ΛR(α)(θφ− Uα,R),

L2(θφ− Uα,R, θψ − Vα,R) > ΛR(α)(θψ − Vα,R),

E(θφ− Uα,R, θψ − Vα,R) ≥ 0,

(θψ − Vα,R)(y = R) = 0.

By the strong maximum principle and the Hopf lemma as before, it follows that
θφ ≡ Uα,R and θψ ≡ Vα,R, which is a contradiction. Hence, (3.10) is proved.

Let us now proceed to the proof of concavity. We �rst introduce

Eα = {(φ̃, ψ̃) : ∃(φ, ψ) ∈ E such that φ̃ = eαxφ and ψ̃ = eαxψ}.

It is then clear that

ΛR(α) = sup
(φ,ψ)∈E

min

{
inf
T

L1(φ, ψ)

φ
, inf

ΩR

L2(φ, ψ)

ψ

}

= sup
(φ̃,ψ̃)∈Eα

min

{
inf
R

−Dφ̃′′ + µφ̃− νψ̃
φ̃

, inf
R×[0,R)

−dψ̃′′ − f ′(0)ψ̃

ψ̃

}
.

Let α1 ≥ 0 and α2 ≥ 0, and choose any (φ̃1, ψ̃1) = eα1x(φ1, ψ1) ∈ Eα1 , (φ̃2, ψ̃2) =
eα2x(φ2, ψ2) ∈ Eα2 with (φi, ψi) ∈ E . Fixing any t ∈ (0, 1) and de�ning α = tα1 +
(1− t)α2, we claim that

(φ̃, ψ̃) := (et ln φ̃1+(1−t) ln φ̃2 , et ln ψ̃1+(1−t) ln ψ̃2) = eαx
(
φt1φ

1−t
2 , ψt1ψ

1−t
2

)
∈ Eα.

Indeed since (φi, ψi) ∈ E we have that ψ1, ψ2 both vanish at y = R with non-zero
slopes p1(x) := ∂yψ1(x, y = R), p2(x) := ∂yψ2(x, y = R), and it is then easy to
check that ψ = ψt1ψ

1−t
2 also vanishes at y = R with non-zero slope p = pt1p

1−t
2 and

ψ ∈ C1(ΩR). The other conditions for (φ, ψ) = (φt1φ
1−t
2 , ψt1ψ

1−t
2 ) ∈ E also follow

from straightforward computations, thus (φ̃, ψ̃) = eαx(φ, ψ) ∈ Eα as claimed.
Then one can check that

min

{
inf
R

−Dφ̃′′ + µφ̃− νψ̃
φ̃

, inf
R×[0,R)

−dψ̃′′ − f ′(0)ψ̃

ψ̃

}

≥ tmin

{
inf
R

−Dφ̃′′1 + µφ̃1 − νψ̃1

φ̃1

, inf
R×[0,R)

−dψ̃′′1 − f ′(0)ψ1

ψ̃1

}

+ (1− t) min

{
inf
R

−Dφ̃′′2 + µφ̃2 − νψ̃2

φ̃2

, inf
R×[0,R)

−dψ̃′′2 − f ′(0)ψ̃2

ψ̃2

}
.

As (φ̃1, ψ̃1) and (φ̃2, ψ̃2) were chosen arbitrarily in respectively Eα1 , Eα2 , it follows
that ΛR(α) ≥ tΛR(α1) + (1− t)ΛR(α2). This concludes the proof.
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4 Spreading speed of solutions

We are now in a position to prove Theorem 1.2. We begin by a characterization of
the spreading speed c∗(D) thanks to the generalized principal eigenvalue Λ(α) that
we constructed in the previous section (see Theorem 3.1 above).

Indeed by analogy with the single equation we introduce

c∗(D) := min
α>0

−Λ(α)

α
∈ [c∗KPP ,+∞), (4.1)

where c∗KPP = 2
√
df ′(0) > 0. This c∗(D) is well-de�ned thanks to the following

inequalities
max{Dα2 − λα , dα2 + f ′(0)} ≤ −Λ(α) ≤Mα, (4.2)

which are in turn immediate consequences of Proposition 3.4 and (3.7). Indeed note
from (4.2) that −Λ has quadratic growth as α→ +∞ and −Λ(α) ≥ f ′(0) > 0, hence

by continuity −Λ(α)
α reaches its minimum as in (4.1). Using again (4.2), it is also

clear that c∗(D) ≥ min
α>0

dα2+f ′(0)
α = c∗KPP .

In particular the equation
Λ(α) = −cα

admits a solution α > 0 if and only if c ≥ c∗(D). Moreover, by the concavity of Λ(α)
(Proposition 3.8), if c > c∗(D) then there are exactly two positive solutions. We can
now establish the upper bound in our propagation result:

Proof of the �rst part of Theorem 1.2. For any solution (u, v) of (1.3)-(1.4) with non-
negative and continuous compactly supported initial data we need to show that for
any c > c∗(D) and R > 0 it holds

lim
t→+∞

sup
x≤−ct , 0≤y≤R

(u(t, x) + v(t, x, y)) = 0.

Recalling the discussion at the beginning of Section 3, c ≥ c∗(D) is a necessary
and su�cient condition for existence of a positive solution of the form (3.2) to the
linearized problem (3.1). Thanks to the KPP assumption f(u) ≤ f ′(0)u any such
solution is also a supersolution of the original nonlinear problem (1.3).

More precisely, for any c > c∗(D) choose some c′ ∈ [c∗(D), c) and α such that
−Λ(α) = αc′, and let (Uα, Vα) be the associated positive generalized eigenfunctions
from Theorem 3.1. The pair eα(x+c′t)(Uα, Vα) lies, up to multiplication by some
constant, above the initial datum (u0, v0) at time t = 0. Recalling that the solution
(u, v) is uniformly bounded, we can apply Proposition 2.1 to get

sup
x≤−ct , 0≤y≤R

(u(t, x) + v(t, x, y)) ≤ eα(c′−c)t (‖Uα‖L∞(T) + ‖Vα‖L∞(ΩR)

)
.

and the desired conclusion immediately follows.

From now on, this section will be dedicated to the proof of the inner spreading
estimate, namely the fact that for any 0 < c < c∗(D) and R > 0,

lim
t→+∞

sup
−ct≤x≤0 , 0≤y≤R

(|u(t, x)− U(x)|+ |v(t, x, y)− V (x, y)|) = 0,

where (U, V ) is the unique positive and bounded stationary solution of (1.3).
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4.1 The construction of subsolutions

In order to construct suitable subsolutions and obtain a lower estimate in the prop-
agation Theorem 1.2 we �rst need the following technical result:

Proposition 4.1. For �xed R > 0 the maps

α 7→ ΛR(α) ∈ C and α 7→ (Uα,R, Vα,R) ∈ C2

can be holomorphically extended to a complex neighborhood of the positive real axis

{α > 0}. The complex-valued eigenfunctions still satisfy (3.4) together with some

normalization, and moreover α 7→ Uα,R, Vα,R are continuous with respect to the

C1,r(T,R2) × C1,r(ΩR,R2) topology (here we mean the usual topology for the real

and imaginary parts of each component U, V after identifying C2 ∼= R2 × R2).

Note that the restriction to truncated domains is important here. Indeed, the
generalized principal eigenvalue Λ(α) in the in�nite cylinder is not an analytic func-
tion of α, see the comment after Proposition 5.1 later on. Since the equations are
polynomial in α and the domain is bounded our statement follows by standard per-
turbation theory combined with usual elliptic regularity and compactness arguments.
We omit the details and refer to [18, Chapter 7], observing that the principal eigen-
value ΛR(α) is isolated and has algebraic and geometric multiplicity 1, thanks to the
uniqueness of the positive eigenfunction (see Proposition 3.3 above).

For large R > 0 we de�ne

c∗R = min
α>0

−ΛR(α)

α
∈ (0,+∞),

which is the critical speed of the linearized problem in the truncated domain. Namely,
system (3.1) (restricted to ΩR) admits solutions of the exponential type (3.2) if and
only if c ≥ c∗R. For the construction of subsolutions we shall need the second technical
result below:

Lemma 4.2. Let α∗R be the unique real and positive solution of −ΛR(α∗R) = c∗Rα
∗
R.

There exist some small r > 0 and δ > 0 such that, for any c ∈ [c∗R − δ, c∗R), there
exists a solution α(c) ∈ C \ R of

−ΛR(α) = αc,

which also satis�es |α∗R − α(c)| ≤ r.

Note that the existence and uniqueness of the positive solution of −ΛR(α) = αc∗R
follows from the de�nition of c∗R, as well as from the concavity and analyticity of
α 7→ −ΛR(α). Then the conclusion of the lemma is an easy consequence of Rouché's
theorem and we omit the proof.

We can now construct solutions of the linearized problem in some moving sets
with speed c < c∗R:

Proposition 4.3. For all c ∈ [c∗R − δ, c∗R), there exist real valued functions u1(t, x),
v1(t, x, y) and h > 0 such that (u1, v1) is a solution of (3.1) in the moving set

{(t, x, y) : t > 0, |x+ ct| ≤ h and y ∈ (0, R)},
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and satis�es

inf
t>0

u1(t,−ct) > 0 , inf
t>0

v1(t,−ct, R/2) > 0, (4.3)

and {
u1(t, x) ≤ 0 if x = −ct± h,
v1(t, x, y) ≤ 0 if either x = −ct± h or y = R.

(4.4)

Proof. Let c ∈ [c∗R − δ, c∗R) and, by Lemma 4.2 there exists a solution

α ∈ C \ R : −ΛR(α) = αc.

By Proposition 4.1, there is a corresponding complex-valued eigenfunction pair
(UR(x), VR(x, y)) of (3.4). By construction the functions

(u1(t, x), v1(t, x, y)) = <e
(
eα(x+ct) (UR(x), VR(x, y))

)
are real valued solutions to (3.1) on the truncated domain {(t, x, y) : 0 ≤ y ≤ R},
together with the Dirichlet boundary condition VR(·, y = R) ≡ 0.

Let us check that conditions (4.3) and (4.4) are satis�ed. Note �rst that, as
c → c∗R, then α → α∗R and, by the continuity of (Uα,R, Vα,R) with respect to α (see
Proposition 4.1), we can assume up to reducing δ and without loss of generality that

min
x∈T
<e(UR(x)) >

1

2
min
x∈T

U∗R(x) > 0 , min
x∈T,0≤y≤R

<e(VR(x, y)) ≥ 0, (4.5)

where (U∗R, V
∗
R) denotes the (normalized) principal eigenfunction pair of (3.4) with

α = α∗R.
Indeed for UR the argument is straightforward, as well as for VR away from the

upper boundary y = R. More precisely, it is clear that for any 0 < ε < R, then we
can decrease δ so that α is su�ciently close to α∗R and

min
x∈T,0≤y≤R−ε

<e(VR(x, y)) >
1

2
min

x∈T,0≤y≤R−ε
V ∗R(x, y) > 0.

In particular, (4.3) is satis�ed.
In order to deal with y ≥ R − ε in (4.5), recall that the real valued function

V ∗R > 0 attains its minimum at any boundary point y = R, hence by Hopf lemma
and periodicity, ∂yV

∗
R|y=R ≤ −c0 < 0. Using again Proposition 4.1 and in particular

the continuity with respect to α in the C1,r(ΩR) topology (up to y = R), we see that
there holds ∂y<e(VR)|y=R ≤ −c0/2 < 0 up to reducing δ again. Since VR|y=R = 0
we get <e(VR) > 0 for y ∈ [R− ε,R), whence (4.5).

It then immediately follows that, letting ρ = <eα > 0, ω = =mα 6= 0, and
h = π/|ω|:

(u1(t,−ct± h), v1(t,−ct± h, y)) = e±ρh<e
(
e±iπ (UR(−ct± h), VR(−ct± h, y))

)
≤ (0, 0).

Recalling that v1 satis�es the Dirichlet boundary condition at y = R, this ends the
proof of the proposition.
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It is straightforward to check, by the uniqueness of the principal eigenvalue, that
the function ΛR(α) depends continuously on the parameter f ′(0), in the L∞loc([0,+∞))
topology. Thus, the speed c∗R also depends continuously on the parameter f ′(0). In
particular, for any small ε > 0, the proposition above still holds true if c∗R is replaced
by some c∗R,ε which converges to c

∗
R as ε→ 0, and f ′(0) is replaced by f ′(0)−ε in (3.1).

Denoting by u1,ε and v1,ε the functions given by the above proposition applied
to this perturbed problem, let then for any t > 0, |x+ ct| ≤ h and 0 ≤ y ≤ R:

u(t, x) = max(u1,ε(t, x), 0) , v(t, x, y) = max(v1,ε(t, x, y), 0).

Then, by the KPP assumption and more speci�cally the regularity of f in a neigh-
borhood of 0, the pair (u, v) is, up to multiplication by some small constant, a
generalized subsolution of the original nonlinear problem (1.3) in a compactly sup-
ported set moving with speed c ∈ [c∗R,ε − δ, c∗R,ε). Moreover, choosing R large and ε
small enough, the speed c can clearly be chosen arbitrarily close to c∗(D).

More precisely, we have proved the following proposition:

Proposition 4.4. There exist c ∈ [0, c∗) arbitrarily close to c∗, and a pair (u, v)
such that, for any 0 ≤ κ ≤ 1, κ(u, v) is a continuous, non-negative and bounded

(generalized) subsolution of (1.3) in a domain E × F where

E := {(t, x) : −ct− h < x < −ct+ h} ⊂ (0,∞)× R,

F := E × (0, R).

Moreover, u(t, x + ct) and v(t, x + ct, y) are L
c -periodic with respect to time, and

satisfy that

inf
t>0

u(t,−ct) > 0 , inf
t>0

v(t,−ct, R/2) > 0, (4.6)

and {
u(t, x) = 0 if x = −ct± h,
v(t, x, y) = 0 if either x = −ct± h or y = R.

(4.7)

Time periodicity and conditions (4.6), (4.7) are immediate consequences of the
construction of u, v above. While (4.6) ensures that the subsolution is not trivial,
(4.7) is required in order to apply a comparison principle (after extending (u, v) by
(0, 0) outside of the strip |x+ ct| ≤ h).

4.2 Proof of the inner spreading theorem

We can �nally prove the inner spreading part of Theorem 1.2. Recall that (U, V )
denotes the unique positive and bounded stationary solution of (1.3). Let us �rst
prove the following two lemmas:

Lemma 4.5. Let (u, v) be a solution of (1.3) with bounded initial data (u0, v0).
Then

lim sup
t→∞

sup
x∈R

u(t, x)− U(x) ≤ 0,

lim sup
t→∞

sup
x∈R,y≥0

v(t, x, y)− V (x, y) ≤ 0.
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Proof. We begin by noting that, thanks to the KPP hypothesis, the pair γ(U, V ) is
a supersolution of (1.3) for any real number γ > 1. In particular, the solution of
the Cauchy problem (1.3) with initial data (γU, γV ) is non-increasing with respect
to time. Moreover, by Proposition 2.1, it is bounded from below by the stationary
solution (U, V ). Therefore, it must converge as t → +∞ to a bounded positive
stationary solution, which must be (U, V ) itself.

On the other hand, as u0 and v0 are bounded and U , V have positive in�mum,
there exists some γ > 1 such that (u0, v0) < γ(U, V ). Applying again Proposition 2.1,
we get the wanted conclusion.

Lemma 4.6. Let (u, v) be a solution of (1.3) with bounded, non-negative and non-

trivial initial data (u0, v0). Then (u, v) converges locally uniformly to (U, V ) as

t→ +∞.

Proof. The previous lemma already proved that the supremum limits of u and v lie
below U and V . Thus, we only have to prove that for any K > 0, then

lim inf
t→∞

inf
|x|≤K,0≤y≤K

u(t, x)− U(x) ≥ 0,

lim inf
t→∞

inf
|x|≤K,0≤y≤K

v(t, x, y)− V (x, y) ≥ 0.

Recall that in a previous section, we have constructed arbitrarily small and compactly
supported stationary subsolution pairs (U(x), V (x, y)) such that the associated solu-
tion of the Cauchy problem (1.3) converges locally uniformly to the unique bounded
and positive stationary solution (U, V ) (see the proof of Lemma 2.4).

Moreover, as our system satis�es a strong parabolic maximum principle (see
Proposition 2.1), the solution (u, v) is positive everywhere for any positive time and
we can assume without loss of generality that

u(t = 1, ·) ≥ U(·), v(t = 1, ·) ≥ V (·).

Applying again the comparison principle, the conclusion follows.

We now go back to the proof of Theorem 1.2. Thanks to the two lemmas above,
it only remains to prove that, for any 0 < c < c∗(D) and R > 0, then

lim inf
t→∞

inf
−1−c∗(D)≥x≥−ct

u(t, x)− U(x) ≥ 0,

lim inf
t→∞

inf
−1−c∗(D)≥x≥−ct,0≤y<R

v(t, x, y)− V (x, y) ≥ 0.

From now on, c ∈ (0, c∗(D)) is �xed. Then, let c < c′ < c∗(D) close to c∗(D) so that,
by Proposition 4.4, there exists a moving subsolution (u, v) of (1.3) with speed c′.
Again, Proposition 2.1 implies that, for any t > 0, the solution (u, v) is positive in
the whole domain. Thus, up to multiplication of (u, v) by some small enough κ > 0,
we can assume without loss of generality that for any x ∈ E and y ∈ F :

u(1, x) ≥ u(1, x) , v(1, x, y) ≥ v(1, x, y).

Furthermore, we also have that for any (t, x) ∈ ∂E ∩ ((1,∞)× R),

u(t, x) ≥ 0 = u(t, x),
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and for any (t, x, y) ∈ ∂F ∩ ((1,∞)× Ω)

v(t, x) ≥ 0 = v(t, x, y).

Applying Proposition 2.2 (note that F ∩ {y = 0} = E), one may immediately
conclude that for any t ≥ 1 and (x, y) ∈ F :

u(t, x) ≥ u(t, x) , v(t, x) ≥ v(t, x).

Now proceed by contradiction and assume that there exist δ > 0 and some
sequences tn → +∞, xn ∈ [−1 − c∗(D),−ctn] and yn ∈ [0, R], such that either
u(tn, xn) < U(xn) − δ or v(tn, xn, yn) < V (xn, yn) − δ. Note that, by parabolic
estimates [20], the sequences u(tn + s, xn + x) and v(tn + s, xn + x, y) converge
locally uniformly to a solution (u∞, v∞) of (1.3), which by Lemma 4.5 lies below
(U, V ). From the choice of tn and xn and a strong maximum principle argument,
it is straightforward to check that (u∞, v∞) even lies strictly below (U, V ). Thus,
the sequence xn can be replaced by any sequence of points x′n such that x′n − xn
is bounded. In particular, we can assume without loss of generality that xn = knL
with kn ∈ Z for any n ∈ N.

We can now let t′n = |xn|
c′ > 1. Then

u(t′n, xn + x) ≥ u(t′n, xn + x) = u(0, x),

v(t′n, xn + x, y) ≥ v(t′n, xn + x, y) = v(0, x, y),

where the equalities follow from the time periodicity of the subsolution in the moving
frame with speed c′.

From Lemma 4.6, the solution of (1.3) with initial data (u(0, x), v(0, x, y)) con-
verges locally uniformly to (U, V ). Therefore, applying the comparison principle and
noting that tn − t′n → +∞ as n→ +∞, we get that (u∞, v∞) ≥ (U, V ) and reach a
contradiction. This ends the proof of Theorem 1.2.

5 Speed enhancement by the road

We have now computed the spreading speed c∗(D) of solutions of (1.3) with com-
pactly supported initial data, in the sense of Theorem 1.2. In this section, we will
compare c∗(D) with the spreading speed c∗KPP of solutions of the single KPP equa-
tion. In particular, we will prove Theorem 1.3 and show that the road accelerates
the propagation (for compactly supported initial data) if and only if D > 2d.

The proof will rely on Proposition 5.1 below, which compares Λ(α) to the prin-
cipal eigenvalue arising when looking for exponential solutions of the homogeneous
KPP problem with no road. Furthermore, we will prove in the last subsection that
Λ(α) also characterizes the spreading speed of solutions with exponentially decay-
ing initial data. Therefore, Proposition 5.1 also infers whether such solutions are
accelerated by the road or not.

5.1 Eigenvalue enhancement by the road

Noting that

c∗KPP = min
α>0

dα2 + f ′(0)

α
=
dα2

KPP + f ′(0)

αKPP
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with αKPP =

√
f ′(0)
d , the fact that c∗(D) > c∗KPP if and only if D > 2d is a simple

corollary of the following proposition:

Proposition 5.1.

(i) If D ≤ d then

∀α ≥ 0 : −Λ(α) = dα2 + f ′(0).

(ii) If D > d and α(D) =
√

f ′(0)
D−d then

∀ 0 ≤ α ≤ α(D) : −Λ(α) = dα2 + f ′(0),

∀α > α(D) : −Λ(α) > dα2 + f ′(0).

From (ii) it is now clear that the generalized principal eigenvalue Λ(α) in gen-
eral cannot be analytical in α, which contrasts with Proposition 4.1 in the case of
truncated cylinders.

Proof. Recalling from (4.2) that −Λ(α) ≥ dα2 + f ′(0) we have for all α ≥ 0 that

ω =

√
−dα2 − f ′(0)− Λ(α)

d
≥ 0,

and that our statement amounts to determine whether ω = 0 or ω > 0. Letting U
and V be the positive eigenfunctions of (3.3) from Theorem 3.1, integrating the �eld
equation with respect to x, and denoting Φ(y) =

∫
x∈T V (x, y)dx, it is easy to check

as before that
Φ′′(y)− ω2Φ(y) = 0.

Since V (x, y) > 0 grows at most linearly in y (Theorem 3.1) this immediately implies
that either Φ(y) = ay + b for some a, b ≥ 0 if ω = 0, or Φ(y) = Ce−ωy for some
C > 0 if ω > 0. Integrating now the boundary condition and the road equation, an
explicit computation gives

− dΦ′(0) =

∫
T
{µU − νV (·, 0)}dx = [Dα2 + Λ(α)]

∫
T
Udx. (5.1)

If either D ≤ d, or D > d and 0 ≤ α ≤ α(D), then Dα2 ≤ dα2 + f ′(0). From the
above equality, we get

−dΦ′(0) ≤ [dα2 + f ′(0) + Λ(α)]

∫
T
U = −dω2

∫
T
U.

Thus Φ′(0) ≥ ω2
∫
T U ≥ 0. It follows that ω = 0 (otherwise Φ(y) would be an

exponential with slope −Cω < 0 at y = 0), which is exactly the desired conclusion
in those two cases.

In the last case D > d and α > α(D), then Dα2 > dα2 + f ′(0) which, together
with (5.1), leads to

Φ′(0) < ω2

∫
T
U.

As Φ′(0) ≥ 0 when ω = 0, it follows that ω > 0 and the proof is achieved.
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5.2 Large di�usion limit

Let us now end the proof of Theorem 1.3 by checking that

0 < lim inf
D→∞

c∗(D)√
D
≤ lim sup

D→∞

c∗(D)√
D

< +∞.

In order to obtain the upper bound we take �rst α = α(D) =
√

f ′(0)
D−d for D > d, and

compute explicitly

c :=
dα2 + f ′(0)

α
= D

√
f ′(0)

D − d
.

Because we chose exactly α = α(D) we are in case (ii) of Proposition 5.1 with
−Λ(α) = dα2 + f ′(0), thus we just exhibited a solution α = α(D) of −Λ(α) = αc
for this particular value of c. By de�nition of c∗(D) this means that c∗(D) ≤ c, and
it immediately follows that

lim sup
D→∞

c∗(D)√
D
≤
√
f ′(0) < +∞.

Turning now to the lower bound, recall from (4.2) that −Λ(α) ≥ max{Dα2 −
λα, dα

2 +f ′(0)}, where λα ∈ [µ0, µ1] is the principal eigenvalue of −D d2

dx2
−2Dα d

dx +
µ(x) on the torus. In particular we have

−Λ(α) ≥ p(α) := max{Dα2 − µ1, dα
2 + f ′(0)}.

Studying the piecewise polynomial and convex function p(α) for �xedD > d it is easy

to check that min
α>0

p(α)
α ≥ f ′(0)√

f ′(0)+µ1

√
D − d. Since c∗(D) = min

α>0

−Λ(α)
α ≥ min

α>0

p(α)
α , it

immediately follows that

lim inf
D→∞

c∗(D)√
D
≥ f ′(0)√

f ′(0) + µ1

> 0.

5.3 Exponentially decaying initial data

Let us now turn to the proof of Proposition 1.4. By Proposition 5.1, we need to
prove that c(α) = −Λ(α)

α is the spreading speed of solutions for initial data with
exponential decay of order eαx. This should be natural by now since for any �xed α
and by construction of Λ(α) (see again Theorem 3.1), c(α) is the smallest speed c such
that there exists a positive solution of the linearized problem (3.1) of the type (3.2).

Proof of Proposition 1.4. Let us �rst check the upper estimate. Note that although
eα(x+c(α)t)(Uα(x), Vα(x, y)) is an obvious supersolution of (1.3), the di�culty lies in
the fact that eαxVα(x, y) may decay as y → +∞ and, therefore, it may not lie above
the initial datum v0.

Choose any c > c(α) and observe that cα > −Λ(α) by de�nition of c(α) = −Λ(α)
α .

An explicit computation shows that

(U1, V 1) := eα(x+ct)(Uα, Vα)
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satis�es
∂tU1 −D∂2

xU1 + µU1 − νV 1|y=0 = (Λ(α) + cα)U1, t ≥ 0, x ∈ R,
∂tV 1 − d∆V 1 − f ′(0)V 1 = (Λ(α) + cα)V 1, t ≥ 0, (x, y) ∈ Ω,

−d∂yV 1|y=0 = µU1 − νV 1|y=0, t ≥ 0, x ∈ R.

Also de�ning
(U2, V 2) := (0, eα(x+ct))

and recalling that −Λ(α) ≥ dα2 + f ′(0), it is easy to check that{
∂tV 2 − d∆V 2 − f ′(0)V 2 ≥ (Λ(α) + cα)V 2, t ≥ 0, (x, y) ∈ Ω,

−d∂yV 2|y=0 ≥ µU2 − νV 2|y=0, t ≥ 0, x ∈ R.

Then, letting M large enough so that

M(Λ(α) + cα) minUα ≥ ν1,

it is straightforward to check that M(U1, V 1) + (U2, V 2) is a supersolution of the
linearized problem (3.1) and is moving with speed c > c(α). Up to multiplication
by some large positive constant and from our assumptions in Proposition 1.4, it can
be assumed to lie above (u0, v0) at time t = 0. It is then straightforward, applying
Proposition 2.1 and noting that c could be chosen arbitrarily close to c(α), to reach
the desired conclusion.

Let us now focus on the inner spreading estimate. Proceeding as in the proof
of Theorem 1.2 (see Section 4.2), it is enough to �nd a non-trivial subsolution lying
below (u0, v0) at time t = 0 and moving with speed c smaller but arbitrarily close
to c(α). Let any R > 0 and de�ne

cR(α) =
−ΛR(α)

α
↗ c(α) as R→ +∞.

In particular cR(α) > c∗R provided that R is large enough, and, by concavity of
ΛR(α), one has

cR(α)(α+ η) > −ΛR(α+ η)

for η > 0 small enough. For simplicity we write below c = cR(α), and de�ne

U1 = Aeα(x+ct)Uα,R −Be(α+η)(x+ct)Uα+η,R,

V 1 = Aeα(x+ct)Vα,R −Be(α+η)(x+ct)Vα+η,R if 0 ≤ y ≤ R,

where A and B are positive constants to be chosen later.
One can check that for all t ≥ 0 and x ∈ R there holds

∂tU1 −D∂2
xU1 + µU1 − νV 1|y=0

= A · 0−B
[
ΛR(α+ η) + (α+ η)c

]
e(α+η)(x+ct)Uα+η,R < 0,

and
−d∂yV 1|y=0 − µU1 + νV 1|y=0 = 0 = V 1|y=R.
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By C1,r regularity of f there exist a small s0 > 0 and some γ > 0 such that

∀v ∈ (−∞, s0] : f(v) ≥ f ′(0)v −max{0, γv}1+r.

Note that up to now f(v) was only de�ned for v ≥ 0, hence we may indeed assume
without loss of generality that f(v) = f ′(0)v for v ≤ 0 and, in particular, the above
inequality holds.

Choose �rst A > 0 small so that AVα,R ≤ s0 < 1, and then B > 0 large enough
so that U1 ≤ 0 and V 1 ≤ 0 for all x + ct ≥ 0. If moreover η > 0 is small enough
such that α+ η < α(1 + r) then for x ≤ −ct it is easy to check that

max{0, γV 1}1+r ≤
(
γAeα(x+ct)Vα,R

)1+r

≤ eα(1+r)(x+ct)(γAVα,R)1+r ≤ e(α+η)(x+ct)(γAVα,R)1+r,

whence

∂tV 1 − d∆V 1 − f(V 1) =
[
f ′(0)V 1 − f(V 1)

]
+
[
∂tV 1 − d∆V 1 − f ′(0)V 1

]
≤ max{0, γV 1}1+r +

[
A · 0−B(ΛR(α+ η) + (α+ η)c)e(α+η)(x+ct)Vα+η,R

]
≤ e(α+η)(x+ct)

[
(γAVα,R)1+r −B(ΛR(α+ η) + (α+ η)c)Vα+η,R

]
< 0

if B > 0 is large enough. On the other hand when x ≥ −ct the same inequality
∂tV 1 − d∆V 1 − f(V 1) ≤ 0 easily follows from the fact that V 1 ≤ 0 and thus
f(V 1) = f ′(0)V 1. Therefore the pair

U := max{0, U1}, V :=

{
max{0, V 1} if 0 ≤ y ≤ R,
0 elsewhere,

is a generalized subsolution of (1.3) in the sense of Proposition 2.2. By construc-

tion this subsolution moves with speed c = cR(α) = −ΛR(α)
α , which can be made

arbitrarily close to c(α) = −Λ(α)
α by choosing R large enough. Moreover, with our

assumption on the initial data and up to multiplication by a small constant, this sub-
solution can be assumed to lie below (u0, v0) at time t = 0 (observe that U = V = 0
for x ≥ −ct). As mentioned above, one may then proceed as in Section 4.2 to end
the proof of Proposition 1.4.

6 Some extensions

The crucial feature of the road-�eld system is that it is of a cooperative type, which
in particular allowed us to construct and characterize the spreading speed through
a family of principal eigenvalues and Krein-Rutman theory. We brie�y discuss here
some extensions to more general frameworks where a similar approach could be
performed.

Truncated �elds: We �rst highlight here the fact that the generalized principal
eigenvalues Λ(α) were obtained as the limits of the principal eigenvalues ΛR(α) of
some truncated �eld problems (see Section 3 for the details). Therefore, it should be
clear from our proofs that a similar result as Theorem 1.2 holds for the restriction
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of (1.3) to a strip domain {(x, y) ∈ R2 : 0 < y < R} with a Dirichlet boundary
condition v(y = R) = 0.

More precisely, provided that R is large enough, the solutions spread with the
speed c∗R ∈ (0,∞) along the road, where c∗R was de�ned in Section 4. When µ and ν
are positive constants, this was proved in [26], along with the fact that there exists
a critical di�usion D above which c∗R > c∗KPP and below which c∗R < c∗KPP . This
relied on the monotonicity of c∗R with respect to D, which remains an open problem
in our periodic framework.

Noting that the propagation is slowed down by the Dirichlet condition on the
upper boundary and in order to isolate the e�ect of the line of fast di�usion, one
may also want to compare c∗R with

c∗KPP,R := 2

√
df ′(0)− d2π2

4R2
= min

α>0

dα2 + f ′(0)− d π2

4R2

α
,

which one may check to be the critical spreading speed of solutions of{
∂tv − d∆v = f(v), t > 0, x ∈ R, y ∈ (0, R),
∂yv(t, x, 0) = 0 = v(t, x,R), t > 0, x ∈ R. (6.1)

Because the main idea of the proof of Proposition 5.1 (thus of Theorem 1.3 and
Proposition 1.4) roughly consists in determining the direction of the (average) �ow
between the road and the �eld, the above problem naturally arises. Note also that,
in the limit case R = +∞, it is clearly equivalent to (1.1).

Therefore, by a similar argument as in Section 5, one may prove that

−ΛR(α) < dα2 + f ′(0)− d π
2

4R2

if

α < αR(D) :=

√
f ′(0)− d π2

4R2

D − d
,

while the opposite strict inequality holds if α > αR(D).
Then, letting α∗R be the unique (thanks to the analyticity of −ΛR) positive

solution of c∗Rα = −ΛR(α), it is straightforward to obtain the analogous of Propo-
sition 1.4 in the truncated �eld case. Namely, solutions with exponential decay of
order eαx, where α < α∗R, are accelerated by the road in the sense that they spread
with some speed

cR(α) =
−ΛR(α)

α
>
dα2 + f ′(0)− d π2

4R2

α
,

if and only if α > αR(D). The right-hand term of the above inequality is, of course,
the spreading speed of solutions of (6.1) with decay of the same order eαx.

However, it is not clear in general whether the minimal speed c∗R is larger than
c∗KPP,R. This is related to the fact that we cannot always locate α∗R where the
minimum in the de�nition of c∗R is reached. In particular, the above discussion
does not provide a precise di�usion threshold for the acceleration of solutions with
compactly supported initial data (or more generally, initial data that decay faster
than eα

∗
Rx). It is only straightforward to infer from the above that c∗R < c∗KPP,R

if D < 2d as well as, using Proposition 3.4 and more speci�cally the estimates on
−ΛR(α), that c∗R > c∗KPP,R for large enough D.
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Including KPP reaction on the road: The key assumption, which in particular
we used extensively in the investigation of the e�ect of the road, is the fact that the
heterogeneity is limited to the exchange terms. Therefore, one may easily check that
our method still applies when replacing the road equation in (1.3) by

∂tu−D∂2
xu = ν(x)v(t, x, 0)− µ(x)u+ g(u),

where g(u) satis�es a KPP type assumption

g(0) = 0, u 7→ g(u)

u
is non-increasing, and

g(u)

u
≤ 0 for large enough u.

We leave the details of the construction of the spreading speed to the readers: the
proof of Section 3 applies to the letter up to minor changes (by simply adding
g′(0)U to the operator L1, g

′(0) in the de�nition of Mα, and denoting by λα the

principal eigenvalue of −D d2

dx2
−2αD d

dx +µ−g′(0)). For the sake of simplicity, let us
just assume that we have constructed for this new problem a family of eigenvalues
−Λg(α) ≥ dα2 + f ′(0) and a spreading speed

c∗g(D) = min
α>0

−Λg(α)

α
.

We now focus on Proposition 5.1. The same straightforward computation leads to

the critical equality Dα2 + g′(0) = dα2 + f ′(0), or equivalently α =
√

f ′(0)−g′(0)
D−d ,

which separates whether −Λg(α) is larger or equal to dα2+f ′(0). Using the fact that

c∗KPP = minα>0
dα2+f ′(0)

α and that this latter minimum is reached for α =

√
f ′(0)
d ,

one then immediately gets that c∗g(D) > c∗KPP if and only if

D > 2d− d g
′(0)

f ′(0)
.

This extends a result of [10] in the periodic exchange framework. Proposition 1.4
also naturally extends and the solutions with exponential decay of order eαx at time
t = 0 are accelerated by the road if and only if Dα2 + g′(0) > dα2 + f ′(0).

The general periodic framework: In the above extensions and as we already
pointed out, we restricted ourselves to problems where only the exchange terms
depend on x. The main reason is that we can only give an accurate di�usion threshold
for the acceleration phenomena in such a framework (see the averaging argument in
Section 5). On the other hand, the construction of principal eigenvalues in the
truncated �eld mostly relies on the classical Krein-Rutman theory, thanks to the
monotone feature of our system.

This means that this part of our argument, along with the existence of a spreading
speed (at least in the truncated problem) could possibly be extended to a much more
general framework as long as the x-periodicity is maintained. This would include
heterogeneous reaction or di�usion (in both x and y) and, perhaps more interestingly,
curved roads.

Nonetheless, to extend Theorem 1.3 would then be a completely open but inter-
esting problem. It of course seems unlikely that there always exists a simple formula
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for the di�usion threshold. To exhibit such a threshold, one may need to prove
the monotonicity of the principal eigenvalue on some di�usion parameter, which we
avoided here. More generally, we hope to be able in a future work to further charac-
terize this eigenvalue and, in a similar fashion as for the single equation [22], derive
not only properties on the dependence of the spreading speed on di�usion, but also
on various parameters and the exchange terms.
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