An efficient midpoint-radius implementation to handle symmetric fuzzy intervals

Manuel Marin, David Defour and Federico Milano

DALI, University of Perpignan Via Domitia, Electricity Research Centre, University College Dublin

Université de Perpignan Via Domitia

INTRODUCTION

- Interval arithmetic is a useful tool to provide reliable results in computations with uncertain data (e.g., the speed is between 100 and 120 km/h).
- In addition, *fuzzy* interval arithmetic provides an answer when the information in the knowledge base is more ambiguous and imprecise (e.g., the speed is high).
- Most fuzzy interval implementations are based on the lower-upper representation format. This talk discusses the use of midpoint-radius to improve performance when dealing with symmetric fuzzy intervals.

OUTLINE

1 MATHEMATICAL BACKGROUND

- Fuzzy interval arithmetic
- Representation formats

FUZZY INTERVALS

Fuzzy intervals are characterized by a membership function, $\mu : \mathbb{R} \to [0, 1]$. For each $\alpha \in [0, 1]$, an α -cut is obtained:

FUZZY INTERVALS

Fuzzy intervals are characterized by a membership function, $\mu : \mathbb{R} \to [0, 1]$. For each $\alpha \in [0, 1]$, an α -cut is obtained:

If the fuzzy interval is symmetric, then all the α -cuts have the same midpoint.

FUZZY INTERVAL ARITHMETIC

Fuzzy arithmetic operations are decomposed into a series of interval operations, one per α -cut:

FUZZY INTERVAL ARITHMETIC

Fuzzy arithmetic operations are decomposed into a series of interval operations, one per α -cut:

Addition, subtraction and multiplication of fuzzy intervals preserve symmetry.

LOWER-UPPER REPRESENTATION

$$[\underline{x}, \overline{x}] = \{ x \in \mathbb{R} \colon \underline{x} \leqslant x \leqslant \overline{x} \}.$$

LOWER-UPPER REPRESENTATION

 $[\underline{x}, \overline{x}] = \{ x \in \mathbb{R} \colon \underline{x} \leqslant x \leqslant \overline{x} \}.$

ROUNDED INTERVAL ARITHMETIC IN THE LOWER-UPPER FORMAT

$$\begin{aligned} x + y &= \left[\bigtriangledown (\underline{x} + \underline{y}), \bigtriangleup(\overline{x} + \overline{y}) \right], \\ x - y &= \left[\bigtriangledown(\underline{x} - \overline{y}), \bigtriangleup(\overline{x} - \underline{y}) \right], \\ x \cdot y &= \left[\bigtriangledown(\min(\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y})), \bigtriangleup(\max(\underline{x}\underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y})) \right], \\ \frac{1}{y} &= \left[\bigtriangledown \left(\frac{1}{\overline{y}} \right), \bigtriangleup \left(\frac{1}{\underline{y}} \right) \right], \quad 0 \notin y. \end{aligned}$$

 \bigtriangledown : rounding downwards \triangle : rounding upwards

MIDPOINT-RADIUS REPRESENTATION

$$\langle \check{x}, \rho_x \rangle = \{ x \in \mathbb{R} \colon |x - \check{x}| \leq \rho_x \}$$

MIDPOINT-RADIUS REPRESENTATION

$$\langle \check{x}, \rho_x \rangle = \{ x \in \mathbb{R} \colon |x - \check{x}| \leqslant \rho_x \}$$

Rounded interval arithmetic in the midpoint-radius format

$$\begin{aligned} x \pm y &= \langle \Box(\check{x} \pm \check{y}), \triangle(\epsilon'|\check{x} \pm \check{y}| + \rho_x + \rho_y) \rangle, \\ x \cdot y &= \langle \Box(\check{x}\check{y}), \triangle(\eta + \epsilon'|\check{x}\check{y}| + (|\check{x}| + \rho_x)\rho_y + |\check{y}|\rho_x) \rangle, \\ \frac{1}{y} &= \left\langle \Box\left(\frac{1}{\check{y}}\right), \triangle\left(\eta + \epsilon'\left|\frac{1}{\check{y}}\right| + \frac{-\rho_y}{|\check{y}|(\rho_y - |\check{y}|)}\right) \right\rangle, \quad 0 \notin y. \end{aligned}$$

 \Box : rounding to nearest

 $\bigtriangleup:$ rounding upwards

 $\epsilon':$ relative rounding error divided by 2

 η : smallest representable floating-point number

OUTLINE

- Fuzzy interval arithmetic
- Representation formats

Algorithms

Algorithm 1 Fuzzy multiplication in the lower-upper format.

Input: Fuzzy operands x and y. Output: Fuzzy result $z = x \cdot y$. 1: for i in 1,..., N do 2: $\underline{z}_i = \bigtriangledown(\min(\underline{xy}, \underline{xy}, \overline{xy}, \overline{xy}))$ 3: $\overline{z}_i = \bigtriangleup(\max(\underline{xy}, \underline{xy}, \overline{xy}, \overline{xy}))$

Requires 14N floating-point operations.

Algorithms

Algorithm 1 Fuzzy multiplication in the lower-upper format.

Input: Fuzzy operands x and y. Output: Fuzzy result $z = x \cdot y$. 1: for i in 1, ..., N do 2: $\underline{z}_i = \bigtriangledown(\min(\underline{xy}, \underline{xy}, \overline{xy}, \overline{xy}))$ 3: $\overline{z}_i = \bigtriangleup(\max(xy, x\overline{y}, \overline{xy}, \overline{xy}))$

Requires 14N floating-point operations.

Algorithm 2 Symmetric fuzzy multiplication in the midpoint-radius format.

Input: Symmetric fuzzy operands x and y. **Output:** Symmetric fuzzy result $z = x \cdot y$. 1: $\tilde{z} = \Box(\tilde{x}\tilde{y})$ 2: **for** i in 1, ..., N **do** 3: $\rho_{z,i} = \triangle(\eta + \epsilon'|\tilde{z}| + (|\tilde{x}| + \rho_{x,i})\rho_{y,i} + |\tilde{y}|\rho_{x,i})$

Requires 6 + 5N floating-point operations.

Performance considerations

 Table 1: Number of floating-point instructions per arithmetical operation, for different data types.

Data type	Addition	Multiplication	Inversion
Scalar	1	1	1
Lower-upper interval	2	14	2
Midpoint-radius interval	5	11	9
Lower-upper fuzzy	2N	14N	2N
Midpoint-radius fuzzy	3 + 2N	6 + 5N	5 + 5N

Table 2: Memory requirements of different data types.

Data type	Memory usage
Scalar	1
Lower-upper interval	2
Midpoint-radius interval	2
Lower-upper fuzzy	2N
Midpoint-radius fuzzy	1 + N

N: number of α -cuts

RADIUS INCREMENTS

Fuzzy intervals can also be represented in terms of midpoint and radius increments:

Algorithms

Algorithm 3 Symmetric fuzzy addition in the midpoint-increment format.

Input: Symmetric fuzzy operands x and y. Output: Symmetric fuzzy result z = x + y. 1: $\tilde{z} = \Box(\tilde{x} + \tilde{y})$ 2: $\delta_{z,1} = \triangle(\frac{1}{2}\epsilon|\tilde{z}| + \delta_{x,1} + \delta_{y,1})$ 3: for i in 2, ..., N do 4: $\delta_{z,i} = \triangle(\delta_{x,i} + \delta_{y,i})$

Requires 1 + 4N operations, fewer than midpoint-radius.

Algorithms

Algorithm 4 Symmetric fuzzy multiplication in the midpoint-increment format.

Requires 6 + 5N operations, the same as midpoint-radius.

Performance considerations

 Table 3: Number of floating-point instructions per arithmetical operation, for different data types.

Data type	Addition	Multiplication	Inversion
Scalar	1	1	1
Lower-upper interval	2	14	2
Midpoint-radius interval	5	11	9
Lower-upper fuzzy	2N	14N	2N
Midpoint-radius fuzzy	3 + 2N	6 + 5N	5 + 5N
Midpoint-increment fuzzy	4 + N	6 + 5N	5 + 5N

Table 4: Memory requirements of different data types.

Data type	Memory usage
Scalar	1
Lower-upper interval	2
Midpoint-radius interval	2
Lower-upper fuzzy	2N
Midpoint-radius fuzzy	1 + N
Midpoint-increment fuzzy	1 + N

N: number of α -cuts

Error analysis

Absolute error in the midpoint-radius format $(i \ge 2)$

 $\rho_{z,i} = (\epsilon'|\check{z}| + \rho_{x,i}) + \rho_{y,i}.$

$$E(\rho_{z,i}) \leq \epsilon \left(\left| \epsilon' | \check{z} | + \rho_{x,i} \right) \right| + \left| \epsilon' | \check{z} | + \rho_{x,i} + \rho_{y,i} \right| \right)$$

= $\epsilon \left(\epsilon | \check{z} | + 2\rho_{x,i} + \rho_{y,i} \right).$

Error analysis

Absolute error in the midpoint-radius format $(i \ge 2)$

$$\rho_{z,i} = (\epsilon' |\check{z}| + \rho_{x,i}) + \rho_{y,i}.$$

$$E(\rho_{z,i}) \leq \epsilon \left(|\epsilon'|\check{z}| + \rho_{x,i}) \right| + |\epsilon'|\check{z}| + \rho_{x,i} + \rho_{y,i}| \right)$$

$$= \epsilon \left(\epsilon |\check{z}| + 2\rho_{x,i} + \rho_{y,i} \right).$$

Absolute error in the midpoint-increment format $(i \ge 2)$

$$\rho_{z,i} = \rho_{z,i-1} + \delta_{z,i}.$$

$$E(\rho_{z,i}) = E(\rho_{z,i-1}) + E(\delta_{z,i})$$

$$\leq \epsilon \left(\epsilon|\check{z}| + 2\rho_{x,i-1} + \rho_{y,i-1}\right) + \epsilon \left|\delta_{x,i} + \delta_{y,i}\right|$$

$$= \epsilon \left(\epsilon|\check{z}| + \rho_{x,i-1} + \rho_{x,i} + \rho_{y,i}\right).$$

OUTLINE

MATHEMATICAL BACKGROUND

- Fuzzy interval arithmetic
- Representation formats

Compute-bound benchmark: AXPY loop

Figure 1: (a) Performance comparison of different representation formats and architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 8 α -cuts the speed-up curve follows the theoretical ratio:

 $\frac{16N}{9+7N}$

Memory-bound benchmark: RADIX sort

Figure 2: (a) Performance comparison of different representation formats and architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 7 α -cuts the speed-up curve follows the theoretical ratio:

$$\frac{2N}{1+N}$$

CONCLUSIONS AND FUTURE WORK

• Midpoint-radius representation is an attractive alternative to handle symmetric fuzzy intervals. It achieves a speed-up of 2 to 20 over lower-upper in both compute and memory-bound benchmarks.

• Fuzzy arithmetic library written in CUDA, available at https://github.com/mmarin-upvd/fuzzy-gpu/.

• Future work will consider the implementation of the midpoint-increment format and further assessment of accuracy issues.