
An efficient midpoint-radius
implementation to handle symmetric fuzzy

intervals

Manuel Marin, David Defour and Federico Milano

DALI, University of Perpignan Via Domitia,

Electricity Research Centre, University College Dublin

1 / 20

Introduction

Interval arithmetic is a useful tool to provide reliable results in
computations with uncertain data (e.g., the speed is between 100 and
120 km/h).

In addition, fuzzy interval arithmetic provides an answer when the
information in the knowledge base is more ambiguous and imprecise
(e.g., the speed is high).

Most fuzzy interval implementations are based on the lower-upper
representation format. This talk discusses the use of midpoint-radius to

improve performance when dealing with symmetric fuzzy intervals.

2 / 20

Outline

1 Mathematical background
Fuzzy interval arithmetic
Representation formats

2 Implementation

3 Tests and results

3 / 20

Mathematical background Fuzzy interval arithmetic

Fuzzy intervals

Fuzzy intervals are characterized by a membership function, µ : R Ñ r0, 1s.
For each α P r0, 1s, an α-cut is obtained:

x̌

x̌ x

α

0

1

µx

x x

ρx

4 / 20

Mathematical background Fuzzy interval arithmetic

Fuzzy intervals

Fuzzy intervals are characterized by a membership function, µ : R Ñ r0, 1s.
For each α P r0, 1s, an α-cut is obtained:

x̌

x̌ x

α

0

1

µx

x x

ρx

If the fuzzy interval is symmetric, then all the α-cuts have the same midpoint.

4 / 20

Mathematical background Fuzzy interval arithmetic

Fuzzy interval arithmetic

Fuzzy arithmetic operations are decomposed into a series of interval
operations, one per α-cut:

x̌ x

α

0

1

µx

`
´
ˆ

y̌ x

α

0

1

µy

“

ž x

α

0

1

µz

5 / 20

Mathematical background Fuzzy interval arithmetic

Fuzzy interval arithmetic

Fuzzy arithmetic operations are decomposed into a series of interval
operations, one per α-cut:

x̌ x

α

0

1

µx

`
´
ˆ

y̌ x

α

0

1

µy

“

ž x

α

0

1

µz

Addition, subtraction and multiplication of fuzzy intervals preserve symmetry.

5 / 20

Mathematical background Representation formats

Lower-upper representation

rx, xs “ tx P R : x ď x ď xu.

6 / 20

Mathematical background Representation formats

Lower-upper representation

rx, xs “ tx P R : x ď x ď xu.

Rounded interval arithmetic in the lower-upper format

x ` y “ r▽px ` yq,△px ` yqs,

x ´ y “ r▽px ´ yq,△px ´ yqs,

x ¨ y “ r▽pminpxy, xy, xy, xyqq,△pmaxpxy, xy, xy, xyqs,

1

y
“

„

▽

ˆ

1

y

˙

,△

ˆ

1

y

˙

, 0 R y.

▽: rounding downwards
△: rounding upwards

6 / 20

Mathematical background Representation formats

Midpoint-radius representation

xx̌, ρxy “ tx P R : |x ´ x̌| ď ρxu

7 / 20

Mathematical background Representation formats

Midpoint-radius representation

xx̌, ρxy “ tx P R : |x ´ x̌| ď ρxu

Rounded interval arithmetic in the midpoint-radius format

x ˘ y “ xlpx̌ ˘ y̌q,△pǫ1|x̌ ˘ y̌| ` ρx ` ρyqy,

x ¨ y “ xlpx̌y̌q,△pη ` ǫ1|x̌y̌| ` p|x̌| ` ρxqρy ` |y̌|ρxqy,

1

y
“

B

l

ˆ

1

y̌

˙

,△

ˆ

η ` ǫ1

ˇ

ˇ

ˇ

ˇ

1

y̌

ˇ

ˇ

ˇ

ˇ

`
´ρy

|y̌|pρy ´ |y̌|q

˙F

, 0 R y.

l: rounding to nearest
△: rounding upwards
ǫ1: relative rounding error divided by 2
η: smallest representable floating-point number

7 / 20

Outline

1 Mathematical background
Fuzzy interval arithmetic
Representation formats

2 Implementation

3 Tests and results

8 / 20

Implementation

Algorithms

Algorithm 1 Fuzzy multiplication in the lower-upper format.

Input: Fuzzy operands x and y.
Output: Fuzzy result z “ x ¨ y.
1: for i in 1, . . . , N do
2: zi “ ▽pminpxy, xy, xy, xyqq
3: zi “ △pmaxpxy, xy, xy, xyqq

Requires 14N floating-point operations.

9 / 20

Implementation

Algorithms

Algorithm 1 Fuzzy multiplication in the lower-upper format.

Input: Fuzzy operands x and y.
Output: Fuzzy result z “ x ¨ y.
1: for i in 1, . . . , N do
2: zi “ ▽pminpxy, xy, xy, xyqq
3: zi “ △pmaxpxy, xy, xy, xyqq

Requires 14N floating-point operations.

Algorithm 2 Symmetric fuzzy multiplication in the midpoint-radius format.

Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result z “ x ¨ y.
1: ž “ lpx̌y̌q
2: for i in 1, . . . , N do
3: ρz,i “ △pη ` ǫ1|ž| ` p|x̌| ` ρx,iqρy,i ` |y̌|ρx,iq

Requires 6 ` 5N floating-point operations.

9 / 20

Implementation

Performance considerations

Table 1: Number of floating-point instructions per arithmetical operation, for different
data types.

Data type Addition Multiplication Inversion
Scalar 1 1 1
Lower-upper interval 2 14 2
Midpoint-radius interval 5 11 9
Lower-upper fuzzy 2N 14N 2N
Midpoint-radius fuzzy 3 ` 2N 6 ` 5N 5 ` 5N

Table 2: Memory requirements of different data types.

Data type Memory usage
Scalar 1
Lower-upper interval 2
Midpoint-radius interval 2
Lower-upper fuzzy 2N
Midpoint-radius fuzzy 1 ` N

N : number of α-cuts
10 / 20

Implementation

Radius increments

Fuzzy intervals can also be represented in terms of midpoint and radius
increments:replacemen

x̌

δ1

δ2

δ3 x

α

0

1

µx

ρi “
i

ÿ

k“1

δk “ ρi´1 ` δi.

11 / 20

Implementation

Algorithms

Algorithm 3 Symmetric fuzzy addition in the midpoint-increment format.

Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result z “ x ` y.
1: ž “ lpx̌ ` y̌q
2: δz,1 “ △p 1

2
ǫ|ž| ` δx,1 ` δy,1q

3: for i in 2, . . . , N do
4: δz,i “ △pδx,i ` δy,iq

Requires 1 ` 4N operations, fewer than midpoint-radius.

12 / 20

Implementation

Algorithms

Algorithm 4 Symmetric fuzzy multiplication in the midpoint-increment format.

Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result z “ x ¨ y.
1: ž “ lpx̌y̌q
2: tx,1 “ △p|x̌| ` δx,iq
3: ty,1 “ △p|y̌|q
4: δz,1 “ △pη ` 1

2
ǫ|ž| ` tx,1δy,1 ` ty,1δx,1q

5: for i in 2, . . . , N do
6: tx,i “ △ptx,i´1 ` δx,iq
7: ty,i “ △pty,i´1 ` δy,iq

8: δz,i “ △pη ` 1
2
ǫ|ž| ` tx,iδy,i ` ty,iδx,iq

Requires 6 ` 5N operations, the same as midpoint-radius.

13 / 20

Implementation

Performance considerations

Table 3: Number of floating-point instructions per arithmetical operation, for different
data types.

Data type Addition Multiplication Inversion
Scalar 1 1 1
Lower-upper interval 2 14 2
Midpoint-radius interval 5 11 9
Lower-upper fuzzy 2N 14N 2N
Midpoint-radius fuzzy 3 ` 2N 6 ` 5N 5 ` 5N
Midpoint-increment fuzzy 4 ` N 6 ` 5N 5 ` 5N

Table 4: Memory requirements of different data types.

Data type Memory usage
Scalar 1
Lower-upper interval 2
Midpoint-radius interval 2
Lower-upper fuzzy 2N
Midpoint-radius fuzzy 1 ` N

Midpoint-increment fuzzy 1 ` N

N : number of α-cuts 14 / 20

Implementation

Error analysis

Absolute error in the midpoint-radius format (i ě 2)

ρz,i “ pǫ1|ž| ` ρx,iq ` ρy,i.

Epρz,iq ď ǫ
`ˇ

ˇǫ1|ž| ` ρx,iq
ˇ

ˇ `
ˇ

ˇǫ1|ž| ` ρx,i ` ρy,i
ˇ

ˇ

˘

“ ǫ pǫ|ž| ` 2ρx,i ` ρy,iq .

15 / 20

Implementation

Error analysis

Absolute error in the midpoint-radius format (i ě 2)

ρz,i “ pǫ1|ž| ` ρx,iq ` ρy,i.

Epρz,iq ď ǫ
`ˇ

ˇǫ1|ž| ` ρx,iq
ˇ

ˇ `
ˇ

ˇǫ1|ž| ` ρx,i ` ρy,i
ˇ

ˇ

˘

“ ǫ pǫ|ž| ` 2ρx,i ` ρy,iq .

Absolute error in the midpoint-increment format (i ě 2)

ρz,i “ ρz,i´1 ` δz,i.

Epρz,iq “ Epρz,i´1q ` Epδz,iq

ď ǫ pǫ|ž| ` 2ρx,i´1 ` ρy,i´1q ` ǫ |δx,i ` δy,i|

“ ǫ pǫ|ž| ` ρx,i´1 ` ρx,i ` ρy,iq .

15 / 20

Outline

1 Mathematical background
Fuzzy interval arithmetic
Representation formats

2 Implementation

3 Tests and results

16 / 20

Tests and results

Compute-bound benchmark: AXPY loop

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25

Number of α-cuts

G
it
e
rs
/
se

c

DOUBLE LU XEON
DOUBLE LU GTX480

DOUBLE MR GTX480
SINGLE MR GTX480

(a)

 1

 10

 0 5 10 15 20 25

Number of α-cuts

S
p
e
e
d
-u

p

DOUBLE GTX480
DOUBLE GTX680

SINGLE GTX480

(b)

Figure 1: (a) Performance comparison of different representation formats and
architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 8 α-cuts the speed-up curve follows the theoretical ratio:

16N

9 ` 7N
17 / 20

Tests and results

Memory-bound benchmark: RADIX sort

 1

 10

 100

 1000

 0 5 10 15 20 25

Number of α-cuts

x
1
M

so
rt
e
d

e
le
m

e
n
ts

/
se

c

DOUBLE LU
DOUBLE MR

SINGLE LU
SINGLE MR

(a)

 1

 10

 100

 0 5 10 15 20 25

Number of α-cuts

S
p
e
e
d
-u

p

DOUBLESINGLE

(b)

Figure 2: (a) Performance comparison of different representation formats and
architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 7 α-cuts the speed-up curve follows the theoretical ratio:

2N

1 ` N

18 / 20

Tests and results

Conclusions and future work

Midpoint-radius representation is an attractive alternative to handle
symmetric fuzzy intervals. It achieves a speed-up of 2 to 20 over
lower-upper in both compute and memory-bound benchmarks.

Fuzzy arithmetic library written in CUDA, available at
https://github.com/mmarin-upvd/fuzzy-gpu/.

Future work will consider the implementation of the midpoint-increment
format and further assessment of accuracy issues.

19 / 20

https://github.com/mmarin-upvd/fuzzy-gpu/

	Mathematical background
	Fuzzy interval arithmetic
	Representation formats

	Implementation
	Tests and results

