An EFFICIENT MIDPOINT-RADIUS IMPLEMENTATION TO HANDLE SYMMETRIC FUZZY INTERVALS

Manuel Marin, David Defour and Federico Milano

DALI, University of Perpignan Via Domitia, Electricity Research Centre, University College Dublin

Introduction

- Interval arithmetic is a useful tool to provide reliable results in computations with uncertain data (e.g., the speed is between 100 and $120 \mathrm{~km} / \mathrm{h})$.
- In addition, fuzzy interval arithmetic provides an answer when the information in the knowledge base is more ambiguous and imprecise (e.g., the speed is high).
- Most fuzzy interval implementations are based on the lower-upper representation format. This talk discusses the use of midpoint-radius to improve performance when dealing with symmetric fuzzy intervals.

Outline

(1) Mathematical background

- Fuzzy interval arithmetic
- Representation formats

(2) Implementation

(3) Tests and Results

FuZZy intervals

Fuzzy intervals are characterized by a membership function, $\mu: \mathbb{R} \rightarrow[0,1]$. For each $\alpha \in[0,1]$, an α-cut is obtained:

FuZZy intervals

Fuzzy intervals are characterized by a membership function, $\mu: \mathbb{R} \rightarrow[0,1]$. For each $\alpha \in[0,1]$, an α-cut is obtained:

If the fuzzy interval is symmetric, then all the α-cuts have the same midpoint.

FuZzy interval arithmetic

Fuzzy arithmetic operations are decomposed into a series of interval operations, one per α-cut:

FuZzy interval arithmetic

Fuzzy arithmetic operations are decomposed into a series of interval operations, one per α-cut:

Addition, subtraction and multiplication of fuzzy intervals preserve symmetry.

LOWER-UPPER REPRESENTATION

$$
[\underline{x}, \bar{x}]=\{x \in \mathbb{R}: \underline{x} \leqslant x \leqslant \bar{x}\} .
$$

LOWER-UPPER REPRESENTATION

$$
[\underline{x}, \bar{x}]=\{x \in \mathbb{R}: \underline{x} \leqslant x \leqslant \bar{x}\} .
$$

Rounded interval arithmetic in the Lower-upper format

$$
\begin{aligned}
x+y & =[\nabla(\underline{x}+\underline{y}), \triangle(\bar{x}+\bar{y})], \\
x-y & =[\nabla(\underline{x}-\bar{y}), \triangle(\bar{x}-\underline{y})], \\
x \cdot y & =[\nabla(\min (\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y})), \triangle(\max (\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y})], \\
\frac{1}{y} & =\left[\nabla\left(\frac{1}{\bar{y}}\right), \triangle\left(\frac{1}{y}\right)\right], \quad 0 \notin y .
\end{aligned}
$$

∇ : rounding downwards
\triangle : rounding upwards

Midpoint-Radius Representation

$$
\left\langle\check{x}, \rho_{x}\right\rangle=\left\{x \in \mathbb{R}:|x-\check{x}| \leqslant \rho_{x}\right\}
$$

Midpoint-Radius Representation

$$
\left\langle\check{x}, \rho_{x}\right\rangle=\left\{x \in \mathbb{R}:|x-\check{x}| \leqslant \rho_{x}\right\}
$$

Rounded interval arithmetic in the midpoint-Radius format

$$
\begin{aligned}
x \pm y & =\left\langle\square(\check{x} \pm \check{y}), \triangle\left(\epsilon^{\prime}|\check{x} \pm \check{y}|+\rho_{x}+\rho_{y}\right)\right\rangle \\
x \cdot y & =\left\langle\square(\check{x} \check{y}), \triangle\left(\eta+\epsilon^{\prime}|\check{x} \check{y}|+\left(|\check{x}|+\rho_{x}\right) \rho_{y}+|\check{y}| \rho_{x}\right)\right\rangle, \\
\frac{1}{y} & =\left\langle\square\left(\frac{1}{\check{y}}\right), \triangle\left(\eta+\epsilon^{\prime}\left|\frac{1}{\check{y}}\right|+\frac{-\rho_{y}}{|\check{y}|\left(\rho_{y}-|\check{y}|\right)}\right)\right\rangle, \quad 0 \notin y .
\end{aligned}
$$rounding to nearest

\triangle : rounding upwards
ϵ^{\prime} : relative rounding error divided by 2
η : smallest representable floating-point number

Outline

(1) Mathematical Background

- Fuzzy interval arithmetic
- Representation formats
(2) Implementation

3 Tests and Results

Algorithms

```
Algorithm 1 Fuzzy multiplication in the lower-upper format.
Input: Fuzzy operands \(x\) and \(y\).
Output: Fuzzy result \(z=x \cdot y\).
    1: for \(i\) in \(1, \ldots, N\) do
    2: \(\quad \underline{z}_{i}=\nabla(\min (\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y}))\)
    3: \(\quad \bar{z}_{i}=\triangle(\max (\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y}))\)
```

Requires $14 N$ floating-point operations.

Algorithms

```
Algorithm 1 Fuzzy multiplication in the lower-upper format.
Input: Fuzzy operands \(x\) and \(y\).
Output: Fuzzy result \(z=x \cdot y\).
    1: for \(i\) in \(1, \ldots, N\) do
    2: \(\quad \underline{z}_{i}=\nabla(\min (\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y}))\)
    \(3: \quad \bar{z}_{i}=\triangle(\max (\underline{x} \underline{y}, \underline{x} \bar{y}, \bar{x} \underline{y}, \overline{x y}))\)
```

Requires $14 N$ floating-point operations.

Algorithm 2 Symmetric fuzzy multiplication in the midpoint-radius format.
Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result $z=x \cdot y$.
1: $\check{z}=\square(\check{x} \check{y})$
2: for i in $1, \ldots, N$ do
3: $\quad \rho_{z, i}=\triangle\left(\eta+\epsilon^{\prime}|\check{z}|+\left(|\check{x}|+\rho_{x, i}\right) \rho_{y, i}+|\check{y}| \rho_{x, i}\right)$

Requires $6+5 N$ floating-point operations.

PERFORMANCE CONSIDERATIONS

Table 1: Number of floating-point instructions per arithmetical operation, for different data types.

Data type	Addition	Multiplication	Inversion
Scalar	1	1	1
Lower-upper interval	2	14	2
Midpoint-radius interval	5	11	9
Lower-upper fuzzy	$2 N$	$14 N$	$2 N$
Midpoint-radius fuzzy	$3+2 N$	$6+5 N$	$5+5 N$

Table 2: Memory requirements of different data types.

Data type	Memory usage
Scalar	1
Lower-upper interval	2
Midpoint-radius interval	2
Lower-upper fuzzy	$2 N$
Midpoint-radius fuzzy	$1+N$

N : number of α-cuts

Radius increments

Fuzzy intervals can also be represented in terms of midpoint and radius increments:

Algorithms

```
Algorithm 3 Symmetric fuzzy addition in the midpoint-increment format.
Input: Symmetric fuzzy operands \(x\) and \(y\).
Output: Symmetric fuzzy result \(z=x+y\).
    \(1: \check{z}=\square(\check{x}+\check{y})\)
    2: \(\delta_{z, 1}=\triangle\left(\frac{1}{2} \epsilon|\check{z}|+\delta_{x, 1}+\delta_{y, 1}\right)\)
    3: for \(i\) in \(2, \ldots, N\) do
    4: \(\quad \delta_{z, i}=\triangle\left(\delta_{x, i}+\delta_{y, i}\right)\)
```

Requires $1+4 N$ operations, fewer than midpoint-radius.

Algorithms

Algorithm 4 Symmetric fuzzy multiplication in the midpoint-increment format.
Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result $z=x \cdot y$.
1: $\check{z}=\square(\check{x} \check{y})$
2: $t_{x, 1}=\triangle\left(|\check{x}|+\delta_{x, i}\right)$
3: $t_{y, 1}=\triangle(|\check{y}|)$
4: $\delta_{z, 1}=\triangle\left(\eta+\frac{1}{2} \epsilon|\check{z}|+t_{x, 1} \delta_{y, 1}+t_{y, 1} \delta_{x, 1}\right)$
5: for i in $2, \ldots, N$ do
6: $\quad t_{x, i}=\triangle\left(t_{x, i-1}+\delta_{x, i}\right)$
7: $\quad t_{y, i}=\triangle\left(t_{y, i-1}+\delta_{y, i}\right)$
8: $\quad \delta_{z, i}=\triangle\left(\eta+\frac{1}{2} \epsilon|\check{z}|+t_{x, i} \delta_{y, i}+t_{y, i} \delta_{x, i}\right)$

Requires $6+5 N$ operations, the same as midpoint-radius.

PERFORMANCE CONSIDERATIONS

Table 3: Number of floating-point instructions per arithmetical operation, for different data types.

Data type	Addition	Multiplication	Inversion
Scalar	1	1	1
Lower-upper interval	2	14	2
Midpoint-radius interval	5	11	9
Lower-upper fuzzy	$2 N$	$14 N$	$2 N$
Midpoint-radius fuzzy	$3+2 N$	$6+5 N$	$5+5 N$
Midpoint-increment fuzzy	$4+N$	$6+5 N$	$5+5 N$

Table 4: Memory requirements of different data types.

Data type	Memory usage
Scalar	1
Lower-upper interval	2
Midpoint-radius interval	2
Lower-upper fuzzy	$2 N$
Midpoint-radius fuzzy	$1+N$
Midpoint-increment fuzzy	$1+N$

Error analysis

Absolute error in the midpoint-Radius format $(i \geqslant 2)$

$$
\begin{aligned}
\rho_{z, i} & =\left(\epsilon^{\prime}|\check{z}|+\rho_{x, i}\right)+\rho_{y, i} . \\
E\left(\rho_{z, i}\right) & \left.\leqslant \epsilon\left(\left|\epsilon^{\prime}\right| \check{z} \mid+\rho_{x, i}\right)\left|+\left|\epsilon^{\prime}\right| \check{z}\right|+\rho_{x, i}+\rho_{y, i} \mid\right) \\
& =\epsilon\left(\epsilon|\check{z}|+2 \rho_{x, i}+\rho_{y, i}\right) .
\end{aligned}
$$

Error analysis

Absolute error in the midpoint-Radius format $(i \geqslant 2)$

$$
\begin{aligned}
\rho_{z, i} & =\left(\epsilon^{\prime}|\check{z}|+\rho_{x, i}\right)+\rho_{y, i} . \\
E\left(\rho_{z, i}\right) & \left.\leqslant \epsilon\left(\left|\epsilon^{\prime}\right| \check{z} \mid+\rho_{x, i}\right)\left|+\left|\epsilon^{\prime}\right| \check{z}\right|+\rho_{x, i}+\rho_{y, i} \mid\right) \\
& =\epsilon\left(\epsilon|\check{z}|+2 \rho_{x, i}+\rho_{y, i}\right) .
\end{aligned}
$$

Absolute error in the midpoint-Increment format $(i \geqslant 2)$

$$
\begin{aligned}
\rho_{z, i} & =\rho_{z, i-1}+\delta_{z, i} . \\
E\left(\rho_{z, i}\right) & =E\left(\rho_{z, i-1}\right)+E\left(\delta_{z, i}\right) \\
& \leqslant \epsilon\left(\epsilon|\check{z}|+2 \rho_{x, i-1}+\rho_{y, i-1}\right)+\epsilon\left|\delta_{x, i}+\delta_{y, i}\right| \\
& =\epsilon\left(\epsilon|\check{z}|+\rho_{x, i-1}+\rho_{x, i}+\rho_{y, i}\right) .
\end{aligned}
$$

Outline

(1) Mathematical Background

- Fuzzy interval arithmetic
- Representation formats
(2) Implementation
(3) Tests and Results

Compute-bound benchmark: AXPY loop

(a)

(b)

Figure 1: (a) Performance comparison of different representation formats and architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 8α-cuts the speed-up curve follows the theoretical ratio:

$$
\frac{16 N}{9+7 N}
$$

Memory-bound benchmark: RADIX sort

(a)

(b)

Figure 2: (a) Performance comparison of different representation formats and architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 7α-cuts the speed-up curve follows the theoretical ratio:

$$
\frac{2 N}{1+N}
$$

Conclusions and future work

- Midpoint-radius representation is an attractive alternative to handle symmetric fuzzy intervals. It achieves a speed-up of 2 to 20 over lower-upper in both compute and memory-bound benchmarks.
- Fuzzy arithmetic library written in CUDA, available at https://github.com/mmarin-upvd/fuzzy-gpu/.
- Future work will consider the implementation of the midpoint-increment format and further assessment of accuracy issues.

