AN EFFICIENT MIDPOINT-RADIUS
IMPLEMENTATION TO HANDLE SYMMETRIC FUZZY
INTERVALS

Manuel Marin, David Defour and Federico Milano

DALI, University of Perpignan Via Domitia,
Electricity Research Centre, University College Dublin

g ez BT |_T._F DALI ’<>< UPVD

eeeeeeeeeeeeeeeeeeeee Architectures et Logiciels Informa sité de Perpign

1/20

INTRODUCTION

@ Interval arithmetic is a useful tool to provide reliable results in
computations with uncertain data (e.g., the speed is between 100 and
120 km/h).

@ In addition, fuzzy interval arithmetic provides an answer when the
information in the knowledge base is more ambiguous and imprecise
(e.g., the speed is high).

® Most fuzzy interval implementations are based on the lower-upper
representation format. This talk discusses the use of midpoint-radius to
improve performance when dealing with symmetric fuzzy intervals.

OUTLINE

@ MATHEMATICAL BACKGROUND
@ Fuzzy interval arithmetic
@ Representation formats

3/20

MATHEMATICAL BACKGROUND Fuzzy INTERVAL ARITHMETIC

Fuzzy INTERVALS

Fuzzy intervals are characterized by a membership function, pu: R — [0, 1].

For each « € [0, 1], an a-cut is obtained:

M

1/20

MATHEMATICAL BACKGROUND Fuzzy INTERVAL ARITHMETIC

Fuzzy INTERVALS

Fuzzy intervals are characterized by a membership function, pu: R — [0, 1].
For each « € [0, 1], an a-cut is obtained:

M

If the fuzzy interval is symmetric, then all the a-cuts have the same midpoint.

1/20

MATHEMATICAL BACKGROUND FUzzY INTERVAL ARITHMETIC

Fuzzy INTERVAL ARITHMETIC

Fuzzy arithmetic operations are decomposed into a series of interval
operations, one per a-cut:

223 My Mz
1 1 1
(0% t (0% (6%

y =
0 0 0

MATHEMATICAL BACKGROUND Fuzzy INTERVAL ARITHMETIC

Fuzzy INTERVAL ARITHMETIC

Fuzzy arithmetic operations are decomposed into a series of interval
operations, one per a-cut:

223 My Mz
1 1 1
(0% t (0% (6%
y =
0 — 0 — 0 —
T T Y T Z x

Addition, subtraction and multiplication of fuzzy intervals preserve symmetry.

[
)

MATHEMATICAL BACKGROUND

LOWER-UPPER REPRESENTATION

6/20

REPRESENTATION FORMATS

MATHEMATICAL BACKGROUND

LOWER-UPPER REPRESENTATION

z+y=[V(z+y), AT +7),
r—y=[vz—-7),A7 -y,
x -y = [v(min(zy, 27, Ty, T9)), A(max(zy, 27, Ty, TY)],

v: rounding downwards
A: rounding upwards

6 /20

MATHEMATICAL BACKGROUND

MIDPOINT-RADIUS REPRESENTATION

(& pa) = {z e R: | — | < po}

MATHEMATICAL BACKGROUND REPRESENTATION FORMATS

MIDPOINT-RADIUS REPRESENTATION

(& pa) = {z e R: | — | < po}

ROUNDED INTERVAL ARITHMETIC IN THE MIDPOINT-RADIUS FORMAT

y=< (T +7), Ale | +y|+pw+py)>
z-y = Eg), An+¢€ |+(I$|+px)py+|y|px)>
lz 1 —Py
y < y> A(* ey |y|>>> 0Fy

[J: rounding to nearest

A: rounding upwards

€¢’: relative rounding error divided by 2

n: smallest representable floating-point number

OUTLINE

© IMPLEMENTATION

8/20

IMPLEMENTATION

ALGORITHMS

Algorithm 1 Fuzzy multiplication in the lower-upper format.

Input: Fuzzy operands z and y.
Output: Fuzzy result z = x - y.
1: foriin1,...,N do

2: z; = v(min(zy, 27, Ty, 7))
31z = A(max(zy, 27, Ty, TY))

Requires 14N floating-point operations.

9/20

IMPLEMENTATION

ALGORITHMS

Algorithm 1 Fuzzy multiplication in the lower-upper format.

Input: Fuzzy operands z and y.
Output: Fuzzy result z = x - y.

1l: foriinl,...,N do

2: z; = v(min(zy, 27, Ty, 7))
31z = A(max(zy, 27, Ty, TY))

Requires 14N floating-point operations.

Algorithm 2 Symmetric fuzzy multiplication in the midpoint-radius format.

Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result z = x - y.

10z = O(xy)

2: foriin1,...,N do

3 pai =AM +€Z (2] + pa,i)pys + 19]P2,)

Requires 6 + 5N floating-point operations.

9/2

IMPLEMENTATION

PERFORMANCE CONSIDERATIONS

Table 1: Number of floating-point instructions per arithmetical operation, for different
data types.

Data type Addition | Multiplication | Inversion
Scalar 1 1 1
Lower-upper interval 2 14 2
Midpoint-radius interval 5 11 9
Lower-upper fuzzy 2N 14N 2N
Midpoint-radius fuzzy 3+2N 6+ 5N 54+ 5N

Table 2: Memory requirements of different data types.

Data type Memory usage
Scalar 1
Lower-upper interval 2
Midpoint-radius interval 2
Lower-upper fuzzy 2N
Midpoint-radius fuzzy 1+ N

N: number of a-cuts

10

20

IMPLEMENTATION

RADIUS INCREMENTS

Fuzzy intervals can also be represented in terms of midpoint and radius
increments:

pi= Y. 6k = pi1+0;.
k=1

IMPLEMENTATION

ALGORITHMS

Algorithm 3 Symmetric fuzzy addition in the midpoint-increment format.

Input: Symmetric fuzzy operands x and y.
Output: Symmetric fuzzy result z = = + y.
1: z2=0(z+79)

2: 6,1 = A(%e\?ﬂ + 02,1 + 0y,1)

3: foriin2,...,N do

4: 52’2‘ = A((Smyi + 6y,i)

Requires 1 + 4N operations, fewer than midpoint-radius.

IMPLEMENTATION

ALGORITHMS

Algorithm 4 Symmetric fuzzy multiplication in the midpoint-increment format.

Input: Symmetric fuzzy operands x and y.
Output Symmetric fuzzy result z = = - y.

O(zy)
: tz’1 = A(‘:ﬂ —+ 5171)
sty = A(|gl)

02,1 =AM+ %E\2| +t2,10y,1 + ty,102,1)
for iin 2,..., N do

tei = D(te,i—1 +0z,)

ty,i = Atyi—1 +0y4)

2 = DM+ Fel2] + te,ibyi + ty,i0z.)

Wﬂ@?’f‘t’?““!—‘

Requires 6 + 5N operations, the same as midpoint-radius.

3/20

IMPLEMENTATION

PERFORMANCE CONSIDERATIONS

Table 3: Number of floating-point instructions per arithmetical operation, for different
data types.

Data type Addition | Multiplication | Inversion
Scalar 1 1 1
Lower-upper interval 2 14 2
Midpoint-radius interval 5 11 9
Lower-upper fuzzy 2N 14N 2N
Midpoint-radius fuzzy 3+2N 6+ 5N 545N
Midpoint-increment fuzzy 44+ N 6+ 5N 545N

Table 4: Memory requirements of different data types.

Data type Memory usage
Scalar 1
Lower-upper interval 2
Midpoint-radius interval 2
Lower-upper fuzzy 2N
Midpoint-radius fuzzy 1+ N
Midpoint-increment fuzzy 1+N

N: number of a-cuts 14

ERROR ANALYSIS

ABSOLUTE ERROR IN THE MIDPOINT-RADIUS FORMAT (i > 2)

(€'12] + pe.i) + py.i-

pz,i

A

E(pz,i) € (’6/|2| + Pw,i)‘ + ’6/|2| + Pzt py,iD

€ (€2 + 2px,i + py,i) -

15/20

ERROR ANALYSIS

ABSOLUTE ERROR IN THE MIDPOINT-RADIUS FORMAT (i > 2)

(€'12] + pe.i) + py.i-

pz,i

N

E(pz,i) € (’6/|é| + Pw,i)‘ + ’€/|é| + Pz + py,iD

€ (€2 + 2px,i + py,i) -

ABSOLUTE ERROR IN THE MIDPOINT-INCREMENT FORMAT (i > 2)

Pzi = Pzi—1+ 024

E(pzi) = E(pzi-1) + E(62.,1)
<€ (6|2| + 204,i—1 + py,i_1) + € |(5z,i + 5y,i|
= € (€[Z] + puim1 + pui + pyi) -

OUTLINE

© TESTS AND RESULTS

16 /20

TESTS AND RESULTS

COMPUTE-BOUND BENCHMARK: AXPY LOOP

100 10
10 - T
i, : "
o 1 e i o
g see % .
n 01 L 2 i
o} g /
R 2
@] 001 @
0.001
\.\7\\ 777777
oot b v T 1
0 5 10 15 20 2 0 5 10 15 20 2
Number of a-cuts Number of a-cuts
—— DOUBLE.LU_XEON * DOUBLE_MR._GTX480 —— DOUBLE_GTX480 = SINGLE_GTX480
= DOUBLE_LU_GTX480 SINGLE-MR._GTX480 ~ DOUBLE_GTX680

(a) (b)

Figure 1: (a) Performance comparison of different representation formats and
architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 8 a-cuts the speed-up curve follows the theoretical ratio:
16N
94+ 7N

5 AND RESULTS

MEMORY-BOUND BENCHMARK: RADIX SORT

1000 100

100

Speed-up
B

x1M sorted elements /sec

o 5 10 15 20 25 1
Number of a-cuts o 5 N lﬂb . 15 20 2
—— DOUBLE_LU * SINGLELU umber of a-cuts
""" DOUBLE-MR + SINGLEMR —— SINGLE ~< DOUBLE

(a) (b)

Figure 2: (a) Performance comparison of different representation formats and
architectures. (b) Speed-up of midpoint-radius over lower-upper.

For fewer than 7 a-cuts the speed-up curve follows the theoretical ratio:
2N
1+ N

TESTS AND RESULTS

CONCLUSIONS AND FUTURE WORK

@ Midpoint-radius representation is an attractive alternative to handle
symmetric fuzzy intervals. It achieves a speed-up of 2 to 20 over
lower-upper in both compute and memory-bound benchmarks.

@ Fuzzy arithmetic library written in CUDA, available at
https://github.com/mmarin-upvd/fuzzy-gpu/.

@ Future work will consider the implementation of the midpoint-increment
format and further assessment of accuracy issues.

19 /20

https://github.com/mmarin-upvd/fuzzy-gpu/

	Mathematical background
	Fuzzy interval arithmetic
	Representation formats

	Implementation
	Tests and results

