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Summary

Hepatitis C virus (HCV) is an important human pathogen that
causes hepatitis, liver cirrhosis and hepatocellular carcinoma. It
imposes a serious problem to public health in the world as the
population of chronically infected HCV patients who are at risk
of progressive liver disease is projected to increase significantly
in the next decades. However, the arrival of new antiviral mole-
cules is progressively changing the landscape of hepatitis C treat-
ment. The search for new anti-HCV therapies has also been a
driving force to better understand how HCV interacts with its
host, and major progresses have been made on the various steps
of the HCV life cycle. Here, we review the most recent advances in
the fast growing knowledge on HCV life cycle and interaction
with host factors and pathways.
� 2014 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

Hepatitis C virus (HCV) constitutes a significant health burden
worldwide. Indeed, this virus has a high propensity for estab-
lishing a chronic infection and it is estimated that 130–170
million people suffer from chronic hepatitis C. In the long-term,
this can lead to advanced liver fibrosis, cirrhosis and
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hepatocellular carcinoma. As a consequence, HCV is the most
common indication for liver transplantation in developed coun-
tries [1]. For more than two decades, interferon has been the
basis for HCV treatment. Responses to treatment were
improved in 1998 by the addition of ribavirin and then in
2001–2002 by linking the interferon molecule to polyethylene
glycol [2–4]. Recently, there have been major advances in
hepatitis C treatments with the licensing of the first direct-
acting antivirals (DAAs) and large numbers of ongoing trials
with various DAAs showing high potency, favourable tolerabil-
ity profile, higher barrier to resistance, shortened treatment
duration, and all oral regimen [5]. However, there is no vaccine
yet available.

Discovered in 1989 [6], HCV is a positive sense, single-
stranded RNA virus of the Flaviviridae family, which also
includes many arthropod-borne human pathogens of the Flavi-
virus genus such as yellow fever virus, West Nile virus and
dengue virus. HCV genome organization is presented in
Fig. 1. Together with the GBV-B virus and the recently identi-
fied non-primate, rodent and bat hepaciviruses, HCV has been
grouped in the Hepacivirus genus [7–10]. HCV isolates have
been grouped into seven genotypes and a number of subtypes
[11] with distinct geographic distributions and sensitivity to
interferon-based treatment [12,13]. The only true HCV animal
model is the chimpanzee, which has been crucial in studies of
HCV immunity and pathogenesis [14]. In addition, human-liver
chimeric and genetically modified HCV-permissive mouse
models have also been developed [15]. For a long time, the
lack of a cell culture system has been a major obstacle to
study the HCV life cycle. However, selectable replicon systems
[16] and retrovirus-based pseudotyped particles [17] have
been major tools to understand HCV genomic replication and
virus entry, respectively. Finally, since 2005, the full viral life
cycle can be investigated with the help of complete viral rep-
lication systems [18–20]. It should be noted that these cell
culture systems usually use HuH-7-derived hepatoma cells.
However, this cell line lacks many features of hepatocytes
[21]. Primary human hepatocytes or human liver slices have
therefore been developed to validate some experiments in
more physiological models [22–24]. In this review, we will
discuss recent advances in the virology and cell biology of
the HCV life cycle.
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Fig. 1. HCV genome and proteins. HCV genome contains a single open reading
frame flanked by 50 and 30 non-translated regions (NTRs). The 50 NTR contains an
internal ribosome entry site (IRES). After its synthesis, HCV polyprotein is cleaved
by viral and host encoded proteases. Cleavage in the N-terminal part of the
polyprotein is mediated by cellular signal peptidases as indicated by individual
vertical arrows. An additional cleavage removing the carboxy-terminal region of
the core protein is mediated by cellular signal peptide peptidase, as indicated by
an open arrow. The linked arrows indicate the cleavages by the viral proteases
NS2 and NS3/4A. The functions of the individual proteins are indicated at the
bottom of the figure.
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Key Points

• The HCV life cycle is tightly linked to the lipid 
metabolism of the hepatocyte

• The HCV particle exhibits an unusual low buoyant
density and is associated with lipoproteins 

• ApoE is associated with infectious HCV particles and is 
involved in HCV assembly and entry

• HCV envelope glycoproteins are the major viral 
determinants of HCV entry into hepatocytes

• HCV entry into hepatocytes is a highly complex 
process involving a series of host cell factors, including 
SRB1, CD81, CLDN1 and OCLN as the major entry 
factors

• HCV replication induces massive rearrangements of 
intracellular membranes to create  a micro-environment
in the cytoplasm, called “membranous web” 

• HCV replication takes place in double-membrane 
vesicles associated with the membranous web

• HCV recruits many host cell factors to replicate its 
genome, with PI4KIII playing a central role

• HCV assembly takes place at the proximity of cytosolic 
lipid droplets with the help of cellular factors, which 
include among others DGAT1 and PLA2G4

• HCV assembly is tightly connected to the biogenesis 
of VLDL

The HCV particle
Despite substantial progress in producing viral particles in cell
culture and several biochemical and morphological studies, the
structure of the HCV virion remains poorly characterized. This
contrasts with the well-characterized flavivirus viral particles. A
striking and unique feature of HCV biology is its association with
lipoproteins, which exhibit an unusually low buoyant density
[25–27]. HCV particles are 50–80 nm in diameter [28] and con-
tain the single-stranded RNA genome, core and the envelope gly-
coproteins, E1 and E2 [29]. The HCV genome interacts with the
core protein to form the nucleocapsid that is surrounded by a
lipid membrane, called the viral envelope, in which the envelope
glycoproteins are anchored. Importantly, due to virion associa-
tion with lipoproteins, apolipoproteins such as apoE, apoB,
apoA1, apoC1, apoC2, and apoC3 can also be found in association
with HCV particles [25,28,30–32]. Furthermore, a characteriza-
tion of cell culture-produced particles indicates that their lipid
composition resembles very-low density lipoproteins (VLDL)
and low-density lipoproteins (LDL) with cholesteryl esters
accounting for almost half of the total HCV lipids [33]. Electron
microscopy analyses of purified infectious virions confirm the
pleomorphic nature of HCV particles and show virions with a
rather smooth and even surface [28].

The exact nature of the interactions involved between HCV
virion components and the lipoproteins remains undetermined.
It has been suggested that the HCV virion could be a hybrid
S4 Journal of Hepatology 20
particle composed of a virion moiety and a lipoprotein moiety
[34]. However, alternative models have also been suggested, with
lipoproteins peripherally associated with canonical viral particles
via interaction between apolipoproteins and HCV envelope lipids
or proteins [35]. In both particle types, the interaction with lipo-
proteins could contribute to the shielding of HCV glycoproteins
from the host immune response and explain the poor detection
or availability of HCV glycoproteins at the virion surface
[28,33,36]. Importantly, apolipoprotein(s) associated with HCV
virion play a role in HCV entry (see below).

HCV envelope glycoproteins are the major viral determinants
of HCV entry. They indeed play a role in receptor binding and
mediate the fusion process between the viral envelope and an
endosomal host cell membrane. HCV glycoproteins E1 and E2
are type I transmembrane proteins, which form a non-covalent
heterodimer within infected cells, whereas they assemble as
large covalent complexes stabilized by disulfide bonds on the
viral particle [37]. Within the E1E2 heterodimer, the E2 glycopro-
tein has been shown to interact with receptors or co-receptors on
target cells [38,39]. Based on the hypothesis that the structure of
the fusion protein should be conserved within the Flaviviridae
family, E2 had also initially been proposed to be the fusion pro-
tein responsible for the fusion between HCV envelope and a
host-cell membrane [40]. However, recently published crystal
structures of the E2 glycoprotein core domain do not confirm this
hypothesis [41,42]. Furthermore, instead of forming an elongated
shape, composed of three domains as previously predicted [40],
E2 forms a compact globular structure distinct from any known
viral fusion protein. Interestingly, the masking of neutralizing
epitopes by glycans and the definition of the CD81 binding site
in this new structure confirms previous experimental results
[43,44]. Furthermore, these new data strongly suggest that E1
14 vol. 61 j S3–S13
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should be the fusion protein or, at least, a fusion partner of an
E1E2 fusion complex formed upon conformational rearrange-
ments [45,46].
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HCV entry and uncoating

Viral entry plays an important role for hepatocyte tropism of
HCV. During a primary infection, HCV particles are transported
by the blood stream and come into contact with hepatocytes after
crossing the fenestrated endothelium of the liver sinusoids. In the
space of Disse, virions have direct contact with the basolateral
surface of hepatocytes. This allows them to interact with attach-
ment factors and receptors on the surface of these cells. Initial
attachment of HCV particles onto hepatocytes is mediated by
the heparan sulfate proteoglycan syndecan-1 or syndecan-4
[47,48] or by the scavenger receptor B1 (SRB1) [36], which
depends on virion density. It was initially thought that HCV gly-
coproteins are responsible for virion binding to heparan sulfate
proteoglycans [49] or SRB1 [39]. However, more recent data sug-
gest that ApoE, rather than HCV glycoproteins themselves, could
be involved in this initial contact [36,50]. Due to HCV particle
interaction with lipoproteins, the LDL receptor (LDLR) has also
been proposed to play a role in the early phase of HCV entry
[51]. However, HCV-LDLR interaction seems to involve a non-pro-
ductive entry pathway that can potentially lead to viral particle
degradation [52].

After the initial attachment to the cell surface, the following
steps of HCV entry are only partially understood and they involve
a series of specific cellular entry factors (Fig. 2). It emerges that
the coordinated action of at least four major cellular factors is
essential for HCV entry. They include SRB1 [39], tetraspanin
CD81 [38] and tight-junction proteins claudin-1 (CLDN1) [53],
and occludin (OCLN) [54]. Due to its dual interaction with HCV
Fig. 2. HCV entry. The HCV virion is tightly associated with lipoproteins to form a
complex particle that has been called lipoviroparticle. It initiates its life cycle by
binding to glycosaminoglycans (GAGs) and SRB1. Then the virus follows a
complex multistep process, involving a series of specific cellular entry factors,
which include SRB1, CD81, tight-junction proteins, CLDN1 and OCLN, EGFR,
transferrin receptor (TfR), and NPC1L1 as well as signaling proteins (see text for
details). After binding to several components of the host cell, HCV particle is
internalized by clathrin-mediated endocytosis and fusion takes place in early
endosomes.

Journal of Hepatology 20
glycoprotein E2 and lipoproteins, SRB1 could be a first entry
factor, interacting with the virion after initial cell attachment.
The role of SRB1 in HCV entry was first suggested by its ability
to mediate E2 binding and the hypervariable region 1 (HVR1) of
E2 is essential for this interaction [39]. However, as above dis-
cussed, SRB1 also seems to contribute to virus attachment
through interaction with virus-associated lipoproteins [36,55]
and HCV mutants, harbouring HVR1 deletion or mutation that
prevent E2 binding to SRB1, remain dependent on SRB1 for entry
into cells [36]. One elegant hypothesis is that SRB1, through its
lipid transfer activity, could modify the lipid composition of the
lipoprotein moiety of the virion, which would lead to a better
exposure of the CD81 binding site on E2 glycoprotein, as sug-
gested by the observation that SRB1 mediates a post-binding
event important for productive viral entry [36,56]. Alternatively,
SRB1 interaction with HVR1 could also unmask the CD81 binding
site of E2, as suggested by the reduced dependency on SRB1 of
HVR1-deleted mutant viruses [57–59]. Whatever the mechanism
involved, HCV virion seems to be primed to interact with CD81
after SRB1 binding.

Among HCV entry factors, the tetraspanin CD81 is undoubt-
edly a key player in the HCV lifecycle [60]. Amino acid residues
involved in CD81 binding are located at the surface of the core
of E2 protein [41]. This interaction seems to prime HCV envelope
proteins for low pH-dependent fusion [61]. CD81 is highly
dynamic at the cell surface and is enriched in membrane areas
that form stable platforms, which are in permanent exchange
with the rest of the membrane, and the balance of these dynamic
exchanges in the cell membrane are essential to the process of
HCV entry [62,63]. In particular, it is believed that CD81 mole-
cules that freely diffuse and are therefore not engaged in static
microdomains are used by HCV during its entry step [62,63].
CD81 has also been shown to interact with CLDN1 [64,65],
another essential entry factor, to form a co-receptor complex
involved in downstream events of HCV entry [66], and the viral
particle might also potentially interact with CLDN1 [45]. CD81-
CLDN1 association appears to be regulated by multiple signalling
pathways. This interaction seems to be promoted by epidermal
growth factor receptor (EGFR) and also potentially by protein
kinase A [67,68]. Following EGFR stimulation, the Ras/MEK/ERK
pathway is activated, which could lead to the activation of MAPK
interacting serine/threonine kinase 1 (MKNK1), a kinase which
facilitates HCV entry downstream of EGFR activation [69]. Fur-
thermore, activation of EGFR also stimulates HRas, which in turn
associates with CD81, and this interaction is required for CD81
lateral diffusion, allowing CD81-CLDN1 to associate [70]. Thus,
it is believed that EGFR promotes CD81-CLDN1 complex forma-
tion by inducing CD81 diffusion through HRas activation and
facilitates CD81-CLDN1 co-internalization with HCV particles.
After interaction with the CD81-CLDN1 complex, the HCV particle
also transiently activates the PI3K-AKT pathway to facilitate its
entry [71]. Finally, it has also been shown that E2 binding to
CD81 induces Rho GTPases signalling which in turn leads to a
rearrangement of the actin cytoskeleton and could therefore also
affect CD81 mobility at the plasma membrane [72].

In addition to CLDN1, another tight junction protein, OCLN is
also an essential HCV entry factor [54]. However, the precise role
of OCLN in the HCV life cycle remains poorly understood. It seems
to play a role at a late entry step [73,74]. Recently, it has been
reported that activated macrophages produce TNFa that
increases the diffusion coefficient of CD81 and relocalizes OCLN
14 vol. 61 j S3–S13 S5
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at the basolateral membrane, thereby facilitating HCV entry [75].
OCLN depletion does not perturb CLDN1 expression or localiza-
tion, suggesting that both entry factors function separately dur-
ing HCV infection [73,76]. It is worth noting that, together with
CD81, OCLN determines the tropism of HCV for human cells
[54,77]. Since CLDN1 and OCLN are tight junction proteins, it
was first believed that after binding to CD81, the HCV virion
would migrate to tight junctions for internalization. However,
CLDN1 associates with CD81 at the basolateral membrane of
polarized HepG2 cells, whereas pools of CLDN1 in tight junctions
show only a minimal association with CD81 [64,65]. Further-
more, disruption of tight junctions by calcium depletion of polar-
ized HepG2 cells increases HCV entry [78,79]. Finally, live cell
imaging experiments indicate that HCV particles do not migrate
to cell-cell contact areas after binding, supporting the idea that
tight junctions might not be required for HCV entry, at least in
non-polarized hepatoma cells [80].

Finally, since the HCV virion is rich in cholesterol, the role of
the cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1)
was investigated and NPC1L1 identified as an additional entry
factor [81]. Furthermore, transferrin receptor 1 has also been
reported to be involved in HCV entry [82]. However, the precise
roles of these additional factors in HCV entry remain to be
determined.

Whether entry of HCV is restricted to hepatocytes still
remains an unresolved issue. The CD81 tetraspanin [38] is ubiq-
uitously expressed and, in particular, is found in B-lymphocytes
where it acts as a co-stimulatory molecule. However, CD81 inter-
action with its partner EWI-2wint may also represent an impor-
tant molecular determinant contributing to the restricted
tropism of HCV, since EWI-2wint is expressed in several tissues
or cell types (such as brain or immune cells) but not in hepato-
cytes [83]. SRB1 is detected on many cell types, although it is
highly expressed in the liver and steroidogenic tissues [84].
NPC1L1 is expressed on the apical surface of human hepatocytes
but also in enterocytes [85]. The other entry factors, i.e., the tight
junction proteins CLDN1 [53] and OCLN [54] have more restricted
expression profiles in epithelial tissues along with high-level
expression in hepatocytes. Thus, in addition to the tissue-
restricted expression of miR-122, which favours HCV genome
expression (see below), the combined presence of these receptors
and entry factors in hepatocytes, their expression rates, and their
ability to interact is one element that may explain why the liver
constitutes the main target for HCV particles [86].

HCV is known to be endocytosed by a clathrin-dependent pro-
cess [87]. Interestingly, it has been shown that CD81-CLDN1 com-
plexes are internalized in a clathrin- and dynamin-dependent
manner [66], consistent with a single particle imaging study,
reporting that entering HCV particles are associated with CD81
and CLDN1 [80]. Furthermore, this analysis also indicates that
the HCV particle binds cells on filopodia and reaches the cell body
by a mechanism that relies on retrograde actin transport [80].
After internalization, the virion is transported to Rab5a positive
early endosomes along actin stress fibers, where fusion seems
to take place. Following fusion, the HCV genome is presumably
released into the cytosol, where it is directly translated to pro-
duce viral proteins and initiate viral replication.

In the liver of patients, infected cells occur in clusters, point-
ing to a cell-to-cell spread as the predominant mode of HCV
transmission [88]. Interestingly, direct cell-to-cell transmission
is also observed in cell culture [89–92]. Although it seems to
S6 Journal of Hepatology 20
involve most HCV entry factors identified so far, the mechanism
governing this process remains unknown, but might involve exo-
somes [93].
HCV RNA translation and replication

RNA translation is initiated with the help of cellular factors [94].
The HCV genome contains a single open reading frame (ORF),
which is flanked by 50 and 30 non-translated regions (NTRs). These
NTRs contain highly structured RNA elements that are critical for
genome translation and HCV RNA replication [95]. The 50NTR
contains an internal ribosomal entry site (IRES), which initiates
translation of the HCV genome into a single polyprotein (Fig. 1).
Viral and host encoded proteases process the viral polyprotein
into the 10 mature proteins, core, E1, E2, p7, NS2, NS3, NS4A,
NS4B, NS5A, and NS5B [96]. Signal peptidase and signal peptide
peptidase mediate cleavage of the structural proteins, core, E1,
E2, and the p7/NS2 junction. NS3 mediates cleavage of NS4A from
itself and NS4B, after which NS4A associates with the N-terminus
of NS3. The resulting NS3/4A protease complex can then cleave at
the NS4B/5A and NS5A/5B junctions, whereas the cleavage
between NS2 and NS3 is mediated by the NS2 cysteine protease
whose function is strongly enhanced by the N-terminal one-third
of NS3.

After translation, the HCV proteins are associated with mem-
branes derived from the endoplasmic reticulum (ER) (Fig. 3).
Together, NS3/4A, NS4B, NS5A, and NS5B constitute the viral pro-
teins of the replication machinery, which replicates the positive
sense RNA genome through a negative strand intermediate
[95]. The viral RNA-dependent RNA polymerase NS5B is the key
enzyme of RNA synthesis. Nascent RNA genomes are translated
to produce new viral proteins, serve as new/additional RNA
templates for further RNA replication and are progressively
assembled to form infectious virions. HCV replication is depen-
dent on microRNA 122 (miR-122) [97], a liver-specific microRNA
that recruits Argonaute 2 to the 50 end of the viral genome [98],
stabilizing it and slowing its degradation by the 50 exonuclease
Xrn1 [99].

To replicate its genome, HCV induces massive rearrangements
of intracellular membranes to create in the cytoplasm a micro-
environment, called the ‘‘membranous web’’ [95]. Analyses with
electron microscopy and 3D reconstructions of the membranous
web show predominantly double-membrane vesicles (DMVs)
exhibiting an average diameter of 150 nm and accumulating in
parallel to the peak of RNA replication [100,101]. At later time
points of infection, double-membrane tubules and multi-mem-
brane vesicles appear, the latter presumably reflecting a stress-
induced host cell response. The presence of DMVs in the mem-
branous web is in line with the proposed role of autophagy in
HCV replication [102]. However, the exact functional role of
autophagy in HCV replication remains debated [103]. Due to its
capacity to oligomerize, the membrane protein NS4B has been
proposed to form the scaffold of membranous vesicles [104]. Fur-
thermore, while NS3/4A, NS4B, NS5A or NS5B expressed alone
can induce some membrane remodelling, only NS5A is capable
to induce DMVs [100,105,106]. However, none of these proteins
expressed alone is capable to induce a complete membranous
web structure, suggesting that the global membrane rearrange-
ments observed in HCV infected cells require the concerted
action of most if not all replicase proteins.
14 vol. 61 j S3–S13



Fig. 3. HCV replication and assembly. Upon cleavage of the polyprotein, HCV non-structural proteins form the replication complex in association with cellular factors,
which leads to the formation of double-membrane vesicles, also called the membranous web, where replication takes place. After cleavage of its C-terminus, core protein is
loaded onto LDs. The junction between core-loaded LDs and the replication-complex-rich ER membranes is the site of virion assembly. Newly replicated viral genomes are
transferred to the assembly sites via NS3/4A or NS5A, and NS2, and p7 connect replication complexes and core proteins to the glycoproteins. The next steps in HCV virion
morphogenesis are tightly linked to the metabolism of VLDL assembly. However, the details of the intersection between HCV assembly and VLDL biogenesis remain poorly
understood. It has been demonstrated that HCV particle contains apoE and neutral lipids, but how these components are acquired during HCV morphogenesis remains
speculative, and this figure represents a hypothetical model.
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Although a large number of host factors influencing transla-
tion and replication have been identified, using RNAi-screening
and mass spectrometry interactome approaches [107,108], only
a selection of them are discussed below. Phosphatidyl-inositol-
4-kinase-III (PI4KIII) has been identified as a central host factor
involved in HCV replication and NS5A interaction with this kinase
induces accumulation of phosphatidylinositol-4-phosphate
(PI4P) within the membranous web [106]. The absence of
PI4KIIIa activity or alteration of its interaction with NS5A induces
a dramatic change in the ultrastructural morphology of the mem-
branous web [106,109]. NS5A has also been shown to hijack ARF-
GAP1, a GTPase-activating protein for ARF1, which plays a central
role of cargo sorting in COPI transport. NS5A-ARFGAP1 interac-
tion has been proposed to help to maintain a PI4P-enriched
microenvironment by removing PI4P phosphatase Sac1 from
the site of viral replication [110]. Other cellular proteins, such
as vesicle-associated membrane protein-associated protein A
(VAP-A) and VAP-B, which are crucial for viral RNA replication,
as well as cholesterol have also been found in enriched fractions
of HCV-induced DMVs [111]. Interestingly, the accumulation of
Journal of Hepatology 20
cholesterol in the membranous web is mediated by the interplay
between PI4KIII and oxysterol-binding protein [112]. In addition
to cholesterol, other lipids also likely play some role in HCV rep-
lication. In this regard, it is worth noting that HCV alters the
expression of genes involved in cellular lipid metabolism, result-
ing in the accumulation of intracellular lipids [113]. It has also
been reported that de novo formation of DMVs is blocked by
inhibitors of cyclophilin A, which is another partner of NS5A that
is critical for RNA replication [114]. Unexpectedly, nuclear pore
complex proteins and nuclear transport factors are also involved
in the membranous web formation [115]. Indeed, transport cargo
proteins normally targeted to the nucleus are capable of entering
regions of the membranous web and HCV proteins have been
shown to interact with nuclear pore complex proteins and
nuclear transport factors. Based on these observations, it has
been hypothesized that in HCV infected cells, cytoplasmically
positioned nuclear pore complexes could form channels across
DMVs structures of the membranous web. These nuclear pore
complexes could then facilitate the movement of nuclear locali-
zation signal (NLS)-containing proteins into the membranous
14 vol. 61 j S3–S13 S7
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web while excluding proteins lacking NLS sequences such as pat-
tern recognition receptors (PRRs).

Lipid droplets (LDs) are also found in ultrastructural studies of
the membranous web. LDs are organelles which function as a
deposit of triacylglycerides and cholesteryl esters surrounded
by a phospholipid monolayer that harbours numerous proteins.
LDs are currently believed to play a central role in the coordina-
tion of viral RNA synthesis and virion morphogenesis [116]. Viral
double-stranded RNA has been found surrounding LDs, suggest-
ing that these organelles could play a role in RNA replication
[117]. Furthermore, Rab18, a protein associated with LDs, appears
to promote the physical association of NS5A and other replicase
components with LDs, and modulation of Rab18 affects HCV
RNA replication [118]. Another LD protein, Tail-Interacting Pro-
tein 47 (TIP47), also modulates HCV RNA replication by interact-
ing with NS5A [119,120]. By interacting with different cellular
partners, NS5A plays a central role in the formation of the mem-
branous web and the recruitment of the replicase around LDs. It
has also to be noted that within infected cells, NS5A motility and
efficient HCV RNA replication require the microtubule network
and the cytoplasmic motor dynein [121].
HCV assembly and release

HCV morphogenesis requires the accumulation of viral structural
proteins and genomic RNA that are brought together in a tempo-
rally and spatially organized manner [35]. Assembling, budding
or egressing virions are difficult to detect in infected cells, sug-
gesting that these processes are either rare or rapid. One peculiar
feature of HCV particle assembly shared with other members of
the Flaviviridae family is the implication of the viral non-struc-
tural proteins in this process. Another major peculiarity of HCV
morphogenesis is its intricate connection with lipid metabolism.

A major component of the viral particle is the core protein,
which interacts with the genomic RNA to form the nucleocapsid.
Following synthesis on ER membranes and cleavage by the signal
peptide peptidase, the core protein homodimerizes [122] and is
then transferred to cytosolic LDs [123,124] (Fig. 3). HCV core pro-
tein interaction with LDs is believed to be essential for the
recruitments of other viral components involved in virion assem-
bly [116]. The core protein has a C-terminal domain containing
two amphipathic helices that interact with LDs [125], and core
protein accumulation around LDs progressively leads to a pro-
found change in LDs intracellular distribution [126]. Indeed, LDs
are normally distributed throughout the cytoplasm in uninfected
cells, whereas they accumulate in the perinuclear region upon
HCV infection. Importantly, mutations that prevent core interac-
tion with LDs strongly inhibit virus assembly [116,127,128].
Interestingly, live imaging analyses indicate that core is rapidly
trafficked to LDs and slowly recruited into motile puncta that
traffic on microtubules and likely represent virus particles within
the secretory pathway [129]. Finally, it should be noted that the
magnitude of core-LD accumulation inversely correlates with the
efficiency of production of infectious viral particles, which could
reflect the transient localization of core protein on LDs before it is
transferred to ER-derived assembly sites [128,130].

The core-LD association can also be influenced by cellular pro-
teins. Indeed, diacylglycerol acyltransferase-1 (DGAT1), an
enzyme involved in LD morphogenesis has been demonstrated
to interact with the core protein and to enable core-LD association
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and virus production [131]. Trafficking of core protein to LDs also
requires the MAPK-regulated cytosolic phospholipase A2
(PLA2G4) and its product arachidonic acid [132]. Surprisingly,
IjB kinase-a (IKK-a) has also been shown to be a crucial host fac-
tor for HCV assembly [133]. Indeed, it has been reported that HCV
RNA activates IKK-a, which translocates into the nucleus and
induces a CBP/p300-mediated transcriptional program involving
the sterol regulatory element-binding proteins (SREBPs). This
innate pathway induces lipogenic genes and enhances core-asso-
ciated LD formation to facilitate viral assembly. The core-LD inter-
action is dynamic, and the core protein must be retrieved from the
surface of LDs to move to the site of virus budding. The l subunit
of the clathrin adaptor protein complex 2 (AP2M1) has been
reported to interact with a conserved YXXØ motif present in the
HCV core protein and essential for retrieval of core from LDs, lead-
ing to virus assembly [134]. This observation is however difficult
to reconcile with the low accessibility of the YXXØ motif present
in domain II of the core protein [125]. Besides cellular factors,
non-structural proteins p7 and NS2 also regulate in a coordinated
fashion core trafficking to the site of virus assembly [130].

Another major component of the viral particle is the envelope
glycoprotein complex. HCV glycoproteins E1 and E2 form a non-
covalent heterodimer, which is retained in the ER [135]. However,
this glycoprotein complex needs to migrate in close proximity of
LDs where assembly takes place [116]. It has been shown that
NS2 interacts with E1, E2, and p7 and these interactions are essen-
tial for the migration of E1E2 heterodimer at the virion assembly
site [136–139]. Moreover, it has recently been reported that the
cellular factor signal peptidase complex subunit 1 (SPCS1) is
involved in HCV assembly by helping the formation of membrane
associated NS2-E2 complex [140]. It has been proposed that E1E2
heterodimer, NS2 and p7 form a functional unit that migrates
close to the LDs [138]. The presence of disulfide bridges between
HCV envelope glycoproteins at the surface of HCV particle sug-
gests that lateral protein-protein interactions, assisted by disul-
fide-bond formation, might play an active role in the budding
process of the HCV particle [37]. Besides their role in helping in
the transport of HCV envelope glycoproteins to the assembly site,
p7 and NS2 might also play additional functions during the
assembly process. P7 is indeed also necessary for the final steps
of capsid assembly as well as for capsid envelopment [141].

Besides p7 and NS2, the other non-structural proteins are also
involved in the assembly process. Among these proteins, NS5A
emerges as a central player in the transition between replication
and assembly [35]. Indeed, although the C-terminal domain of
this protein is dispensable for replication, it plays a major role
in HCV assembly. This domain is essential for NS5A interaction
with the LD-bound core protein, a key step in HCV assembly
[116,142–144]. Specifically, phosphorylation of a specific serine
residue within this region by casein kinase II is essential for reg-
ulation of virus assembly [144]. Furthermore, genetic and bio-
chemical data indicate that the C-terminal domain of NS5A is
also involved in the transient and weak association with the
p7-NS2 complex [136–138,145]. Host factors have also been
reported to affect the recruitment of NS5A around LDs. These cel-
lular factors include DGAT1 and Rab18 [118,146]. It has to be
pointed out that other host factors, not reported here, could also
affect HCV assembly and/or release [35].

Within the replicase, the NS3/4A enzyme complex is also
involved in HCV assembly. Indeed, mutations in the helicase
domain of NS3 or in the C-terminus of NS4A cause defects in virus
14 vol. 61 j S3–S13
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assembly [147,148]. Furthermore, genetic and biochemical evi-
dence indicates that interactions between the NS3 helicase
domain and the core protein are essential for virus assembly
[149,150]. Interestingly, the cellular factor Y-box-binding protein
1 (YB-1) has been shown to be a partner of NS3/4A that modu-
lates the equilibrium between HCV RNA replication and the pro-
duction of infectious particles [151]. In addition to NS3/4A and
NS5A, the two remaining proteins of the replicase, NS4B and
NS5B, have also been implicated in virus assembly [152,153].
However, it remains to be determined whether these viral pro-
teins play a direct or an indirect role in HCV morphogenesis.

HCV virion biogenesis is closely related to the VLDL assembly
pathway (Fig. 3). Indeed, inhibitors of the microsomal triglyceride
transfer protein (MTP), a protein involved in VLDL biogenesis,
block the production of viral particles [154–156]. In addition,
long chain acyl-CoA synthetase 3 (ACSL3), another enzyme
involved in VLDL assembly and hepatocyte nuclear factor 4a
(HNF4a), a transcription factor that regulates the VLDL secretory
pathway also regulate the production of infectious HCV particles
[157,158]. Furthermore, apolipoproteins such as apoE, apoB,
apoA1, apoC1, apoC2, and apoC3 can also be found in association
with HCV particles [28,34], and the lipid composition of viral par-
ticles resembles the one of VLDL and LDL with cholesteryl esters
accounting for almost half of the total HCV lipids [33]. Among
HCV-associated apolipoproteins, there is a consensus about the
involvement of apoE in HCV morphogenesis [159–161]. Impor-
tantly, reconstitution of HCV assembly in a non-hepatocytic cell
line indicates that apoE is the minimum apolipoprotein required
to produce infectious HCV particles [159,160]. Although initially
reported as playing a role in HCV assembly and as being associ-
ated with the HCV virion, apoB might not be essential for HCV
particle biogenesis [159–162].

The endosomal-sorting complex required for transport (ESC-
RT) pathway has also been proposed to play a role in HCV bud-
ding [163–165]. The ESCRT pathway is a cellular machinery
involved in budding and fission of vesicles away from the cyto-
plasm and implicated in the formation of multivesicular bodies.
This pathway is also exploited by many enveloped viruses for
their budding and release from infected cells [166]. It is however
not clear how HCV, which is supposed to bud into the lumen of
the ER would exploit the ESCRT pathway [162]. Interestingly, this
pathway is clearly involved in the biogenesis of exosomes that
are released from infected cells and that contain HCV RNAs [167].

After assembly and budding in the ER, HCV particles are
released from cells by transit through the secretory pathway
[162]. During this process, HCV virions acquire their characteris-
tic low buoyant density [154,168]. Furthermore, glycans associ-
ated with the viral envelope glycoproteins are also modified
[37]. Finally, during egress, it has also been suggested that HCV
particles depend on p7 to neutralize acidic compartments within
the secretory pathway [169].
Concluding remarks

The characterization of HCV particles and replication during the
last decade has witnessed highly original and specific features
of this important human pathogen. Of particular interest are
future studies of this virus, addressing molecular and cellular
details of the host-HCV interactions. Noteworthy, a most remark-
able feature of HCV lies in the formation of hybrid infectious
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particles that combine, during assembly and egress, viral and
lipoprotein components and which consistently allow HCV to
enter cells by using lipoprotein and cholesterol transfer receptors
and to induce virus escape from neutralizing antibodies. Much
remains to be understood about the structure and the biochemi-
cal composition of infectious HCV particles and about the steps of
the virus life cycle, allowing entry, replication and production of
infectious virus. Importantly, HCV propagation depends on and
also shapes several aspects of lipid metabolism such as choles-
terol transfer through different lipoprotein receptors during its
entry into cells, lipid structures modulating HCV genome replica-
tion, cytosolic and luminal lipid droplets building viral particles.
Unravelling these interconnections is key to define the infectivity
parameters of HCV in vivo and its physio-pathological processes,
but also to elaborate novel therapeutics.
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