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Abstract

The study of turbulent ows calls for measurements with high resolution both in space and time. We
propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity elds by combin-
ing two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-
Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework
of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian
reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the
inverse problem of data reconstruction. The model uses a maxanpasterioriestimate, which yields the
most probable eld knowing the measurements. The DNS of a wall-bounded turbulent ow at moderate
Reynolds number is used to validate and assess the performances of the present approach. Low resolution
measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities are
compared to the reference DNS to estimate the reconstruction errors. The model is compared to other con-
ventional methods such as Linear Stochastic Estimation and cubic spline interpolation. Results show the su-
perior accuracy of the proposed method in all con gurations. Further investigations of model performances
on various range of scales demonstrate its robustness. Numerical experiments also permit to estimate the
expected maximum information level corresponding to limitations of experimental instruments.

1 Introduction

Turbulence, though governed by Navier-Stokes equations, is extremely hard to predict due to its spatiotempo-
rally intermittency as well as three-dimensional and irregular properties. It is also a multi-scale phenomenon
where a very wide range of scales from the largest eddies to Kolmogorov micro-scales co-exist and interact.
Since the ratio between the largest and the smallest scales increases with Reynolds nuRebér asvs

with high Reynolds are the most challenging. Wall bounded ows are particularlgwlt to model due to the

overlap of several scaling regions as a function of distance to the wall. Coherent structures in such ows can
extend up to several boundary layer thickness. The modeling of such structures and scales therefore requires
extremely detailed ow information in both space and time.

Despite a constant progress, none of the experimental techniques, even in academic researches, is capable
of providing spatiotemporally resolved information in stiently wide spatial domains and for diverse ow
conditions. Particle Image Velocimetry (P1V), the most advanced turbulence measurement technique, cannot
measure space-time resolved velocities. Stereoscopic PIV measures three-component velocities at high spatial
resolution and large eld-of-view, but limited to a low acquisition rate compared to the ow dynamics. High
repetition tomographic PIV and Time-resolved PIV (TrPIV) are improving but still limited to small volumes
and low speed ows. Other point-measurement techniques such as Hot Wire Anemometry (HWA) measure
the full temporal dynamics. However, the combination of these devices to get a better spatial resolution is not
straightforward and remains intrusive.

Direct Numerical Simulation (DNS) can provide reliable and fully resolved velocities of turbulent ows. It
simulates the ows by directly solving Navier-Stokes equations. The computational cost of such a numerical



Figure 1. Sketch of the inverse problem, with the two sources of measurements: the LTHS (color images) and a
coarse grid of HTLS (red dots among black ones of LTHS). The inverse problem of HTHS data reconstruction
is to Ilin the space-time data-cube.

approach is very high since the number of simulated grid points increaBeasDNS therefore can simulate
ows with low to moderate Reynolds and simple geometries only.

To have fully resolved velocities, one idea is to measure and combine two types of complementary mea-
surements in space and time: the Low-Temporal-High-Spatial resolution (LTHS) and the High-Temporal-Low-
Spatial resolution (HTLS) measurements. One particular example of such an idea is presented in [1]. This joint
experiment provides a database of high Reynolds boundary layer ows. The data are provided by a stereoscopic
PIV synchronized with a rake of HWA probes. PIV is with a large eld-of-view and at a high spatial resolution
but at low acquisition frequency. HWA measurements are at an extremely high temporal resolution, but the
spatial discretization of the rake of probes is very coarse compared to Kolmogorov scales.

Various methods have been proposed to combine such measured data of turbulent ows to recover the
maximum information level. Linear Stochastic Estimation (LSE) is the most common one. Its introduction
into turbulence community dates back to the works by Adrian [2, 3] and has been further investigated later
[4, 5, 6]. These works use LSE as a tool to extract coherent structures from the measurements. Later works
proposed various extensions such as multi-time, nonlinear or higher-order LSE [7, 8, 9, 10]. In these works,
unknown velocities are reconstructed from measurements of other quantities such as pressure or shear-stress.
LSE can be also linked to Proper Orthogonal Decomposition (POD) to reduce the order of reconstruction
problems [11].

The idea of combining sparse velocity measurements to obtain fully-resolved elds has not been addressed
until recently [12, 13]. In [12], 3D smoke intensity and 2D PIV measurements are combined using a POD-
LSE model to get fully resolved 3D velocities of a ow over a at plate. POD-LSE estimation model has
been developed further [13] with a reconstruction scheme based on a multi-time LSE. Either a Kalman lIter
or a Kalman smoother is used depending on the problem as real time estimation or data post processing. The
model is tested using TrPIV measurements of a H#ody wake at a low Reynolds number. Sparse velocity
measurements are virtually extracted from the high resolution ones, while original data are used to estimate
reconstruction errors.

LSE su ers from critical limitations though extensively used. First, as a conditional average, LSE esti-
mates a set of coecients that associate the so-called conditional eddies to one ow pattern [3]. Using these
coe cients to reconstruct all velocity elds, LSE fails to capture coherent structures and misleads physical
interpretations when particular patterns exist. Second, the reconstructed structures are independent of event
magnitudes [14]. Reconstructed ows are associated with weak uctuations only. Last, LSE as a low pass
Iter reconstructs large scales only and lose ow details even at measured positions.



Table 1: Summary of notations.

z NP dimensional vector of HTHS DNS data

y MP dimensional vector of HTLS measurements
X NQ dimensional vector of LTHS measurements
N number of spatial points in each HTHFHS snapshot
M number of spatial points in each HTLS snapshot
P number of HTHS or HTLS snapshots

Q number of LTHS snapshots

%o 1D cubic spline interpolator in time

% 2D cubic spline interpolator in space

“1 subsampling in time from P to Q snapshdts = x
“g subsampling in space from N to M pointgz=y

& 2D 5th-order least-square spline lter in space
& 1D 5th-order least-square spline lIter in time
loss of kinetic energy computed using Eq. (28)
normalized Root Mean Square Error (NRMSE) de ned in Eqg. (36)

Ji determinant of a matrix

u' transpose of vectar

argmax:) argument of the maximum, which &for which the function attains its
z maximum

kuk® square of a Mahalanobis distanéak’ = u™ 'u

kulkd square of a Euclidean distandedd = uTu

n N(O; ) Gaussian noise vector of zero-mean and covariance matrix

N(uj ,; n) Gaussian distribution of variablethat takes the mean, and uctuates
due ton of covariance ,

N (ujv) distribution ofu knowing (or conditioning ony

The present work proposes a novel model to reconstruct the fully resolved HTHS velocities from HTLS
and LTHS measurements. This model is based on a Bayesian inference framework using a Maximum A
Posteriori (MAP) estimate [15]. It is inspired by the multispectral image fusion problem with the limited
resolution of image measurements in space-wavelength domains [16]. This framework has been discussed
early in communication problems [17, 18] and is used more extensively in image processing, remote-sensing,
and data fusion [19, 20, 21, 22, 23, 24, 25]. The Bayesian fusion model takes bene t from both sources of
information in space and time simultaneously by searching for the most probable ow for given measurements.
Better performances are expected since space and time correlations are equally important. The model also
recovers ow details inaccessible from single interpolations. By integrating directly the measurements, it
proposes a compromise estimate such that detailed ow information close to the sensor positions are well
preserved. This approach also overcomes the limitations of LSE, which acts as a low pass Iter due to the mean
square error minimization. To test the model, the DNS database of a turbulent wall-bounded ow is used. These
space-time fully resolved data allow the model optimization and validation. Sparse measurements of HTLS
and LTHS are extracted from the full dataset, while the reference DNS data are used in the end to evaluate
reconstruction errors. Performances are evaluated for various con gurations wattedt subsampling ratios.

The paper is organized as follows. Section 2 presents the Bayesian model using a MAP estimate. Model
simpli cation and statistical parameters estimation are also discussed. Section 3 describes the DNS database
used to test the model and also other reconstruction methods for comparison. Results for various con gurations
are presented. Conclusions and future works are in Section 4.



2 Bayesian fusion mode

2.1 Bayesian model

Let x andy denote LTHS and HTLS measurements, arienote HTHS data to reconstruct, x andy are
random, zero-mean vectors of sik® 1,NQ 1andMP 1 respectivelyN andM are numbers of spatial
points in each snapshot, whikkandQ are numbers of snapshots. The present work is a challenging inverse
problem since we considét N andQ  P. Let the subscript “s” denote operators performing in space,
and “t” be those in time%ss an interpolator; is for subsampling(Eis a Low-Pass Filter (LPF). The cubic
spline interpolation either 1D or 2D is used%or its state-of-the-art interpolation results and nite support
[26, 27]. GEis a 5th-order least-square spline lter [28, 29] for its sharp cutesponse to better separate large
scales from small scales. Table 1 lists all notations used in this paper.

The direct model of the measurement system involves the subsampling operator and some measurement
noises:

X="1z+ by 1)
y="sz+ bs (2)

whereb; andbg are the (typically white Gaussian) measurement noises. Therefore, given sparse measurements
of eithery in space ok in time, two estimatorg; andz, of the fully resolved vector can be reconstructed by

single interpolations. The 1D time interpolation goes frbi@ to NP dimensional space, i.x 7! 2z = %X

, While the 2D space interpolation goes fraviP to NP dimensional space, i.ey 7! 2 = %y . Let NP
dimensional vectorls andh; denote the information that cannot be recovered by simple interpolati@asy

be modeled in two ways from these separate estimates:

Z=71+ hy = %X+ hy 3

Missing informationh; andhg essentially feature small scales. Using eitker y, it is not possible to estimate
h; and hg. The idea of Bayesian fusion is to combine the two models by u%ign (3) to estimate the
unknownhsin (4) and vice-versa.

Let N(uj ; u) denote the multivariate Gaussian distribution dfl B dimensional random vectar with
mean value , and covariance matrix,. TheNP NP matrix is the expectation ot(  ,)(u u)T. The
probability density function (pdf) ofi with a multivariate Gaussian distributidf(uj ,; ) is:

|

exp L NS (5)

(u) = ;
plu) = 2 )NP:ZJ u1'1:2 2 u

wherej:;j denotes the matrix determinant, aad uk2u is the Mahalanobis distance:

ko K =u 7 tu (6)

n

Let assume tha%x andh; are approximately independefidx captures temporal large scalesxofSimilarly,
%gy andhg are assumed to be approximately independent. Due to subsampling, aliasing terms are also present
in each pairs of%x; hy) and Q&y; hs). Assume also that; and hg are zero mean Gaussian noises, he.
N(O; n)andhs N(O; p,). Pdfs of these unknowns are modeled as:
|

1 1 '
p(ht) = @2 = exp Ekhtkzht (7)
and similarly forp(hg). Posterior distributions af knowing eitherx or y are then modeled as:

N(Zx) N(Z%«; n) 8
N(Zy) N(Z%y; n) C)

whereN(Zx), resp.N(zx), is the posterior distribution af knowing x, resp. knowingy.
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2.2 MAP estimation

The present Bayesian model aims to build an estimategdfen x andy using the probability models (8) and
(9). The model uses a MAP estimate to search the most prokaien x andy such thatz maximizes the

posterior pdfp(Zx; y):

z = argmaxp(Zx;y) (20)
z
Using Bayesian rules [30], one has:
P(zx;y) ! p(xYi2) p(2) (11)
Assuming thak andy are independent conditioned apequation (11) becomes:
p(zx:y) ! p(xizp(yi2p(2) 12)

In equation (12), the likelihood functionXxjz), p(yj2) and the prior pdfp(z) appear, while only the posterior
probabilitiesp(Zx) and p(Zy) are available in (8) and (9).

To complete the model, the likelihood functions can be expressed in term of the posterior pdfs and prior
of zusing Bayesian rules. Section 2.3.3 in [31] introduces an alternative way to estimate these functions from
posterior pdfs using a linear Gaussian model. Various tests @reint Gaussian prions(2) lead to the use
of a noninformative prior. This prior, referred also as vague or at prior, assumes that all the valnaseof
equally likely [32]. The estimation dfis now solely based on the measurements and not in uenced by external
information. The prior distribution therefore has no in uence on the posterior pdfs.

With the assumption of a noninformative priqu(z) is constant. Using Bayes rules, the relation between
the likelihood function and the posterior pdf is:

p(7x)/ p(xj2 p(2) (13)
Sincep(2) is replaced by a constant, one gptjz) / p(zx). Similarly, p(yj2) / p(zy). Eq (12) becomes:
p(2x;y) [ p(Zx)p(Zy) (14)
The MAP estimation is:
z= argmax p(7x) p(2y) (15)
Logarithms ofp (Zx) andp (zy) are:
In p(zx) = %kz %,(xkzht +Cy (16)
In p(zjy) = %kz %yl +Co (17)
whereC1 andC; are independent of, y andz. Solving (15) is equivalent to minimize the cost function:
1 1
C(2) = ékz %(xkzm + ékz "/gykzhs (18)
Computing the gradient @(z) and setting to zero:
@(z
D=l )t ez =0 (19)
the solution to the optimization problem (10) is:
N 1
e A e (20)

Applying the matrix inversion lemma [15]:
(A+BDC)'=A'! ABD+CAB) CA? (21)
Equation (20) can be rewritten as:
2= ot one T kY F n X (22)

Equation (22) is the nal full form of the proposed Bayesian fusion model using a MAP estimate and assuming
a noninformative prior ok. Variance matricesy, and p, are parameters to be estimated.
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Figure 2: Sketch of an element block with local coor-
dinates ( ; ). LTHS time steps are at t = 0 and

= t = P=Q. HTLS measurements are represented by
red dots and LTHS measurements by black ones.

2.3 Model simpli cation

Though providing the full theoretical estimatefequation (22) is impractical to use as is for several reasons.
The full covariance matrices,, and n,, representing all the sources of correlations in space and time, cannot
be estimated from only the measurementndy. This is because the unknovim andhs are only accessible
at the measured positions in space and time. Also, the covariance matrices NfPsiz&l P are very large,
making them very di cult to accurately estimate and to inverse. Additional assumptions on the shage of
and p, are necessary.
A common and simple approach is to assume diagonal covariance matrices. This implies the independence
between all elements ¢f. andhg. The simpli ed version of equation (22) becomes a point-wise formula:

o) = s+ syt (23)
2@+ 20) 2@+ 20)

wherei(t; s) is the index of each point in timd)(and spaced). The variances ﬁs and ﬁt are functions of

each position in space and time. Their estimation is detailed in next section. Then equation (23) will be used
to reconstruct HTHS data. As a weighted average, it proposes a compromise estimate from the measurements.
With a symmetrical form in space and time, the model uses information from both measurements to correct
large scales reconstruction and recover certain information at smaller scales.

2.4 Statistical parameters estimation

LetZ, X, Y,Ht, Hs, n, and n, be the (time,space) matrix forms afx, y, h, hs, ﬁ[ and ﬁs respectivelyZ,

Hi, Hs, n and p,are of sizeP N, while X andY are of sizeQ NandP M. p and p, are matrices of
empirical variances, which are functions of time and sp&. (

Variance matrices are estimated fré#thandHs, which are available at the measurements positions only.
We use:

“tHs= X %9 sX (24)
“sHe=Y oY (25)

where" ; subsamples in time frol to Q time steps, antls subsamples in space froshto M points. These Q
instants and M positions are the same as for LTHS and HTLS measurements. Since the ow is approximately
stationary and spatial interpolation is independent of timg(t; S) becomes  (s), a function of spatial loca-

tions only. These variances are estimated by averaging over all time steps:

l)@
ho(9) = 3 (X(t;9) % $X(t; 9))? (26)
t=1

Variance in , is a function of distancesto the previous LTHS time step only, where t = 0; 1, 2; ::;; P=Q,
and tis the time lag between two consecutive HTHS time stepsbecomes a function of space andnly,
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i.e. n(; 9. Itis estimated by averaging over Q blocks BQ snapshots) bounded by two consecutive LTHS

instants: 1 X
n(i9=7  (Vltss) %Yl 9)> (27)
ts
wherets=t= = t; = t+P=Q; = t+2P=Q;:::;; = t+(Q 1)P=Q. Since the ow is approximately homogeneous

in spanwise direction, n,(s) and n,(; S) are also averaged over all blocks de ned by the four neighboring
HTLS measurements, see Fig. 2. The variances are then functions of only vertical positions and relative
distances to the four closest HTLS sensors. These estimated variances are rearranged into a vecﬁtc('r)form

and ﬁs(i) to complete the fusion model using the simpli ed formula in equation (23).

3 Numerical experiments

Section 3.1 describes the DNS database used to test the model. Section 3.2 discusses other reconstruction
methods for comparison. Section 3.3 presents results of the fusion model in various cases.

3.1 DNS database

DNS database of a turbulent wall-bounded ow is used to test the model. This simulation uses the numerical
procedure described in [33]. The ow is at a Reynolds numBer = 550 based on the friction velocity.
Cartesian coordinates of the simulation in space &ng £) for streamwise, vertical and spanwise directions
respectively. The domainsitg Ly L,normalized by half the channel heigitis2 2 . Fully resolved
uctuating streamwise velocities in a plane normal to the ow direction are considered as HTHS data. This
data includes® = 10000 snapshots at spatial resolutiom\bf 288 257 and at sampling frequency of 40
Hz. Sparse LTHS and HTLS measurements are subsampled from HTHS data to learn the fusion model. HTHS
is used as the ground truth to estimate reconstruction errors. The extension to spanwise and vertical velocity
components follows the same procedure. P
Various cases are investigated. The subsampling ratidsM applied in each direction of space are 5, 10

and 20. These ratios correspond to a nunMef HTLS sensors of 51 57,26 29 and 13 15 respectively.
Each ratio has a spacing between two successive HTLS points in spanwise and vertical directiasdf

y. Subsampling ratioB=Q in time are 4 Q = 2500), 10 Q = 1000) and 20@ = 500). Each ratio, both in
space and time, corresponds to a certain amount of energy loss. This is essentially the energy of small scales
separated from large scales by a low pass I&r Here Eis the 8" order least square spline lter, either
temporal 1D (k) or spatial 2D (&), using measurements as knots. This spline Iter has the advantages of a
sharp cuto response and nite support. The energy loss is de ned by comparing the lteredd&ldnd the
original eld z

o (28)

whereSis the considered set of points. Table 2 gathers the energy loss in tigd@d in space ( s) estimated
with & and@&; respectively. The sécontains all points at=H = 1.

3.2 Other methods for comparison

Other reconstruction methods are used for comparison with the present model.

Cubic spline interpolation: Interpolation techniques reconstruct HTHS velocities from either LTHS or
HTLS measurements independently, ke/! z= %xory 7! Z= %y. The cubic spline interpolations [26],
either 1D in time or 2D in space, are used. These interpolations are by Matlab built-in functions, which follow
the algorithm in [34].

Linear Stochastic Estimation LSE estimate& as a linear combination of measurements. Coents are
estimated from the measurements by solving a system of linear equations to minimize the mean square errors
of reconstructed elds. Refs. [3, 5] describe the physical interpretations of this procedure. This section derives
the model di erently [35, 31] but in accordance with turbulence literature.
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Matrix forms X, Y andZ described in Section 2.4 are used to build the LSE modelYLet “;Y of size
Q M denote a part of subsampled at the same instantXa& SE model nds the optimal matriB of size
N M that minimizes the residual sum of squared errors:

B=argminkYsB Xk (29)
B

Let set the gradient of this residual sum to zero:

@YsB X
ST@ =YI(YB X)=0 (30)
the optimalB is obtained as:

B= YIYs 'YX (31)
Equation (31) requires the inversion GTST(YS) that can be singular, leading to a high variance model with large
coe cients. A small change of predicto¥then can lead to a very derent reconstruction of, causing
model's instability. Tikhonov regularization [36], well-known in machine learning problems as L2 penalty or
Ridge Regression [35, 31], can be used as a remedy. It aims to solve this ill-posed problem by imposing a L2
penalty term on the residual sum of errors. The optimization problem (29) becomes:

B=argminkYsB X+ kBIG (32)
B

Setting the gradient of the cost function (for 0) to zero:

@KYsB XIS+ kBIS
@

=YI(YsB X)+ B=0 (33)

the closed form oB is: 1
B= YiYs+ | "YIX (34)

The regularization parametercan be optimized by ten-fold cross-validation [37]. The fully resolved eld of
Z is then estimated using these cagents:
Z=YB (35)

Matrix B encodes the predictor & knowing Y learnt from the joint observation of andY. A completely
analogous procedure can be used switching the rolsaofdY.



Table 2: NRMSEs of all scales reconstruction errors for various cases. The subsampling ratios of HTLS measurer?qMarml equal in both spatial directions.
The ratios of LTHS measurements in time &). The equivalent spacing in spanwise direction is normalized by half channel heigittdasind the spacing in time
is t. The normalized energy losses in spacg and in time  are de ned in Eq. (28). and naxare the mean and max NRMSE de ned in Eq. (36)s averaged
over all space-time positions in the outer regiehl 2 [0:25; 1:75], while naxis computed for one of the most dcult position in space and time (the most remote
from all nearby measurements). The smallest errors in each cases are boldfaced.

Subsampling ratios  Spacings Energy loss B max
Case| NM  P=Q zZH  t(s) | %) (%) | %y %x LSE Fusion| %y %x LSE Fusion
1 05 10 0.05 0.25| 0.29 470 { 0.14 032 0.25 0.12 | 0.16 0.56 0.33 0.16
2 05 20 0.05 0.50| 0.29 13.12| 0.14 054 0.38 0.13 | 0.16 0.89 0.49 0.16
3 10 04 0.11 0.10| 5.03 0.50 | 0.36 0.11 0.30 0.11 | 047 0.17 0.37 0.18
4 20 04 0.22 0.10| 9.99 0.50 | 0.68 0.11 0.57 0.11 |0.86 0.17 0.68 0.17
5 05 04 0.05 0.10| 0.29 0.50 | 0.14 0.112 0.13 0.08 | 0.16 0.18 0.15 0.13
6 10 10 0.11 0.25| 5.03 468 | 0.36 0.32 0.34 0.25 | 047 055 049 043
7 20 20 0.22 0.50| 9.99 13.12| 068 054 0.64 046 | 085 085 0.78 0.73

Table 3: NRMSEs of large and small scales. Notations are explained in Table. 2.

max

Case| %y %x LSE Fusion| % %x LSE Fusion
Large scales reconstruction

0.08 0.09 0.10 0.05 | 0.06 0.15 0.11 o0.07

0.24 025 0.24 0.15 |0.22 0.45 0.28 0.21

7 056 0.36 0.51 0.30 | 0.60 0.66 0.60 0.46
Small scales reconstruction

098 056 0.73 055 | 098 0.86 0.89 0.81

098 0.81 090 0.70 | 097 1.15 1.07 0.92

7 099 0.92 095 0.78 | 0.93 1.08 0.90 0.86

o Ol

(20N ]




3.3 Results
3.3.1 Impact of subsampling ratios

The fusion model uses equation (23) to reconstruct fully resolved velozitiesarious cases. Reconstructed
elds are compared with the original DNS via the Normalized Root Mean Square Error (NRMSE):

NRMS E= (36)

whereSis the considered set of points used to estimate the error. Thezislthore or less di cult to estimate
depending on the considered instant and position with respect to available measurements. To qualify, two
types of NRMSE, the mean NRMSEand the maximum NRMSEay are estimated: is estimated ove$
including all space-time positions in the outer regiorydfl 2 [0:25; 1:75], where the ow is approximately
homogeneous. It represents how far the reconstructed eld departs from ground truth in order to evaluate
reconstruction accuracymax is estimated using all blocks (in time and in spanwise directions) bounded by
HTLS sensors ay=H = 0:94 andy=H = 106, see Fig. 2. The s&includes centers at local coordinates

( y=2; z=2;P t=2Q) of all blocks. = and max Of %, %x and LSE reconstruction are also estimated for
comparison.

Table 2 describes 7 cases with their settings and reconstruction errors. In cases 1 and 2, the energy losses
due to subsampling in time are much higher than in space, and vice-versa in cases 3 and 4. The model gives
similar errors compared to the best interpolation, with smaldrd comparablenax In cases 5to 7, the losses
are due to both the subsamplings in space and time in a balanced manner. The proposed modél lbgduces
15% to 30% andmax by 10% to 20% compared to the best of other methods.

Improvements are expected from the weighted average in equation (23). The present model uses variances

ﬁ(i) and t2(i) as parameters of the ow's physics, attet and%gy as the speci ¢ ow information. It imposes
the reconstruction to be consistent with measurements at nearby positions and proposes compromise estimates
elsewhere. Simple interpolations use either HTLS or LTHS measurements only, losing information from the
other source. LSE learns its coeients from both measurements but inherits the limitations of the conditional
averaging.

3.3.2 Large and small scales reconstruction

In cases 1 to 4, the fusion model performs as the best interpolation with small improvements. This is ex-
pected since one measurement of HTLS or LTHS is much better resolved than the other. Cases 5 to 7 are the
most interesting since energy losses due to subsampling in space and time are comparable. The model brings
complementary information from both measurements and improves the reconstruction.

We study reconstructions of large and small scales in details for these three cases. Spatial 2B lters
(see Section 3.1) are used to separate large scales from small scales. These Iters take HTLS points as knots to
have a cuto close to the Nyquist frequency. The reconstructed large scales by all methods are compared to the
referencegz. Small scales are estimated using & wherel is the identity matrix. Table 3 shows NRMSEs
estimated using equation (36) but normalized by the RMS of effeor I &)z

The fusion model recovers part of small scales from complementary measurements. It gives the lowest
and maxOf small scales reconstruction in all cases. It also better reconstructs large scales than other methods.
For large scales,nax remains the same in case 5 of small subsampling ratios and improves signi cantly in
cases 6 and 7 of high ratios, withaxreduced by 5 % and 25 % respectively, artsy 20% to 40% compared
to the best of other methods.

3.3.3 Model performance analysis

We focus on case 6 for a model performance analysis. This case has about 5 % energy losses due to both
time and space subsamplings, which are critical to highlight interests of the present approach. The model
reduces and max by 25 % and 35 % respectively for all scales reconstruction, 10 % and 5 % for large scales
reconstruction.
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(@) (b)

Figure 3: NRMSESs between reference and reconstructed streamwise velocities by all methods as: (a) functions
of spatial coordinates in an element block at the mostcdit instant, i.e. at (; P t=2Q); (b) functions of
time distances from the previous LTHS instant at the mostdit spatial location, i.e. at y=2; z=2; ).

Figure 4: A time evolution of uctuating streamwise velocityyaH = 1 andz=H = 0, the centers of all such
(; )planesin Fig. (2).

Figure 5: Spectra of the uctuating velocity in Fig. 4.
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Figure 6: Probability distribution functions of velocity increments in (left) the original DNS, (right) the recon-
structed eld.

Figure 7: A sample snapshot of uctuating streamwise velocity at one of the mosuttiinstant to estimate
(in the middle of two LTHS time steps): Reconstruction of all scales (left) and large scales only (right). The
gure is better viewed on screen.
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To analyze reconstructions in space, Fig. 3(a) shows spatial NRMSE maps by all methods as functions of
local coordinates { ). For each { ), NRMSE is estimated using equation (36), whéracludes points
at (; ; P t=2Q) of all blocks used to estimatg,ax (See Section 3.3.1). For all methods, NRMSEs are small
close to the four HTLS positions in the corners and increase when approaching the center. Time interpolation
behaves dierently since its errors are independent of spatial coordinates. The fusion model yields the smallest
errors at all positions. It improves signi cantly near the center compared to spatial interpolation, the best of
other methods.

To analyze reconstructions in time, Fig. 3(b) shows the NRMSE curves by all methods as functions of
distances from the previous LTHS time step. For eachNRMSE is estimated using including points
at local coordinates (y=2; z=2; ) of all blocks used to estimatg,a.x, NRMSESs are small close to the LTHS
measurements t = 0 and = t = P=Q) and increase when moving toward the middfe { = P=2Q). Spatial
interpolation are dierent with NRMSESs independent of time. The fusion model yields the minimum errors at
all time steps. Even in the middle of two LTHS instants, the maximum fusion error remains signi cantly lower
than that of all other methods.

Fig. 4 shows a time evolution of the pointytH = 1 andzzH = 0( = y=2and = z=2inlocal
coordinates), the most remote from its neighboring HTLS sensors. A good agreement between fused and ref-
erence velocity is still obtained. A zoom-in period is shown also for detailed comparisons with other methods.
While time interpolation captures only low frequencies, spatial interpolation generates high frequencies but
weakly correlated with the truth. The fusion model proposes a good compromise to improve both large and
small scales reconstruction. It also captures detailed peaks much better than LSE, since LSE smooths these
small scales out by minimizing the mean square errors.

Fig. 5 compares temporal spectra of above evolutions. Time interpolation fails to estimate the signal at
higher frequencies than a certain cutoLSE keeps both large and small scales, but the loss of large scale
energy is critical. This loss is highlighted in the zoom-in picture of low frequencies spectral. The present
model improves the estimation at both low and high frequencies.

Fig. 6 shows estimates of the probability density function estimates of time increufgyits ) u(x;t) for
the original DNS eld as well as for the reconstructed eld. As expected, the original eld displays intermittent
non Gaussian distributions. More importantly, the reconstructed eld, while less intermittent, still clearly
exhibits non Gaussian increments at small scales. Note that the reconstruction error is essentially due to the
di culty to accurately reconstruct these small scales. It is expected that any reconstruction method will lead
to elds that are less intermittent than the original one.

Fig. 7 compares reconstructed snapshots bgmint methods. This snapshot is at the most remote instant
from its two neighboring LTHS time steps. The model reconstructs correctly the velocity eld with more ow
details than spatial interpolation. It also recovers better large scales than LSE and time interpolation methods.

4 Conclusions

This work proposes a Bayesian fusion model using a MAP estimate to reconstruct high resolution velocities of
a turbulent channel ow from low resolution measurements in space and time. It searches for the most probable
eld given available measurements. This approach yields a simple bcieat weighted average formula in
equation (23). Weighting coecients are learnt from measurements and encode the physics of the ow. The
informed fusion of information from available measurements improves the interpolation of large scales and
recovers details at small scales.

Numerical experiments using a DNS database of a turbulent wall-bounded ow at a moderate Reynolds
number illustrate the eciency and robustness of the proposed method. Low resolution measurements are
extracted to learn model parameters, while original data are used as the ground truth to estimate reconstruction
errors. The model is tested in various cases withedent subsampling ratios. Results are compared to more
standard methods such as cubic spline interpolation and penalized LSE. Bayesian fusion always produces the
most accurate reconstruction. The best results are obtained when missing spatial and temporal information
are of the same order of magnitude. In these cases, it provides a better large scale reconstruction while a
certain amount of small scale details are also recovered. The search for an even more accurate fusion and
super-resolution method is the subject of ongoing work.
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