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Abstract

The study of turbulent �ows calls for measurements with high resolution both in space and time. We
propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity �elds by combin-
ing two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-
Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework
of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian
reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the
inverse problem of data reconstruction. The model uses a maximuma posterioriestimate, which yields the
most probable �eld knowing the measurements. The DNS of a wall-bounded turbulent �ow at moderate
Reynolds number is used to validate and assess the performances of the present approach. Low resolution
measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities are
compared to the reference DNS to estimate the reconstruction errors. The model is compared to other con-
ventional methods such as Linear Stochastic Estimation and cubic spline interpolation. Results show the su-
perior accuracy of the proposed method in all con�gurations. Further investigations of model performances
on various range of scales demonstrate its robustness. Numerical experiments also permit to estimate the
expected maximum information level corresponding to limitations of experimental instruments.

1 Introduction

Turbulence, though governed by Navier-Stokes equations, is extremely hard to predict due to its spatiotempo-
rally intermittency as well as three-dimensional and irregular properties. It is also a multi-scale phenomenon
where a very wide range of scales from the largest eddies to Kolmogorov micro-scales co-exist and interact.
Since the ratio between the largest and the smallest scales increases with Reynolds number asRe3=4, �ows
with high Reynolds are the most challenging. Wall bounded �ows are particularly di� cult to model due to the
overlap of several scaling regions as a function of distance to the wall. Coherent structures in such �ows can
extend up to several boundary layer thickness. The modeling of such structures and scales therefore requires
extremely detailed �ow information in both space and time.

Despite a constant progress, none of the experimental techniques, even in academic researches, is capable
of providing spatiotemporally resolved information in su� ciently wide spatial domains and for diverse �ow
conditions. Particle Image Velocimetry (PIV), the most advanced turbulence measurement technique, cannot
measure space-time resolved velocities. Stereoscopic PIV measures three-component velocities at high spatial
resolution and large �eld-of-view, but limited to a low acquisition rate compared to the �ow dynamics. High
repetition tomographic PIV and Time-resolved PIV (TrPIV) are improving but still limited to small volumes
and low speed �ows. Other point-measurement techniques such as Hot Wire Anemometry (HWA) measure
the full temporal dynamics. However, the combination of these devices to get a better spatial resolution is not
straightforward and remains intrusive.

Direct Numerical Simulation (DNS) can provide reliable and fully resolved velocities of turbulent �ows. It
simulates the �ows by directly solving Navier-Stokes equations. The computational cost of such a numerical
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Figure 1: Sketch of the inverse problem, with the two sources of measurements: the LTHS (color images) and a
coarse grid of HTLS (red dots among black ones of LTHS). The inverse problem of HTHS data reconstruction
is to �ll in the space-time data-cube.

approach is very high since the number of simulated grid points increases asRe9=4. DNS therefore can simulate
�ows with low to moderate Reynolds and simple geometries only.

To have fully resolved velocities, one idea is to measure and combine two types of complementary mea-
surements in space and time: the Low-Temporal-High-Spatial resolution (LTHS) and the High-Temporal-Low-
Spatial resolution (HTLS) measurements. One particular example of such an idea is presented in [1]. This joint
experiment provides a database of high Reynolds boundary layer �ows. The data are provided by a stereoscopic
PIV synchronized with a rake of HWA probes. PIV is with a large �eld-of-view and at a high spatial resolution
but at low acquisition frequency. HWA measurements are at an extremely high temporal resolution, but the
spatial discretization of the rake of probes is very coarse compared to Kolmogorov scales.

Various methods have been proposed to combine such measured data of turbulent �ows to recover the
maximum information level. Linear Stochastic Estimation (LSE) is the most common one. Its introduction
into turbulence community dates back to the works by Adrian [2, 3] and has been further investigated later
[4, 5, 6]. These works use LSE as a tool to extract coherent structures from the measurements. Later works
proposed various extensions such as multi-time, nonlinear or higher-order LSE [7, 8, 9, 10]. In these works,
unknown velocities are reconstructed from measurements of other quantities such as pressure or shear-stress.
LSE can be also linked to Proper Orthogonal Decomposition (POD) to reduce the order of reconstruction
problems [11].

The idea of combining sparse velocity measurements to obtain fully-resolved �elds has not been addressed
until recently [12, 13]. In [12], 3D smoke intensity and 2D PIV measurements are combined using a POD-
LSE model to get fully resolved 3D velocities of a �ow over a �at plate. POD-LSE estimation model has
been developed further [13] with a reconstruction scheme based on a multi-time LSE. Either a Kalman �lter
or a Kalman smoother is used depending on the problem as real time estimation or data post processing. The
model is tested using TrPIV measurements of a blu� -body wake at a low Reynolds number. Sparse velocity
measurements are virtually extracted from the high resolution ones, while original data are used to estimate
reconstruction errors.

LSE su� ers from critical limitations though extensively used. First, as a conditional average, LSE esti-
mates a set of coe� cients that associate the so-called conditional eddies to one �ow pattern [3]. Using these
coe� cients to reconstruct all velocity �elds, LSE fails to capture coherent structures and misleads physical
interpretations when particular patterns exist. Second, the reconstructed structures are independent of event
magnitudes [14]. Reconstructed �ows are associated with weak �uctuations only. Last, LSE as a low pass
�lter reconstructs large scales only and lose �ow details even at measured positions.
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Table 1: Summary of notations.

z NP� dimensional vector of HTHS DNS data
y MP� dimensional vector of HTLS measurements
x NQ� dimensional vector of LTHS measurements
N number of spatial points in each HTHS/LTHS snapshot
M number of spatial points in each HTLS snapshot
P number of HTHS or HTLS snapshots
Q number of LTHS snapshots
‰t 1D cubic spline interpolator in time
‰s 2D cubic spline interpolator in space
“ t subsampling in time from P to Q snapshots,“ t z = x
“ s subsampling in space from N to M points,“ sz = y
Œs 2D 5th-order least-square spline �lter in space
Œt 1D 5th-order least-square spline �lter in time
� � loss of kinetic energy computed using Eq. (28)
� normalized Root Mean Square Error (NRMSE) de�ned in Eq. (36)
j:j determinant of a matrix
uT transpose of vectoru
argmax

z
(:) argument of the maximum, which isz for which the function attains its

maximum
kuk2

� square of a Mahalanobis distance:kuk2
� = uT � � 1u

kuk2
2 square of a Euclidean distance:kuk2

2 = uTu
n � N(0; � n) Gaussian noise vector of zero-mean and covariance matrix� n

N(uj� u; � n) Gaussian distribution of variableu that takes the mean� u and �uctuates
due ton of covariance� n

N(ujv) distribution ofu knowing (or conditioning on)v

The present work proposes a novel model to reconstruct the fully resolved HTHS velocities from HTLS
and LTHS measurements. This model is based on a Bayesian inference framework using a Maximum A
Posteriori (MAP) estimate [15]. It is inspired by the multispectral image fusion problem with the limited
resolution of image measurements in space-wavelength domains [16]. This framework has been discussed
early in communication problems [17, 18] and is used more extensively in image processing, remote-sensing,
and data fusion [19, 20, 21, 22, 23, 24, 25]. The Bayesian fusion model takes bene�t from both sources of
information in space and time simultaneously by searching for the most probable �ow for given measurements.
Better performances are expected since space and time correlations are equally important. The model also
recovers �ow details inaccessible from single interpolations. By integrating directly the measurements, it
proposes a compromise estimate such that detailed �ow information close to the sensor positions are well
preserved. This approach also overcomes the limitations of LSE, which acts as a low pass �lter due to the mean
square error minimization. To test the model, the DNS database of a turbulent wall-bounded �ow is used. These
space-time fully resolved data allow the model optimization and validation. Sparse measurements of HTLS
and LTHS are extracted from the full dataset, while the reference DNS data are used in the end to evaluate
reconstruction errors. Performances are evaluated for various con�gurations with di� erent subsampling ratios.

The paper is organized as follows. Section 2 presents the Bayesian model using a MAP estimate. Model
simpli�cation and statistical parameters estimation are also discussed. Section 3 describes the DNS database
used to test the model and also other reconstruction methods for comparison. Results for various con�gurations
are presented. Conclusions and future works are in Section 4.
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2 Bayesian fusion model

2.1 Bayesian model

Let x andy denote LTHS and HTLS measurements, andz denote HTHS data to reconstruct.z, x andy are
random, zero-mean vectors of sizeNP� 1, NQ� 1 andMP � 1 respectively.N andM are numbers of spatial
points in each snapshot, whileP andQ are numbers of snapshots. The present work is a challenging inverse
problem since we considerM � N andQ � P. Let the subscript “s” denote operators performing in space,
and “t” be those in time;‰is an interpolator;“ is for subsampling;Œis a Low-Pass Filter (LPF). The cubic
spline interpolation either 1D or 2D is used as‰for its state-of-the-art interpolation results and �nite support
[26, 27]. Œis a 5th-order least-square spline �lter [28, 29] for its sharp cuto� response to better separate large
scales from small scales. Table 1 lists all notations used in this paper.

The direct model of the measurement system involves the subsampling operator and some measurement
noises:

x = “ t z+ bt (1)

y = “ sz+ bs (2)

wherebt andbs are the (typically white Gaussian) measurement noises. Therefore, given sparse measurements
of eithery in space orx in time, two estimatorŝz1 andẑ2 of the fully resolved vectorzcan be reconstructed by
single interpolations. The 1D time interpolation goes fromNQ to NP dimensional space, i.e.x 7�! ẑ1 = ‰tx
, while the 2D space interpolation goes fromMP to NP dimensional space, i.e.y 7�! ẑ2 = ‰sy . Let NP
dimensional vectorshs andht denote the information that cannot be recovered by simple interpolations;z can
be modeled in two ways from these separate estimates:

z = ẑ1 + ht = ‰tx + ht (3)

z = ẑ2 + hs = ‰sy + hs (4)

Missing informationht andhs essentially feature small scales. Using eitherx or y, it is not possible to estimate
ht and hs. The idea of Bayesian fusion is to combine the two models by using‰tx in (3) to estimate the
unknownhs in (4) and vice-versa.

Let N(uj� u; � u) denote the multivariate Gaussian distribution of aNP dimensional random vectoru with
mean value� u and covariance matrix� u. TheNP � NP matrix is the expectation of (u � � u)(u � � u)T . The
probability density function (pdf) ofu with a multivariate Gaussian distributionN(uj� u; � u) is:

p(u) =
1

(2� )NP=2j� uj1=2
exp

 
�

1
2

ku � � uk2
� u

!
(5)

wherej:j denotes the matrix determinant, andku � � uk2
� u

is the Mahalanobis distance:

ku � � uk2
� n

=
�
u � � u

�T � � 1
n

�
u � � u

�
(6)

Let assume that‰tx andht are approximately independent;‰tx captures temporal large scales ofx. Similarly,
‰sy andhs are assumed to be approximately independent. Due to subsampling, aliasing terms are also present
in each pairs of (‰tx; ht) and (‰sy; hs). Assume also thatht andhs are zero mean Gaussian noises, i.e.ht �
N(0; � ht ) andhs � N(0; � ht ). Pdfs of these unknowns are modeled as:

p(ht) =
1

(2� )NP=2j� ht j1=2
exp

 
�

1
2

khtk2
� ht

!
(7)

and similarly forp(hs). Posterior distributions ofz knowing eitherx or y are then modeled as:

N(zjx) � N(zj‰tx; � ht ) (8)

N(zjy) � N(zj‰sy; � hs) (9)

whereN(zjx), resp.N(zjx), is the posterior distribution ofz knowingx, resp. knowingy.
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2.2 MAP estimation

The present Bayesian model aims to build an estimate ofz given x andy using the probability models (8) and
(9). The model uses a MAP estimate to search the most probableẑ given x andy such that̂z maximizes the
posterior pdfp(zjx; y):

ẑ = argmax
z

p(zjx; y) (10)

Using Bayesian rules [30], one has:
p(zjx; y) / p(x; yjz) p(z) (11)

Assuming thatx andy are independent conditioned onz, equation (11) becomes:

p(zjx; y) / p(xjz)p(yjz)p(z) (12)

In equation (12), the likelihood functionsp(xjz), p(yjz) and the prior pdfp(z) appear, while only the posterior
probabilitiesp(zjx) andp(zjy) are available in (8) and (9).

To complete the model, the likelihood functions can be expressed in term of the posterior pdfs and prior
of z using Bayesian rules. Section 2.3.3 in [31] introduces an alternative way to estimate these functions from
posterior pdfs using a linear Gaussian model. Various tests of di� erent Gaussian priorsp(z) lead to the use
of a noninformative prior. This prior, referred also as vague or �at prior, assumes that all the values ofz are
equally likely [32]. The estimation of̂zis now solely based on the measurements and not in�uenced by external
information. The prior distribution therefore has no in�uence on the posterior pdfs.

With the assumption of a noninformative prior,p(z) is constant. Using Bayes rules, the relation between
the likelihood function and the posterior pdf is:

p(zjx) / p(xjz) p(z) (13)

Sincep(z) is replaced by a constant, one getsp(xjz) / p(zjx). Similarly, p(yjz) / p(zjy). Eq (12) becomes:

p(zjx; y) / p(zjx)p(zjy) (14)

The MAP estimation is:
ẑ = argmax

z
p(zjx)p(zjy) (15)

Logarithms ofp(zjx) andp(zjy) are:

� ln p(zjx) =
1
2

kz� ‰txk2
� ht

+ C1 (16)

� ln p(zjy) =
1
2

kz� ‰syk2
� hs

+ C2 (17)

whereC1 andC2 are independent ofx, y andz. Solving (15) is equivalent to minimize the cost function:

C(z) =
1
2

kz� ‰txk2
� ht

+
1
2

kz� ‰syk2
� hs

(18)

Computing the gradient ofC(z) and setting to zero:

@C(z)
@z

= � � 1
hs

(z � ‰sy) + � � 1
ht

(z � ‰tx) = 0 (19)

the solution to the optimization problem (10) is:

ẑ =
�
� � 1

ht
+ � � 1

hs

� � 1 �
� � 1

hs
‰sy + � � 1

ht
‰tx

�
(20)

Applying the matrix inversion lemma [15]:

(A + BD� 1C)� 1 = A� 1 � A� 1B(D + CA� 1B)� 1CA� 1 (21)

Equation (20) can be rewritten as:

ẑ =
�
� ht + � hs

� � 1 �
� ht‰sy + � hs‰tx

�
(22)

Equation (22) is the �nal full form of the proposed Bayesian fusion model using a MAP estimate and assuming
a noninformative prior ofz. Variance matrices� ht and� hs are parameters to be estimated.
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Figure 2: Sketch of an element block with local coor-
dinates (�; �; � ). LTHS time steps are at�=� t = 0 and
�=� t = P=Q. HTLS measurements are represented by
red dots and LTHS measurements by black ones.

2.3 Model simpli�cation

Though providing the full theoretical estimate ofẑ, equation (22) is impractical to use as is for several reasons.
The full covariance matrices� ht and� hs, representing all the sources of correlations in space and time, cannot
be estimated from only the measurementsx andy. This is because the unknownht andhs are only accessible
at the measured positions in space and time. Also, the covariance matrices of sizeNP � NP are very large,
making them very di� cult to accurately estimate and to inverse. Additional assumptions on the shape of� ht

and� hs are necessary.
A common and simple approach is to assume diagonal covariance matrices. This implies the independence

between all elements ofht andhs. The simpli�ed version of equation (22) becomes a point-wise formula:

ẑ(i) =
� 2

hs
(i)

� 2
hs

(i) + � 2
ht

(i)
‰tx(i) +

� 2
ht

(i)

� 2
hs

(i) + � 2
ht

(i)
‰sy(i) (23)

wherei(t; s) is the index of each point in time (t) and space (s). The variances� 2
hs

and� 2
ht

are functions of
each position in space and time. Their estimation is detailed in next section. Then equation (23) will be used
to reconstruct HTHS data. As a weighted average, it proposes a compromise estimate from the measurements.
With a symmetrical form in space and time, the model uses information from both measurements to correct
large scales reconstruction and recover certain information at smaller scales.

2.4 Statistical parameters estimation

Let Z, X, Y,Ht, Hs, � ht and� hs be the (time,space) matrix forms ofz, x, y, ht, hs, � 2
ht

and� 2
hs

respectively.Z,
Ht, Hs, � ht and� hs are of sizeP � N, while X andY are of sizeQ � N andP � M. � ht and� hs are matrices of
empirical variances, which are functions of time and space (t; s).

Variance matrices are estimated fromHt andHs, which are available at the measurements positions only.
We use:

“ tHs = X � ‰s“ sX (24)

“ sHt = Y � ‰t“ tY (25)

where“ t subsamples in time fromP to Q time steps, and“ s subsamples in space fromN to M points. These Q
instants and M positions are the same as for LTHS and HTLS measurements. Since the �ow is approximately
stationary and spatial interpolation is independent of time,� hs(t; s) becomes� hs(s), a function of spatial loca-
tions only. These variances are estimated by averaging over all time steps:

� hs(s) =
1
Q

QX

t=1

(X(t; s) � ‰s“ sX(t; s))2 (26)

Variance in� ht is a function of distances� to the previous LTHS time step only, where�=� t = 0;1;2; :::;P=Q,
and� t is the time lag between two consecutive HTHS time steps.� ht becomes a function of space and� only,

6



i.e. � ht (�; s). It is estimated by averaging over Q blocks (ofP=Q snapshots) bounded by two consecutive LTHS
instants:

� ht (�; s) =
1
Q

X

ts

(Y(ts; s) � ‰t“ tY(ts; s))2 (27)

wherets=�t = �=� t; �=� t+P=Q; �=� t+2P=Q; :::; �=� t+(Q� 1)P=Q. Since the �ow is approximately homogeneous
in spanwise direction,� hs(s) and� ht (�; s) are also averaged over all blocks de�ned by the four neighboring
HTLS measurements, see Fig. 2. The variances are then functions of only vertical positions and relative
distances to the four closest HTLS sensors. These estimated variances are rearranged into a vector form� 2

ht
(i)

and� 2
hs

(i) to complete the fusion model using the simpli�ed formula in equation (23).

3 Numerical experiments

Section 3.1 describes the DNS database used to test the model. Section 3.2 discusses other reconstruction
methods for comparison. Section 3.3 presents results of the fusion model in various cases.

3.1 DNS database

DNS database of a turbulent wall-bounded �ow is used to test the model. This simulation uses the numerical
procedure described in [33]. The �ow is at a Reynolds numberRe� = 550 based on the friction velocity.
Cartesian coordinates of the simulation in space are (x; y; z) for streamwise, vertical and spanwise directions
respectively. The domain sizeLx � Ly � Lz normalized by half the channel heightH is 2� � 2� � . Fully resolved
�uctuating streamwise velocities in a plane normal to the �ow direction are considered as HTHS data. This
data includesP = 10000 snapshots at spatial resolution ofN = 288� 257 and at sampling frequency of 40
Hz. Sparse LTHS and HTLS measurements are subsampled from HTHS data to learn the fusion model. HTHS
is used as the ground truth to estimate reconstruction errors. The extension to spanwise and vertical velocity
components follows the same procedure.

Various cases are investigated. The subsampling ratios
p

N=M applied in each direction of space are 5, 10
and 20. These ratios correspond to a numberM of HTLS sensors of 51� 57, 26� 29 and 13� 15 respectively.
Each ratio has a spacing between two successive HTLS points in spanwise and vertical directions of� z and
� y. Subsampling ratiosP=Q in time are 4 (Q = 2500), 10 (Q = 1000) and 20 (Q = 500). Each ratio, both in
space and time, corresponds to a certain amount of energy loss. This is essentially the energy of small scales
separated from large scales by a low pass �lterŒ. HereŒis the 5th� order least square spline �lter, either
temporal 1D (Œt) or spatial 2D (Œs), using measurements as knots. This spline �lter has the advantages of a
sharp cuto� response and �nite support. The energy loss is de�ned by comparing the �ltered �eldŒz and the
original �eld z:

� � =

r P

j2Š
z2

j �
r P

j2Š
[Œz]2

j

r P

j2Š
z2

j

(28)

whereŠis the considered set of points. Table 2 gathers the energy loss in time (� � t) and in space (� � s) estimated
with Œt andŒs respectively. The setŠcontains all points aty=H = 1.

3.2 Other methods for comparison

Other reconstruction methods are used for comparison with the present model.
Cubic spline interpolation: Interpolation techniques reconstruct HTHS velocities from either LTHS or

HTLS measurements independently, i.e.x 7�! ẑ = ‰tx or y 7�! ẑ = ‰sy. The cubic spline interpolations [26],
either 1D in time or 2D in space, are used. These interpolations are by Matlab built-in functions, which follow
the algorithm in [34].

Linear Stochastic Estimation: LSE estimateŝzas a linear combination of measurements. Coe� cients are
estimated from the measurements by solving a system of linear equations to minimize the mean square errors
of reconstructed �elds. Refs. [3, 5] describe the physical interpretations of this procedure. This section derives
the model di� erently [35, 31] but in accordance with turbulence literature.
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Matrix formsX, Y andZ described in Section 2.4 are used to build the LSE model. LetYs = “ tY of size
Q � M denote a part ofY subsampled at the same instants asX. LSE model �nds the optimal matrixB of size
N � M that minimizes the residual sum of squared errors:

B = argmin
B

kYsB � Xk2
2 (29)

Let set the gradient of this residual sum to zero:

@kYsB � Xk2
2

@B
= YT

s (YsB � X) = 0 (30)

the optimalB is obtained as:

B =
�
YT

s Ys

� � 1
YT

s X (31)

Equation (31) requires the inversion of (YT
s Ys) that can be singular, leading to a high variance model with large

coe� cients. A small change of predictorsY then can lead to a very di� erent reconstruction ofZ, causing
model's instability. Tikhonov regularization [36], well-known in machine learning problems as L2 penalty or
Ridge Regression [35, 31], can be used as a remedy. It aims to solve this ill-posed problem by imposing a L2
penalty term on the residual sum of errors. The optimization problem (29) becomes:

B = argmin
B

kYsB � Xk2
2 + � kBk2

2 (32)

Setting the gradient of the cost function (for� > 0) to zero:

@
�
kYsB � Xk2

2 + � kBk2
2

�

@B
= YT

s (YsB � X) + � B = 0 (33)

the closed form ofB is:
B =

�
YT

s Ys + � I
� � 1

YT
s X (34)

The regularization parameter� can be optimized by ten-fold cross-validation [37]. The fully resolved �eld of
Z is then estimated using these coe� cients:

Z = YB (35)

Matrix B encodes the predictor ofZ knowing Y learnt from the joint observation ofX andY. A completely
analogous procedure can be used switching the roles ofX andY.
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Table 2: NRMSEs of all scales reconstruction errors for various cases. The subsampling ratios of HTLS measurements are
p

N=M and equal in both spatial directions.
The ratios of LTHS measurements in time areP=Q. The equivalent spacing in spanwise direction is normalized by half channel height as� z=H and the spacing in time
is � t. The normalized energy losses in space� � s and in time� � t are de�ned in Eq. (28).� and� max are the mean and max NRMSE de�ned in Eq. (36).� is averaged
over all space-time positions in the outer regiony=H 2 [0:25;1:75], while � max is computed for one of the most di� cult position in space and time (the most remote
from all nearby measurements). The smallest errors in each cases are boldfaced.

Subsampling ratios Spacings Energy loss � � max

Case
p

N=M P=Q � z=H � t (s) � � s(%) � � t(%) ‰sy ‰tx LSE Fusion ‰sy ‰tx LSE Fusion
1 05 10 0.05 0.25 0.29 4.70 0.14 0.32 0.25 0.12 0.16 0.56 0.33 0.16
2 05 20 0.05 0.50 0.29 13.12 0.14 0.54 0.38 0.13 0.16 0.89 0.49 0.16
3 10 04 0.11 0.10 5.03 0.50 0.36 0.11 0.30 0.11 0.47 0.17 0.37 0.18
4 20 04 0.22 0.10 9.99 0.50 0.68 0.11 0.57 0.11 0.86 0.17 0.68 0.17
5 05 04 0.05 0.10 0.29 0.50 0.14 0.11 0.13 0.08 0.16 0.18 0.15 0.13
6 10 10 0.11 0.25 5.03 4.68 0.36 0.32 0.34 0.25 0.47 0.55 0.49 0.43
7 20 20 0.22 0.50 9.99 13.12 0.68 0.54 0.64 0.46 0.85 0.85 0.78 0.73

Table 3: NRMSEs of large and small scales. Notations are explained in Table. 2.

� � max

Case ‰sy ‰tx LSE Fusion ‰sy ‰tx LSE Fusion
Large scales reconstruction

5 0.08 0.09 0.10 0.05 0.06 0.15 0.11 0.07
6 0.24 0.25 0.24 0.15 0.22 0.45 0.28 0.21
7 0.56 0.36 0.51 0.30 0.60 0.66 0.60 0.46

Small scales reconstruction
5 0.98 0.56 0.73 0.55 0.98 0.86 0.89 0.81
6 0.98 0.81 0.90 0.70 0.97 1.15 1.07 0.92
7 0.99 0.92 0.95 0.78 0.93 1.08 0.90 0.86
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3.3 Results

3.3.1 Impact of subsampling ratios

The fusion model uses equation (23) to reconstruct fully resolved velocitiesẑ in various cases. Reconstructed
�elds are compared with the original DNS via the Normalized Root Mean Square Error (NRMSE):

NRMS E=

0
BBBBBBBBBB@

P

j2Š
(ẑj � zj)2

P

j2Š
z2

j

1
CCCCCCCCCCA

1=2

(36)

whereŠis the considered set of points used to estimate the error. The �eldz is more or less di� cult to estimate
depending on the considered instant and position with respect to available measurements. To qualify, two
types of NRMSE, the mean NRMSE� and the maximum NRMSE� max, are estimated.� is estimated overŠ
including all space-time positions in the outer region ofy=H 2 [0:25;1:75], where the �ow is approximately
homogeneous. It represents how far the reconstructed �eld departs from ground truth in order to evaluate
reconstruction accuracy.� max is estimated using all blocks (in time and in spanwise directions) bounded by
HTLS sensors aty=H = 0:94 andy=H = 1:06, see Fig. 2. The setŠ includes centers at local coordinates
(� y=2; � z=2; P� t=2Q) of all blocks. � and � max of ‰sy, ‰tx and LSE reconstruction are also estimated for
comparison.

Table 2 describes 7 cases with their settings and reconstruction errors. In cases 1 and 2, the energy losses
due to subsampling in time are much higher than in space, and vice-versa in cases 3 and 4. The model gives
similar errors compared to the best interpolation, with smaller� and comparable� max. In cases 5 to 7, the losses
are due to both the subsamplings in space and time in a balanced manner. The proposed model reduces� by
15% to 30% and� max by 10% to 20% compared to the best of other methods.

Improvements are expected from the weighted average in equation (23). The present model uses variances
� 2

s(i) and� 2
t (i) as parameters of the �ow's physics, and‰tx and‰sy as the speci�c �ow information. It imposes

the reconstruction to be consistent with measurements at nearby positions and proposes compromise estimates
elsewhere. Simple interpolations use either HTLS or LTHS measurements only, losing information from the
other source. LSE learns its coe� cients from both measurements but inherits the limitations of the conditional
averaging.

3.3.2 Large and small scales reconstruction

In cases 1 to 4, the fusion model performs as the best interpolation with small improvements. This is ex-
pected since one measurement of HTLS or LTHS is much better resolved than the other. Cases 5 to 7 are the
most interesting since energy losses due to subsampling in space and time are comparable. The model brings
complementary information from both measurements and improves the reconstruction.

We study reconstructions of large and small scales in details for these three cases. Spatial 2D �ltersŒs

(see Section 3.1) are used to separate large scales from small scales. These �lters take HTLS points as knots to
have a cuto� close to the Nyquist frequency. The reconstructed large scales by all methods are compared to the
referenceŒsz. Small scales are estimated usingI � Œs whereI is the identity matrix. Table 3 shows NRMSEs
estimated using equation (36) but normalized by the RMS of eitherŒsz or (I � Œs)z.

The fusion model recovers part of small scales from complementary measurements. It gives the lowest�
and� max of small scales reconstruction in all cases. It also better reconstructs large scales than other methods.
For large scales,� max remains the same in case 5 of small subsampling ratios and improves signi�cantly in
cases 6 and 7 of high ratios, with� max reduced by 5 % and 25 % respectively, and� by 20% to 40% compared
to the best of other methods.

3.3.3 Model performance analysis

We focus on case 6 for a model performance analysis. This case has about 5 % energy losses due to both
time and space subsamplings, which are critical to highlight interests of the present approach. The model
reduces� and� max by 25 % and 35 % respectively for all scales reconstruction, 10 % and 5 % for large scales
reconstruction.
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(a) (b)

Figure 3: NRMSEs between reference and reconstructed streamwise velocities by all methods as: (a) functions
of spatial coordinates in an element block at the most di� cult instant, i.e. at (�; �; P� t=2Q); (b) functions of
time distances from the previous LTHS instant at the most di� cult spatial location, i.e. at (� y=2; � z=2; � ).

Figure 4: A time evolution of �uctuating streamwise velocity aty=H = 1 andz=H = 0, the centers of all such
(�; � ) planes in Fig. (2).

Figure 5: Spectra of the �uctuating velocity in Fig. 4.
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Figure 6: Probability distribution functions of velocity increments in (left) the original DNS, (right) the recon-
structed �eld.

Figure 7: A sample snapshot of �uctuating streamwise velocity at one of the most di� cult instant to estimate
(in the middle of two LTHS time steps): Reconstruction of all scales (left) and large scales only (right). The
�gure is better viewed on screen.
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To analyze reconstructions in space, Fig. 3(a) shows spatial NRMSE maps by all methods as functions of
local coordinates (�; � ). For each (�; � ), NRMSE is estimated using equation (36), whereŠ includes points
at (�; �; P� t=2Q) of all blocks used to estimate� max (see Section 3.3.1). For all methods, NRMSEs are small
close to the four HTLS positions in the corners and increase when approaching the center. Time interpolation
behaves di� erently since its errors are independent of spatial coordinates. The fusion model yields the smallest
errors at all positions. It improves signi�cantly near the center compared to spatial interpolation, the best of
other methods.

To analyze reconstructions in time, Fig. 3(b) shows the NRMSE curves by all methods as functions of
distances� from the previous LTHS time step. For each� , NRMSE is estimated usingŠ including points
at local coordinates (� y=2; � z=2; � ) of all blocks used to estimate� max. NRMSEs are small close to the LTHS
measurements (�=� t = 0 and�=� t = P=Q) and increase when moving toward the middle (�=� t = P=2Q). Spatial
interpolation are di� erent with NRMSEs independent of time. The fusion model yields the minimum errors at
all time steps. Even in the middle of two LTHS instants, the maximum fusion error remains signi�cantly lower
than that of all other methods.

Fig. 4 shows a time evolution of the point aty=H = 1 andz=H = 0 (� = � y=2 and� = � z=2 in local
coordinates), the most remote from its neighboring HTLS sensors. A good agreement between fused and ref-
erence velocity is still obtained. A zoom-in period is shown also for detailed comparisons with other methods.
While time interpolation captures only low frequencies, spatial interpolation generates high frequencies but
weakly correlated with the truth. The fusion model proposes a good compromise to improve both large and
small scales reconstruction. It also captures detailed peaks much better than LSE, since LSE smooths these
small scales out by minimizing the mean square errors.

Fig. 5 compares temporal spectra of above evolutions. Time interpolation fails to estimate the signal at
higher frequencies than a certain cuto� . LSE keeps both large and small scales, but the loss of large scale
energy is critical. This loss is highlighted in the zoom-in picture of low frequencies spectral. The present
model improves the estimation at both low and high frequencies.

Fig. 6 shows estimates of the probability density function estimates of time incrementsu(x; t+ � )� u(x; t) for
the original DNS �eld as well as for the reconstructed �eld. As expected, the original �eld displays intermittent
non Gaussian distributions. More importantly, the reconstructed �eld, while less intermittent, still clearly
exhibits non Gaussian increments at small scales. Note that the reconstruction error is essentially due to the
di� culty to accurately reconstruct these small scales. It is expected that any reconstruction method will lead
to �elds that are less intermittent than the original one.

Fig. 7 compares reconstructed snapshots by di� erent methods. This snapshot is at the most remote instant
from its two neighboring LTHS time steps. The model reconstructs correctly the velocity �eld with more �ow
details than spatial interpolation. It also recovers better large scales than LSE and time interpolation methods.

4 Conclusions

This work proposes a Bayesian fusion model using a MAP estimate to reconstruct high resolution velocities of
a turbulent channel �ow from low resolution measurements in space and time. It searches for the most probable
�eld given available measurements. This approach yields a simple but e� cient weighted average formula in
equation (23). Weighting coe� cients are learnt from measurements and encode the physics of the �ow. The
informed fusion of information from available measurements improves the interpolation of large scales and
recovers details at small scales.

Numerical experiments using a DNS database of a turbulent wall-bounded �ow at a moderate Reynolds
number illustrate the e� ciency and robustness of the proposed method. Low resolution measurements are
extracted to learn model parameters, while original data are used as the ground truth to estimate reconstruction
errors. The model is tested in various cases with di� erent subsampling ratios. Results are compared to more
standard methods such as cubic spline interpolation and penalized LSE. Bayesian fusion always produces the
most accurate reconstruction. The best results are obtained when missing spatial and temporal information
are of the same order of magnitude. In these cases, it provides a better large scale reconstruction while a
certain amount of small scale details are also recovered. The search for an even more accurate fusion and
super-resolution method is the subject of ongoing work.
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