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Abstract

The study of turbulent flows calls for measurements with high resolution both in space and in time. We
propose a new approach to reconstruct High-Temporal-High-Spatial resolution velocity fields by combin-
ing two sources of information that are well-resolved either in space or in time, the Low-Temporal-High-
Spatial (LTHS) and the High-Temporal-Low-Spatial (HTLS) resolution measurements. In the framework
of co-conception between sensing and data post-processing, this work extensively investigates a Bayesian
reconstruction approach using a simulated database. A Bayesian fusion model is developed to solve the
inverse problem of data reconstruction. The model uses a Maximum A Posteriori estimate, which yields
the most probable field knowing the measurements. The DNS of a wall-bounded turbulent flow at moderate
Reynolds number is used to validate and assess the performances of the present approach. Low resolution
measurements are subsampled in time and space from the fully resolved data. Reconstructed velocities are
compared to the reference DNS to estimate the reconstruction errors. The model is compared to other con-
ventional methods such as Linear Stochastic Estimation and cubic spline interpolation. Results show the su-
perior accuracy of the proposed method in all configurations. Further investigations of model performances
on various range of scales demonstrate its robustness. Numerical experiments also permit to estimate the
expected maximum information level corresponding to limitations of experimental instruments.

1 Introduction

Turbulence, though governed by Navier-Stokes equations, is extremely hard to predict due to its spatiotempo-
rally intermittency as well as three-dimensional and irregular properties. It is also a multi-scale phenomenon
where a very wide range of scales from the largest eddies to Kolmogorov micro-scales co-exist and interact.
Since the ratio between the largest and the smallest scales increases with Reynolds number as Re3/4, flows
with high Reynolds are the most challenging. Wall bounded flows are particularly difficult to model due to the
overlap of several scaling regions as a function of distance to the wall. Coherent structures in such flows can
extend up to several boundary layer thickness. The modeling of such structures and scales therefore requires
extremely detailed flow information in both space and time.

Despite a constant progress, none of the experimental techniques, even in academic researches, is capable
of providing spatiotemporally resolved information in sufficiently wide spatial domains and for diverse flow
conditions. Particle Image Velocimetry (PIV), the most advanced turbulence measurement technique, cannot
measure space-time resolved velocities. Stereoscopic PIV measures three-component velocities at high spatial
resolution and large field-of-view, but limited to a low acquisition rate compared to the flow dynamics. High
repetition tomographic PIV and Time-resolved PIV (TrPIV) are improving but still limited to small volumes
and low speed flows. Other point-measurement techniques such as Hot Wire Anemometry (HWA) measure
the full temporal dynamics. However, the combination of these devices to get a better spatial resolution is not
straightforward and remains intrusive.

Direct Numerical Simulation (DNS) can provide reliable and fully resolved velocities of turbulent flows. It
simulates the flows by directly solving Navier-Stokes equations. The computational cost of such a numerical
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Figure 1: Sketch of the inverse problem, with the two
sources of measurements: the LTHS (color images)
and a coarse grid of HTLS (red dots among black
ones of LTHS). The inverse problem of HTHS data
reconstruction is to fill in the space-time data-cube.

Figure 2: Sketch of an element block with local co-
ordinates (α, β, τ). LTHS time steps are at τ/δt = 0
and τ/δt = P/Q. HTLS measurements are repre-
sented by red dots and LTHS measurements by black
ones.

approach is very high since the number of simulated grid points increases as Re9/4. DNS therefore can simulate
flows with low to moderate Reynolds and simple geometries only.

To have fully resolved velocities, one idea is to measure and combine two types of complementary mea-
surements in space and time: the Low-Temporal-High-Spatial resolution (LTHS) and the High-Temporal-Low-
Spatial resolution (HTLS) measurements. One particular example of such an idea is presented in Ref. [1]. This
joint experiment provides a database of high Reynolds boundary layer flows. The data are provided by a stereo-
scopic PIV synchronized with a rake of HWA probes. PIV is with a large field-of-view and at a high spatial
resolution but at low acquisition frequency. HWA measurements are at an extremely high temporal resolution,
but the spatial discretization of the rake of probes is very coarse compared to Kolmogorov scales.

Various methods have been proposed to combine such measured data of turbulent flows to recover the
maximum information level. Linear Stochastic Estimation (LSE) is the most common one. Its introduction
into turbulence community dates back to the works by Adrian [2, 3] and has been further investigated later
[4, 5, 6]. These works use LSE as a tool to extract coherent structures from the measurements. Later works
proposed various extensions such as multi-time, nonlinear or higher-order LSE [7, 8, 9, 10]. In these works,
unknown velocities are reconstructed from measurements of other quantities such as pressure or shear-stress.
LSE can be also linked to Proper Orthogonal Decomposition (POD) to reduce the order of reconstruction
problems [11].

The idea of combining sparse velocity measurements to obtain fully-resolved fields has not been addressed
until recently [12, 13]. In Ref. [12], 3D smoke intensity and 2D PIV measurements are combined using a
POD-LSE model to get fully resolved 3D velocities of a flow over a flat plate. POD-LSE estimation model has
been developed further [13] with a reconstruction scheme based on a multi-time LSE. Either a Kalman filter
or a Kalman smoother is used depending on the problem as real time estimation or data post processing. The
model is tested using TrPIV measurements of a bluff-body wake at a low Reynolds number. Sparse velocity
measurements are virtually extracted from the high resolution ones, while original data are used to estimate
reconstruction errors.

LSE suffers from critical limitations though extensively used. First, as a conditional average, LSE esti-
mates a set of coefficients that associate the so-called conditional eddies to one flow pattern [3]. Using these
coefficients to reconstruct all velocity fields, LSE fails to capture coherent structures and misleads physical
interpretations when particular patterns exist. Second, the reconstructed structures are independent of event
magnitudes [14]. Reconstructed flows are associated with weak fluctuations only. Last, LSE as a low pass
filter reconstructs large scales only and lose flow details even at measured positions.

The present work proposes a novel model to reconstruct the fully resolved HTHS velocities from HTLS
and LTHS measurements. This model is based on a Bayesian inference framework using a Maximum A
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Table 1: Summary of notations.

z NP−dimensional vector of HTHS DNS data
y MP−dimensional vector of HTLS measurements
x NQ−dimensional vector of LTHS measurements
N number of spatial points in each HTHS/LTHS snapshot
M number of spatial points in each HTLS snapshot
P number of HTHS or HTLS snapshots
Q number of LTHS snapshots
�t 1D cubic spline interpolator in time
�s 2D cubic spline interpolator in space
�t subsampling in time from P to Q snapshots, �t z = x
�s subsampling in space from N to M points, �s z = y
�s 2D 5th-order least-square spline filter in space
�t 1D 5th-order least-square spline filter in time
∆κ loss of kinetic energy computed using Eq. (26)
ε normalized Root Mean Square Error (NRMSE) defined in Eq. (34)
|.| determinant of a matrix
uT transpose of vector u
argmax

z
(.) argument of the maximum, which is z for which the function attains its

maximum
‖u‖2Σ square of a Mahalanobis distance: ‖u‖2Σ = uT Σ−1u
‖u‖22 square of a Euclidean distance: ‖u‖22 = uT u
n ∼ N(0,Σn) Gaussian noise vector of zero-mean and covariance matrix Σn
N(u|µu,Σn) Gaussian distribution of variable u that takes the mean µu and fluctuates

due to n of covariance Σn
N(u|v) distribution of u knowing (or conditioning on) v

Posteriori (MAP) estimate [15]. It is inspired by the multispectral image fusion problem with the limited
resolution of image measurements in space-wavelength domains [16]. This framework has been discussed
early in communication problems [17, 18] and is used more extensively in image processing, remote-sensing,
and data fusion [19, 20, 21, 22, 23, 24, 25]. The Bayesian fusion model takes benefit from both sources of
information in space and time simultaneously by searching for the most probable flow for given measurements.
Better performances are expected since space and time correlations are equally important. The model also
recovers flow details inaccessible from single interpolations. By integrating directly the measurements, it
proposes a compromise estimate such that detailed flow information close to the sensor positions are well
preserved. This approach also overcomes the limitations of LSE, which acts as a low pass filter due to the mean
square error minimization. To test the model, the DNS database of a turbulent wall-bounded flow is used. These
space-time fully resolved data allow the model optimization and validation. Sparse measurements of HTLS
and LTHS are extracted from the full dataset, while the reference DNS data are used in the end to evaluate
reconstruction errors. Performances are evaluated for various configurations with different subsampling ratios.

The paper is organized as follows. Section 2 presents the Bayesian model using a MAP estimate. Model
simplification and statistical parameters estimation are also discussed. Section 3 describes the DNS database
used to test the model and also other reconstruction methods for comparison. Results for various configurations
are presented. Conclusions and future works are in Section 4.

2 Bayesian fusion model

2.1 Bayesian model

Let x and y denote LTHS and HTLS measurements, and z denote HTHS data to reconstruct. z, x and y are
random, zero-mean vectors of size NP × 1, NQ × 1 and MP × 1 respectively. N and M are numbers of spatial
points in each snapshot, while P and Q are numbers of snapshots. The present work is a challenging inverse
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problem since we consider M � N and Q � P. Let the subscript “s” denote operators performing in space,
and “t” be those in time; � is an interpolator; � is for subsampling; � is a Low-Pass Filter (LPF). The cubic
spline interpolation either 1D or 2D is used as � for its state-of-the-art interpolation results and finite support
[26, 27]. � is a 5th-order least-square spline filter [28, 29] for its sharp cutoff response to better separate large
scales from small scales. Table 1 lists all notations used in this paper.

Given sparse measurements of either y in space or x in time, the fully resolved vector z can be reconstructed
by single interpolations. The 1D time interpolation goes from NQ to NP dimensional space, i.e. x 7−→ ẑ = �t x,
while the 2D space interpolation goes from MP to NP dimensional space, i.e. y 7−→ ẑ = �sy. Let NP
dimensional vectors hs and ht denote the information that cannot be recovered by simple interpolations; z can
be modeled in two ways:

z = �t x + ht (1)

z = �sy + hs (2)

Missing information ht and hs essentially feature small scales. Using either x or y, it is not possible to estimate
ht and hs. The idea of Bayesian fusion is to combine the two models by using �t x in (1) to estimate the
unknown hs in (2) and vice-versa.

Let N(u|µu,Σu) denote the multivariate Gaussian distribution of a NP dimensional random vector u with
mean value µu and covariance matrix Σu. The NP × NP matrix is the expectation of (u − µu)(u − µu)T . The
probability density function (pdf) of u with a multivariate Gaussian distribution N(u|µu,Σu) is:

p(u) =
1

(2π)NP/2|Σu|1/2
e‖u − µu‖

2
Σu (3)

where |.| denotes the matrix determinant, and ‖u − µu‖
2
Σu

is the Mahalanobis distance:

‖u − µu‖
2
Σn

=
(
u − µu

)T
Σ−1

n
(
u − µu

)
(4)

Let assume that �t x and ht are approximately independent; �t x captures temporal large scales of x. Similarly,
�sy and hs are assumed to be approximately independent. Due to subsampling, aliasing terms are also present
in each pairs of (�t x, ht) and (�sy, hs). Assume also that ht and hs are zero mean Gaussian noises, i.e. ht ∼

N(0,Σht ) and hs ∼ N(0,Σht ). Pdfs of these unknowns are modeled as:

p(ht) =
1

(2π)NP/2|Σht |
1/2 e
‖ht‖

2
Σht (5)

and similarly for p(hs). Posterior distributions of z knowing either x or y are then modeled as:

N(z|x) ∼ N(z|�t x,Σht ) (6)

N(z|y) ∼ N(z|�sy,Σhs) (7)

where N(z|x), resp. N(z|x), is the posterior distribution of z knowing x, resp. knowing y.

2.2 MAP estimation

The present Bayesian model aims to build an estimate of z given x and y using the probability models (6) and
(7). The model uses a MAP estimate to search the most probable ẑ given x and y such that ẑ maximizes the
posterior pdf p(z|x, y):

ẑ = argmax
z

p (z|x, y) (8)

Using Bayesian rules [30], one has:
p (z|x, y) ∝ p (x, y|z) p(z) (9)

Assuming that x and y are independent conditioned on z, Eq. (9) becomes:

p (z|x, y) ∝ p(x|z)p(y|z)p(z) (10)
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In Eq. (10), the likelihood functions p(x|z), p(y|z) and the prior pdf p(z) appear, while only the posterior
probabilities p(z|x) and p(z|y) are available in (6) and (7).

To complete the model, the likelihood functions can be expressed in term of the posterior pdfs and prior
of z using Bayesian rules. Section 2.3.3 in Ref. [31] introduces an alternative way to estimate these functions
from posterior pdfs using a linear Gaussian model. Various tests of different Gaussian priors p(z) lead to the
use of a noninformative prior. This prior, referred also as vague or flat prior, assumes that all the values of z
are equally likely [32]. The estimation of ẑ is now solely based on the measurements and not influenced by
external information. The prior distribution therefore has no influence on the posterior pdfs.

With the assumption of a noninformative prior, p(z) is constant. Using Bayes rules, the relation between
the likelihood function and the posterior pdf is:

p (z|x) ∝ p (x|z) p(z) (11)

Since p(z) is replaced by a constant, one gets p (x|z) ∝ p (z|x). Similarly, p (y|z) ∝ p (z|y). Eq (10) becomes:

p (z|x, y) ∝ p(z|x)p(z|y) (12)

The MAP estimation is:
ẑ = argmax

z
p(z|x)p(z|y) (13)

Logarithms of p (z|x) and p (z|y) are:

− ln p(z|x) =
1
2
‖z − �t x‖2Σht

+ C1 (14)

− ln p(z|y) =
1
2
‖z − �sy‖2Σhs

+ C2 (15)

where C1 and C2 are independent of x, y and z. Solving (13) is equivalent to minimize the cost function:

C(z) =
1
2
‖z − �t x‖2Σht

+
1
2
‖z − �sy‖2Σhs

(16)

Computing the gradient of C(z) and setting to zero:

∂C(z)
∂z

= Σ−1
hs

(z − �sy) + Σ−1
ht

(z − �t x) = 0 (17)

the solution to the optimization problem (8) is:

ẑ =
(
Σ−1

ht
+ Σ−1

hs

)−1 (
Σ−1

hs
�sy + Σ−1

ht
�t x

)
(18)

Applying the matrix inversion lemma [15]:

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 (19)

Eq. (18) can be rewritten as:
ẑ =

(
Σht + Σhs

)−1 (
Σht�sy + Σhs�t x

)
(20)

Eq. (20) is the final full form of the proposed Bayesian fusion model using a MAP estimate and assuming a
noninformative prior of z. Variance matrices Σht and Σhs are parameters to be estimated.

2.3 Model simplification

Though providing the full theoretical estimate of ẑ, Eq. (20) is impractical to use as is for several reasons. The
full covariance matrices Σht and Σhs , representing all the sources of correlations in space and time, cannot be
estimated from only the measurements x and y. This is because the unknown ht and hs are only accessible
at the measured positions in space and time. Also, the covariance matrices of size NP × NP are very large,
making them very difficult to accurately estimate and to inverse. Additional assumptions on the shape of Σht

and Σhs are necessary.
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A common and simple approach is to assume diagonal covariance matrices. This implies the independence
between all elements of ht and hs. The simplified version of Eq. (20) becomes a point-wise formula:

ẑ(i) =
σ2

hs
(i)

σ2
hs

(i) + σ2
ht

(i)
�t x(i) +

σ2
ht

(i)

σ2
hs

(i) + σ2
ht

(i)
�sy(i) (21)

where i(t, s) is the index of each point in time (t) and space (s). The variances σ2
hs

and σ2
ht

are functions of
each position in space and time. Their estimation is detailed in next section. Tehn Eq. (21) will be used to
reconstruct HTHS data. As a weighted average, it proposes a compromise estimate from the measurements.
With a symmetrical form in space and time, the model uses information from both measurements to correct
large scales reconstruction and recover certain information at smaller scales.

2.4 Statistical parameters estimation

Let Z, X, Y ,Ht, Hs, Γht and Γhs be the (time,space) matrix forms of z, x, y, ht, hs, σ2
ht

and σ2
hs

respectively. Z,
Ht, Hs, Γht and Γhs are of size P × N, while X and Y are of size Q × N and P × M. Γht and Γhs are matrices of
empirical variances, which are functions of time and space (t, s).

Variance matrices are estimated from Ht and Hs, which are available at the measurements positions only.
We use:

�tHs = X − �s�sX (22)

�sHt = Y − �t�tY (23)

where �t subsamples in time from P to Q time steps, and �s subsamples in space from N to M points. These Q
instants and M positions are the same as for LTHS and HTLS measurements. Since the flow is approximately
stationary and spatial interpolation is independent of time, Γhs(t, s) becomes Γhs(s), a function of spatial loca-
tions only. These variances are estimated by averaging over all time steps:

Γhs(s) =
1
Q

Q∑
t=1

(X(t, s) − �s�sX(t, s))2 (24)

Variance in Γht is a function of distances τ to the previous LTHS time step only, where τ/δt = 0, 1, 2, ..., P/Q,
and δt is the time lag between two consecutive HTHS time steps. Γht becomes a function of space and τ only,
i.e. Γht (τ, s). It is estimated by averaging over Q blocks (of P/Q snapshots) bounded by two consecutive LTHS
instants:

Γht (τ, s) =
1
Q

∑
ts

(Y(ts, s) − �t�tY(ts, s))2 (25)

where ts/δt = τ/δt, τ/δt+P/Q, τ/δt+2P/Q, ..., τ/δt+(Q−1)P/Q. Since the flow is approximately homogeneous
in spanwise direction, Γhs(s) and Γht (τ, s) are also averaged over all blocks defined by the four neighboring
HTLS measurements, see Fig. 2. The variances are then functions of only vertical positions and relative
distances to the four closest HTLS sensors. These estimated variances are rearranged into a vector form σ2

ht
(i)

and σ2
hs

(i) to complete the fusion model using the simplified formula in Eq. (21).
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Table 2: NRMSEs of all scales reconstruction errors for various cases. The subsampling ratios of HTLS measurements are
√

N/M and equal in both spatial directions.
The ratios of LTHS measurements in time are P/Q. The equivalent spacing in spanwise direction is normalized by half channel height as ∆z/H and the spacing in time
is ∆t. The normalized energy losses in space ∆κs and in time ∆κt are defined in Eq. (26). ε and εmax are the mean and max NRMSE defined in Eq. (34). ε is averaged
over all space-time positions in the outer region y/H ∈ [0.25, 1.75], while εmax is computed for one of the most difficult position in space and time (the most remote
from all nearby measurements). The smallest errors in each cases are boldfaced.

Subsampling ratios Spacings Energy loss ε εmax

Case
√

N/M P/Q ∆z/H ∆t (s) ∆κs(%) ∆κt(%) �sy �t x LSE Fusion �sy �t x LSE Fusion
1 05 10 0.05 0.25 0.29 4.70 0.14 0.32 0.25 0.12 0.16 0.56 0.33 0.16
2 05 20 0.05 0.50 0.29 13.12 0.14 0.54 0.38 0.13 0.16 0.89 0.49 0.16
3 10 04 0.11 0.10 5.03 0.50 0.36 0.11 0.30 0.11 0.47 0.17 0.37 0.18
4 20 04 0.22 0.10 9.99 0.50 0.68 0.11 0.57 0.11 0.86 0.17 0.68 0.17
5 05 04 0.05 0.10 0.29 0.50 0.14 0.11 0.13 0.08 0.16 0.18 0.15 0.13
6 10 10 0.11 0.25 5.03 4.68 0.36 0.32 0.34 0.25 0.47 0.55 0.49 0.43
7 20 20 0.22 0.50 9.99 13.12 0.68 0.54 0.64 0.46 0.85 0.85 0.78 0.73

Table 3: NRMSEs of large and small scales. Notations are explained in Table. 2.

ε εmax

Case �sy �t x LSE Fusion �sy �t x LSE Fusion
Large scales reconstruction

5 0.08 0.09 0.10 0.05 0.06 0.15 0.11 0.07
6 0.24 0.25 0.24 0.15 0.22 0.45 0.28 0.21
7 0.56 0.36 0.51 0.30 0.60 0.66 0.60 0.46

Small scales reconstruction
5 0.98 0.56 0.73 0.55 0.98 0.86 0.89 0.81
6 0.98 0.81 0.90 0.70 0.97 1.15 1.07 0.92
7 0.99 0.92 0.95 0.78 0.93 1.08 0.90 0.86
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3 Numerical experiments

Section 3.1 describes the DNS database used to test the model. Section 3.2 discusses other reconstruction
methods for comparison. Section 3.3 presents results of the fusion model in various cases.

3.1 DNS database

DNS database of a turbulent wall-bounded flow is used to test the model. This simulation uses the numerical
procedure described in [33]. The flow is at a Reynolds number Reτ = 550 based on the friction velocity.
Cartesian coordinates of the simulation in space are (x, y, z) for streamwise, vertical and spanwise directions
respectively. The domain size Lx×Ly×Lz normalized by half the channel height H is 2π×2×π. Fully resolved
fluctuating streamwise velocities in a plane normal to the flow direction are considered as HTHS data. This
data includes P = 10000 snapshots at spatial resolution of N = 288 × 257 and at sampling frequency of 40
Hz. Sparse LTHS and HTLS measurements are subsampled from HTHS data to learn the fusion model. HTHS
is used as the ground truth to estimate reconstruction errors. The extension to spanwise and vertical velocity
components follows the same procedure.

Various cases are investigated. The subsampling ratios
√

N/M applied in each direction of space are 5, 10
and 20. These ratios correspond to a number M of HTLS sensors of 51 × 57, 26 × 29 and 13 × 15 respectively.
Each ratio has a spacing between two successive HTLS points in spanwise and vertical directions of ∆z and
∆y. Subsampling ratios P/Q in time are 4 (Q = 2500), 10 (Q = 1000) and 20 (Q = 500). Each ratio, both in
space and time, corresponds to a certain amount of energy loss. This is essentially the energy of small scales
separated from large scales by a low pass filter �. Here � is the 5th−order least square spline filter, either
temporal 1D (�t) or spatial 2D (�s), using measurements as knots. This spline filter has the advantages of a
sharp cutoff response and finite support. The energy loss is defined by comparing the filtered field �z and the
original field z:

∆κ =

√∑
j∈�

z2
j −

√∑
j∈�

[�z]2
j√∑

j∈�
z2

j

(26)

where � is the considered set of points. Table 2 gathers the energy loss in time (∆κt) and in space (∆κs) estimated
with �t and �s respectively. The set � contains all points at y/H = 1.

3.2 Other methods for comparison

Other reconstruction methods are used for comparison with the present model.
Cubic spline interpolation: Interpolation techniques reconstruct HTHS velocities from either LTHS or

HTLS measurements independently, i.e. x 7−→ ẑ = �t x or y 7−→ ẑ = �sy. The cubic spline interpolations [26],
either 1D in time or 2D in space, are used. These interpolations are by Matlab built-in functions, which follow
the algorithm in Ref. [34].

Linear Stochastic Estimation: LSE estimates ẑ as a linear combination of measurements. Coefficients are
estimated from the measurements by solving a system of linear equations to minimize the mean square errors
of reconstructed fields. Refs. [3, 5] describe the physical interpretations of this procedure. This section derives
the model differently [35, 31] but in accordance with turbulence literature.

Matrix forms X, Y and Z described in Section 2.4 are used to build the LSE model. Let Ys = �tY of size
Q × M denote a part of Y subsampled at the same instants as X. LSE model finds the optimal matrix B of size
N × M that minimizes the residual sum of squared errors:

B = argmin
B

‖YsB − X‖22 (27)

Let set the gradient of this residual sum to zero:

∂‖YsB − X‖22
∂B

= YT
s (YsB − X) = 0 (28)
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the optimal B is obtained as:
B =

(
YT

s Ys
)−1

YT
s X (29)

Eq. (29) requires the inversion of (YT
s Ys) that can be singular, leading to a high variance model with large

coefficients. A small change of predictors Y then can lead to a very different reconstruction of Z, causing
model’s instability. Tikhonov regularization [36], well-known in machine learning problems as L2 penalty or
Ridge Regression [35, 31], can be used as a remedy. It aims to solve this ill-posed problem by imposing a L2
penalty term on the residual sum of errors. The optimization problem (27) becomes:

B = argmin
B

‖YsB − X‖22 + λ‖B‖22 (30)

Setting the gradient of the cost function (for λ > 0) to zero:

∂
(
‖YsB − X‖22 + λ‖B‖22

)
∂B

= YT
s (YsB − X) + λB = 0 (31)

the closed form of B is:
B =

(
YT

s Ys + λI
)−1

YT
s X (32)

The regularization parameter λ can be optimized by ten-fold cross-validation [37]. The fully resolved field of
Z is then estimated using these coefficients:

Z = YB (33)

Matrix B encodes the predictor of Z knowing Y learnt from the joint observation of X and Y . A completely
analogous procedure can be used switching the roles of X and Y .

3.3 Results

3.3.1 Impact of subsampling ratios

The fusion model uses Eq. (21) to reconstruct fully resolved velocities ẑ in various cases. Reconstructed fields
are compared with the original DNS via the Normalized Root Mean Square Error (NRMSE):

NRMS E =


∑
j∈�

( ẑ j − z j)2

∑
j∈�

z2
j


1/2

(34)

where � is the considered set of points used to estimate the error. The field z is more or less difficult to estimate
depending on the considered instant and position with respect to available measurements. To qualify, two
types of NRMSE, the mean NRMSE ε and the maximum NRMSE εmax, are estimated. ε is estimated over �
including all space-time positions in the outer region of y/H ∈ [0.25, 1.75], where the flow is approximately
homogeneous. It represents how far the reconstructed field departs from ground truth in order to evaluate
reconstruction accuracy. εmax is estimated using all blocks (in time and in spanwise directions) bounded by
HTLS sensors at y/H = 0.94 and y/H = 1.06, see Fig. 2. The set � includes centers at local coordinates
(∆y/2,∆z/2, Pδt/2Q) of all blocks. ε and εmax of �sy, �t x and LSE reconstruction are also estimated for
comparison.

Table 2 describes 7 cases with their settings and reconstruction errors. In cases 1 and 2, the energy losses
due to subsampling in time are much higher than in space, and vice-versa in cases 3 and 4. The model gives
similar errors compared to the best interpolation, with smaller ε and comparable εmax. In cases 5 to 7, the losses
are due to both the subsamplings in space and time in a balanced manner. The proposed model reduces ε by
15% to 30% and εmax by 10% to 20% compared to the best of other methods.

Improvements are expected from the weighted average in Eq. (21). The present model uses variances σ2
s(i)

and σ2
t (i) as parameters of the flow’s physics, and �t x and �sy as the specific flow information. It imposes

the reconstruction to be consistent with measurements at nearby positions and proposes compromise estimates
elsewhere. Simple interpolations use either HTLS or LTHS measurements only, losing information from the
other source. LSE learns its coefficients from both measurements but inherits the limitations of the conditional
averaging.
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(a) (b)

Figure 3: NRMSEs between reference and reconstructed streamwise velocities by all methods as: (a) functions
of spatial coordinates in an element block at the most difficult instant, i.e. at (α, β, Pδt/2Q); (b) functions of
time distances from the previous LTHS instant at the most difficult spatial location, i.e. at (∆y/2,∆z/2, τ).

Figure 4: A time evolution of fluctuating streamwise velocity at y/H = 1 and z/H = 0, the centers of all such
(α, β) planes in Fig. (2).

3.3.2 Large and small scales reconstruction

In cases 1 to 4, the fusion model performs as the best interpolation with small improvements. This is ex-
pected since one measurement of HTLS or LTHS is much better resolved than the other. Cases 5 to 7 are the
most interesting since energy losses due to subsampling in space and time are comparable. The model brings
complementary information from both measurements and improves the reconstruction.

We study reconstructions of large and small scales in details for these three cases. Spatial 2D filters �s

(see Section 3.1) are used to separate large scales from small scales. These filters take HTLS points as knots to
have a cutoff close to the Nyquist frequency. The reconstructed large scales by all methods are compared to the
reference �s z. Small scales are estimated using I − �s where I is the identity matrix. Table 3 shows NRMSEs
estimated using Eq. (34) but normalized by the RMS of either �s z or (I − �s)z.

The fusion model recovers part of small scales from complementary measurements. It gives the lowest ε
and εmax of small scales reconstruction in all cases. It also better reconstructs large scales than other methods.
For large scales, εmax remains the same in case 5 of small subsampling ratios and improves significantly in
cases 6 and 7 of high ratios, with εmax reduced by 5 % and 25 % respectively, and ε by 20% to 40% compared
to the best of other methods.

3.3.3 Model performance analysis

We focus on case 6 for a model performance analysis. This case has about 5 % energy losses due to both
time and space subsamplings, which are critical to highlight interests of the present approach. The model
reduces ε and εmax by 25 % and 35 % respectively for all scales reconstruction, 10 % and 5 % for large scales
reconstruction.
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Figure 5: Spectra of the fluctuating velocity in Fig. 4 .

To analyze reconstructions in space, Fig. 3(a) shows spatial NRMSE maps by all methods as functions
of local coordinates (α, β). For each (α, β), NRMSE is estimated using Eq. (34), where � includes points at
(α, β, Pδt/2Q) of all blocks used to estimate εmax (see Section 3.3.1). For all methods, NRMSEs are small
close to the four HTLS positions in the corners and increase when approaching the center. Time interpolation
behaves differently since its errors are independent of spatial coordinates. The fusion model yields the smallest
errors at all positions. It improves significantly near the center compared to spatial interpolation, the best of
other methods.

To analyze reconstructions in time, Fig. 3(b) shows the NRMSE curves by all methods as functions of
distances τ from the previous LTHS time step. For each τ, NRMSE is estimated using � including points
at local coordinates (∆y/2,∆z/2, τ) of all blocks used to estimate εmax. NRMSEs are small close to the LTHS
measurements (τ/δt = 0 and τ/δt = P/Q) and increase when moving toward the middle (τ/δt = P/2Q). Spatial
interpolation are different with NRMSEs independent of time. The fusion model yields the minimum errors at
all time steps. Even in the middle of two LTHS instants, the maximum fusion error remains significantly lower
than that of all other methods.

Fig. 4 shows a time evolution of the point at y/H = 1 and z/H = 0 (α = ∆y/2 and β = ∆z/2 in local
coordinates), the most remote from its neighboring HTLS sensors. A good agreement between fused and ref-
erence velocity is still obtained. A zoom-in period is shown also for detailed comparisons with other methods.
While time interpolation captures only low frequencies, spatial interpolation generates high frequencies but
weakly correlated with the truth. The fusion model proposes a good compromise to improve both large and
small scales reconstruction. It also captures detailed peaks much better than LSE, since LSE smooths these
small scales out by minimizing the mean square errors.

Fig. 5 compares temporal spectra of above evolutions. Time interpolation fails to estimate the signal at
higher frequencies than a certain cutoff. LSE keeps both large and small scales, but the loss of large scale
energy is critical. This loss is highlighted in the zoom-in picture of low frequencies spectral. The present
model improves the estimation at both low and high frequencies.

Fig. 6 compares reconstructed snapshots by different methods. This snapshot is at the most remote instant
from its two neighboring LTHS time steps. The model reconstructs correctly the velocity field with more flow
details than spatial interpolation. It also recovers better large scales than LSE and time interpolation methods.

11



Figure 6: A sample snapshot of fluctuating streamwise velocity at one of the most difficult instant to estimate
(in the middle of two LTHS time steps): Reconstruction of all scales (left) and large scales only (right). The
figure is better viewed on screen.
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4 Conclusions

This work proposes a Bayesian fusion model using a MAP estimate to reconstruct high resolution velocities
of a turbulent channel flow from low resolution measurements in space and time. It searches for the most
probable field given available measurements. This approach yields a simple but efficient weighted average
formula in Eq. (21). Weighting coefficients are learnt from measurements and encode the pysics of the flow.
The informed fusion of information from available measurements improves the interpolation of large scales
and recovers details at small scales.

Numerical experiments using a DNS database of a turbulent wall-bounded flow at a moderate Reynolds
number illustrate the efficiency and robustness of the proposed method. Low resolution measurements are
extracted to learn model parameters, while original data are used as the ground truth to estimate reconstruction
errors. The model is tested in various cases with different subsampling ratios. Results are compared to more
standard methods such as cubic spline interpolation and penalized LSE. Bayesian fusion always produces the
most accurate reconstruction. The best results are obtained when missing spatial and temporal information
are of the same order of magnitude. In these cases, it provides a better large scale reconstruction while a
certain amount of small scale details are also recovered. The search for an even more accurate fusion and
super-resolution method is the subject of ongoing work.
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