
HAL Id: hal-01140357
https://hal.science/hal-01140357v1

Submitted on 8 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-free Optimization of an Engine Control Unit
thanks to Self-Adaptive Multi-Agent Systems

Jérémy Boes, Frédéric Migeon, Pierre Glize, Erwan Salvy

To cite this version:
Jérémy Boes, Frédéric Migeon, Pierre Glize, Erwan Salvy. Model-free Optimization of an Engine
Control Unit thanks to Self-Adaptive Multi-Agent Systems. International Conference on Embedded
Real Time Software and Systems - ERTS2 2014, Feb 2014, Toulouse, France. pp. 350-359. �hal-
01140357�

https://hal.science/hal-01140357v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12843

To cite this version : Boes, Jérémy and Migeon, Frédéric and Glize,
Pierre and Salvy, Erwan Model-free Optimization of an Engine Control
Unit thanks to Self-Adaptive Multi-Agent Systems. (2014) In:
International Conference on Embedded Real Time Software and
Systems - ERTS² 2014, 5 February 2014 - 7 February 2014 (Toulouse,
France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12843/
http://oatao.univ-toulouse.fr/12843/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Model-free Optimization of an Engine Control Unit
thanks to Self-Adaptive Multi-Agent Systems

Jérémy Boes1, Frédéric Migeon1, Pierre Glize1, Erwan Salvy2

1Institut de Recherche en Informatique de Toulouse, Université Paul Sabatier, Toulouse, France
2Aboard Engineering, Toulouse, France

{boes, migeon, glize}@irit.fr, erwan.salvy@aboard-eng.com

Keywords: Control ; Multi-Agent Systems ; Self-Organization ; Auto-Calibration ; Automotive

Abstract: Controlling complex systems, such as combustion engines, imposes to deal with high dynamics, non-linearity

and multiple interdependencies. To handle these difficulties we can either build analytic models of the process

to control, or enable the controller to learn how the process behaves. Tuning an engine control unit (ECU) is

a complex task that demands several months of work. It requires a lot of tests, as the optimization problem

is non-linear. Efforts are made by researchers and engineers to improve the development methods, and find

quicker ways to perform the calibration. Adaptive Multi-Agent Systems (AMAS) are able to learn and adapt

themselves to their environment thanks to the cooperative self-organization of their agents. A change in the

organization of the agents results in a change of the emergent function. Thus we assume that AMAS are a

good alternative for complex systems control. In this paper, we describe a multi-agent control system that was

used to perform the automatic calibration of an ECU. Indeed, the problem of calibration is very similar to the

one of control: finding the adequate values for a system to perform optimally.

1 INTRODUCTION

Before selling a vehicle, manufacturers must seek

registration, in other words, they need to check their

compliance with respect to different regulations. Ve-

hicles are subject to all sorts of regulations regarding

active and passive safety, the environment, manufac-

turing, and so on.

For instance, in order to improve air quality in

Europe, gaz emissions are limited by law. Limits

were lowered several times in recent decades, grad-

ually passing from Euro 1993 to Euro V standard that

is in force today. The latest European air regulations

require manufacturers to change their vehicles, some-

times in depth, and develop combustion engines with

more and more complex technical definitions, causing

many changes on the electronic architecture. Systems

like EGR valves, variable displacement oil pumps,

electric water pumps, variable geometry turbo, are

some of the components to be controlled by the elec-

tronic control unit, the ECU (also stands for engine

control unit).

All of these elements are controlled by the ECU

via functions called control strategies. The calibration

engineers must tune this increasing number of func-

tions to meet the standards. This greatly increases

the calibration and test workload, and force to apply

complex development methodologies. In this context,

manufacturers and suppliers must constantly innovate

to produce new engines while reducing the time and

cost of development. New approaches such as design

of experiments or automatic calibration are becoming

essential to keep the competitiveness.

The automatic calibration tools available on the

market are integrated to engine dyno management

software solutions. To perform a test sequence, tech-

nicians and engineers define the number and area scan

settings, the constraints and output to optimize, then

proceed to the more conventional setting of the bench

(acquisition channels, security, appliances measure-

ment, etc). When a test is started, the control soft-

ware of the engine dyno is autonomous, it no longer

requires human intervention to go to the end of the

sequence. Once the sequence is completed, engineers

analyze the acquired data, and select the optimum set-

tings that meet their specifications. This test sequence

is repeated as many times as there are operating points

to optimize.

By comparison, ESCHER, the multi-agent system

presented in this paper, applied to the development of

engine tuning, works differently than existing tools.

The essential differences compared to other tools are

that it is separated from the control software of the

engine dyno, and that it offers optimum setting within

some minutes. ESCHER requires very few configura-

tion: engineers select only the constraints to be met,

and parameters to be optimized, then the tool can start

optimizing the current operating point. This way, the

long tests sequences involved in the usual full scan

of the parameters, as well as the heavy processing of

the huge amount of acquired data, are avoided. It

is of course necessary to set the bench on its con-

ventional aspects. ESCHER performs optimization

within some minutes depending on the number of pa-

rameters to modify, and the number of responses to

be optimized.

In section 2, we briefly present various control

methods and approaches that have been experimented

and used over the years. We follow with an introduc-

tion to the Adaptive Multi-Agent Systems theory. In

section 3 the design of our controller is described be-

fore going a bit deeper in the agents behavior. Section

4 gives details about the implementation of our sys-

tem, while section 5 exposes the light effort required

for the application of our approach in real cases. Sec-

tion 6 presents the experiments and the results ob-

tained with a real engine. Finally, section 7 concludes

with our perspectives and future works.

2 RELATED WORKS

In this section the main approaches of control are

presented before a brief introduction to the Adaptive

Multi-Agent Systems theory.

2.1 Complex Systems Control

Controlling systems is a generic problem that can be

expressed as finding which modifications are needed

to be applied on the inputs in order to obtain the de-

sired effects on the ouputs. The most well-known are

presented in the next paragraphs.

PID - The widely used Proportional-Integral-

Derivative (PID) controller computes three terms re-

lated to the error between the current and the desired

state of the process, from which it deduces the next

action to apply (Astrom and Hagglund, 1995). PID

controllers are not efficient with complex systems,

due to their difficulties to handle several inputs and

outputs and to deal with non-linearity.

Adaptive Control - Model-based approaches like

Model Predictive Control (MPC) (Nikolaou, 2001)

use a model able to forecast the behavior of the pro-

cess in order to find the optimal control scheme.

These approaches handle several inputs but are lim-

ited by the mathematical models they use. The Dual

Control Theory uses two types of commands : the

actual controls that drive the process to the desired

state, and probes to observe the process reactions and

refine the controller’s knowledge (Feldbaum, 1961).

The concept of this approach is interesting but a heavy

instantiation work is still required.

Intelligent Control - Intelligent control regroups

approaches that use Artificial Intelligence methods

to enhance existing controllers. Among these meth-

ods we can find neural networks (Hagan et al.,

2002), fuzzy logic (Lee, 1990), expert systems (Sten-

gel, 1991) and bayesian controllers (Colosimo and

Del Castillo, 2007). These methods can be easily

combined one with another.

Engine Control and Calibration Most engine

control methods use mathematical models, such as

the Jankovic third-order model (Jankovic and Kol-

manovsky, 2000). The challenge is to deal with the

non-linearity of the model to compute the best actions

on the engine actuators. For instance, (Dabo et al.,

2008) use dynamic feedback linearization to handle

the exhaust gas recirculation valve of a turbocharged

diesel engine.

Automatic calibration methods also rely on mod-

els of the engine. The most advanced techniques al-

low the controller to learn the best value of a part of its

own parameters. For instance, (Malikopoulos et al.,

2009) use a stochastic approach to find the calibration

of a diesel engine. They model the engine and the op-

timization criteria as a Markov Decision Process, and

use a decentralized reinforcement learning algorithm

to find the best injection timing and VGT postion.

2.2 Adaptive Multi-Agent Systems

The Adaptive Multi-Agent Systems (AMAS) the-

ory is a basis for the design of multi-agent systems

where cooperation is the engine for self-organization

(Georgé et al., 2011). As cooperative entities, AMAS

agents try to reach their own goals as well as they try

to help other agents to achieve their goals. Moreover,

an agent will modify its behavior if it thinks that its

actions are useless or detrimental to its environment.

Such situations are called Non-Cooperative Situations

(NCS). Some behavioral rules, specific to NCS’s, help

agents to solve or avoid these situations. By solving

NCS’s, in regard to their own local goals, cooperative

agents collectively find a solution to the global prob-

lem. Therefore one can consider the behavior of an

AMAS as emergent.

Thanks to its adaptiveness, an AMAS-based con-

troller should not rely on a specific model of the pro-

Figure 1: Examples of criticality functions

cess thus it does not need a heavy instantiation work.

Besides, it should be able to deal with a changing

number of inputs and outputs.

3 CONTROLLER OVERVIEW

Controlling a system basically means finding the

most adequate action to apply on its inputs in order

to obtain the desired effect on its outputs. Here we

present the required basic abilities of a complex sys-

tem controller, and what are the agents that enable

them. Then, we explain with a simple example how it

is possible to control a process with local behavioral

rules.

3.1 Nominal Behavior

The next paragraphs describe how our multi-agent

system, called ESCHER (for Emergent Self-Adaptive

Control for Heat Engine calibRation), works when

it is already adapted to the controlled system. The

mechanisms leading to this adaptation will be ex-

plained further.

3.1.1 Observing the Process

If we intend to control a system, it is obvious that we

need to be able to observe it. A specific agent type is

in charge of perception, called Variable Agent (there

is one for each input and output of the controlled pro-

cess). These agents perceive their value from the pro-

cess and send it to agents who need this information.

Also, Variable Agents can embed noise reduction al-

gorithms if this problem is not handled by a third

party system.

3.1.2 Representing Criteria

The controller needs to know what is the desired state

of the process. This state is represented by a set of

Criterion Agents and possibly by additional Variable

Agents.

There are three types of Criterion Agents :

Threshold, Setpoint and Optimization. A Threshold

Criterion Agent expresses the will to keep a variable

either below or above a threshold specified by a Vari-

able Agent. In a similar way, a Setpoint Criterion

Agent expresses the will to set a process variable to

a particular value. Finally, an Optimization Criterion

Agent represents the will to minimize or maximize a

process variable.

Each Criterion Agent computes a critical level

that varies from 0 (the agent is satisfied) to 100 (the

agent is far from satisfied). The critical level depends

on the value of the variable on which the Criterion is

applied and can be parametrized by a second Variable

(in the case of a threshold or a setpoint criterion). Fig-

ure 1 shows examples of criticality functions that can

be used to compute the critical level of a threshold, a

setpoint, and an optimization criterion.

It is clear that decreasing the critical levels means

solving the constraints, and the only way to do so is

to perform the adequate actions on the process inputs.

Finding these actions implies to be able to analyze the

current sate of the environment.

3.1.3 Analyzing the State of the Environment

ESCHER’s environment is the process to control as

well as the user-defined setpoints and thresholds.

Thanks to Variable Agents and Constraints Agents,

the multi-agent system has a representation of its en-

vironment. Before it can perform control, it must be

able to extract relevant information from this repre-

sentation. This is the role of agents called Context

Agents.

A Context Agent memorizes and expresses the ef-

fects, on every critical level, of an action applied to

one particular input of the process. It also memorizes

the state of the environment when the action was ap-

plied. To represent this state the Context Agent main-

tains a set of validity ranges, containing one range

Figure 2: ESCHER Topology

per Variable Agent. The memorized effects on criti-

cal levels form its forecasts. In other words, a Context

Agent represents the information that if every variable

value is inside its validity range, and if this action is

applied, then the effects on every critical level will be

similar to these forecasts.

A Context Agent is said valid when the environ-

ment is in a state that matches its validity ranges.

When this occurs, it sends a notification with its ac-

tion and forecasts to the appropriate Controller Agent,

which will be presented in the next part.

3.1.4 Selecting the Adequate Action

Each controlled input of the process is associated with

a Controller Agent. The role of a Controller Agent is

to apply the most adequate action in order to reduce

the critical levels. It will base its choice on the infor-

mation it receives from Context Agents, picking the

action that will provoke the biggest descrease of the

critical levels. When an action is picked, the Con-

troller Agent notifies every Context Agents who pro-

posed it.

Figure 2 shows the global architecture of the sys-

tem. There are several cases where the Controller

Agent is unable to make a good decision, because

of incomplete or incorrect information from Context

Agents. These cases are Non-Cooperative Situations

(NCS). When a NCS occurs, the cooperative behav-

ior of involved agents is triggered in order to solve it.

This will be explained in 3.2.

3.2 Non-Cooperative Situations

This section presents the main NCSs that our agents

face and how they solve it, leading the system to have

an accurate representation of the process to control.

No Adequate Action in Suggestions - This NCS

occurs when the suggestions list of a Controller Agent

contains only forecasts of increasing critical levels.

There are two cases : either all the possible actions are

already suggested or some actions are not proposed.

In the first case, the only choice left is to accept the

suggestion with the less bad forecasts. In the second

case, a new action is applied, and a new Context is

created with this action.

Empty Suggestions List - This NCS happens when

a Controller Agent has to apply an action, but finds

its suggestion list empty. It will be unable to find an

adequate action with certainty, but it can make some

hypothesis to try one. If the last action it applied had

reduced the maximum of the Criterion Agents criti-

cal levels, the same action is reproduced. If not, the

opposite action is applied. A new Context Agent is

created, with the applied action. After its creation, a

Context Agent will extend its validity ranges as long

as its action is applied.

Wrong Forecast - This NCS occurs when a Con-

text Agent is selected, checks its forecasts and notices

that they are not correct. If the forecasts are wrong

(i.e. a critical level evolves in the opposite direction

of the forecast), the Context Agent considers that it

should not have been valid when the action was sug-

gested : its validity ranges are reduced. A Context

Agent dies if one of its ranges is reduced to an am-

plitude of zero. If the forecasts are only erroneous

(i.e all the critical levels evolve in the forecasted di-

rection, but not with the forecasted amplitude), the

Context Agent considers that its validity was relevant,

thus does not modify its validity ranges, but adjusts its

forecasts to match its observation.

3.3 Self-Organization

Context Agents are able to evaluate their own behav-

ior and to adjust it (by modifying their forecasts and

their validity ranges) if necessary. Thus we can say

that a Context agent is self-adaptive. Moreover, Con-

text Agents are created at runtime. Each of them fol-

lows simple and local behavioral rules. These rules

lead to the formation of a coherent set of Context

Agents where each agent occupies a portion of the en-

vironment state space for which its forecasts on crit-

ical levels are correct. Thus we can say that the set

is the result of the self-organization of the Context

Agents. It is also intersting to note that all the Con-

text Agents of a given set put together give a good

approximation of the criticality functions.

There is another, more subtle, level of self-

organization. Each Controller Agent makes its own

decisions about the action to apply on its effec-

tor, other Controller Agents are never consulted.

Nonetheless, it appears that they manage to synchro-

nize their actions and efficiently reduce the critical

levels, solving the constraints. This is possible be-

cause each process input corresponding to a Con-

troller Agent is also represented as a Variable Agent.

Context Agents suggestions for one Controller Agent

are therefore conditionned by the current state of

other Controller Agents corresponding process input.

As they all try to lessen the critical levels, they even-

tually find a synergy and the global behavior of ES-

CHER (the actions on all the controlled inputs) is co-

herent.

4 IMPLEMENTATION

This section gives some details about the imple-

mentation of ESCHER.

4.1 Component-based Architecture

ESCHER has a component-based architecture. It has

been implemented using a tool called MAY (Make

Agents Yourself). MAY is an Eclipse plug-in that

allows to describe the architecture of the agents and

the infrastructure that support them. Based on this

description, a JAVA code skeleton is automatically

generated (Noël, 2012). In ESCHER, the four types

of agents have the same architecture, and only differ

by the implementation of each component. Figure 3

Figure 3: Component-based architecture of an agent.

shows the main components of the agents:

• Perception: contains the methods to receive mes-

sages, and extract relevant informations. For

instance, the perception component of Variable

Agents is used to read messages as well as the

variable value on the process.

• Representations: stores all the data extracted by

the perceptions component, and domain specific

knowledge of the agent. For instance, the validity

ranges of a Context Agent are located in its repre-

sentations component.

• Skills: contains useful methods to help the agent

in its decisions.

• Behavior: contains the behavior rules of the agent.

These ruled produce actions in regard to the anal-

ysis of the current state of the representations.

• Action: contains the methods to execute actions.

Actions can be sending messages, tuning internal

parameters, or (only for Controller Agents) set-

ting the value of a parameter of the process.

These components can be made of other generic com-

ponents, that can be reused thanks to MAY (a good

example is the inbox for the message passing).

4.2 Adaptive Value Trackers

We have seen in section 3.2 that Context Agents tune

their internal parameters themselves (like their fore-

cats, or their validity ranges). This tuning is done

with Adaptive Value Trackers (AVT). AVTs use sim-

ple feedbacks to converge towards a value (Lemouzy

et al., 2011). These feedbakcs are “greater” (the AVT

has to increase its value), or “lower” (the AVT has

to decrease its value). The amplitude of the variation

(later called ∆) is determined by the sequence of re-

ceived feedbacks. If two consecutive feedbacks are

identical, ∆ is increased, otherwise, ∆ is decreased.

An AVT is able to converge quickly towards a

value, hold steady, and then converging towards a new

value if necessary. Thus, they are adequate in our

case, where the parameters of an agent (such as the

forecats of a Context Agents) change over time.

5 APPLICATION

While designed as a control system, ESCHER can

also be seen as an automatic calibration tool. Indeed,

learning how to control an unknown engine is very

similar to learning the optimal parameters of an ECU.

This section explains how ESCHER is used during the

calibration process, and what are its parameters.

5.1 Calibration Process

The classical calibration process of an ECU involves

an early phase of mapping, where interesting operat-

ing points are chosen. This phase is usually followed

by the complete scan of the calibration parameters

(for each selected operating point), in order to col-

lect data on the engine, which is later processed to

find the optimal parameters. This step demands a lot

of tests, since the combinatorial space of the param-

eters is huge, and finding the optimum is a complex

task. This is why ESCHER is used. Instead of per-

forming a full scan, we let ESCHER control all the

parameters at once. It will explore the engine state

space and converge towards the optimal configuration

for the controlled parameters.

5.2 Parameters of ESCHER

ESCHER is easy to instantiate to a given engine. This

means that no heavy parameter tuning is required, and

that no model of the engine is needed. There are

two types of parameters that must be set: the parame-

ters relative to the engine, and the parameters relative

to the optimization criteria. The only engine-related

mandatory parameters are:

• the number of controlled variables, and the refer-

ence of each ;

• the number of observable variables, and the refer-

ence of each.

These parameters are used to create the adequate Vari-

able Agents and Controller Agents. It is also possible

to set the variation range of each variable. This is

optional, and only useful if you want to restrain the

exploration of the controlled variables (for instance,

for safety purposes). Setting variation ranges also

helps to set the parameters for the optimization cri-

teria. Anyway, this is basic knowledge about the con-

sidered engine. Thus, there is no need to run extensive

engine tests, neither to build a model of the engine,

prior to apply our method.

We have seen, in section 3.1.2, that optimization

criteria are represented by Criterion Agents. Each of

these agents computes a critical level, thanks to a crit-

icality function. These functions are defined by the

user. Having the variation range of the variable on

which a criterion is applied helps to get cost-efficient

functions (otherwise, the use of the exponential func-

tion is required). A default polynomial function for

each type of criterion is proposed, and implemented

in ESCHER. With these functions, the user only have

to select the type of criterion (setpoint, threshold, or

optimization), and to specify a value (for a setpoint,

or a threshold) and a direction (for a thershold, or an

optimization).

Parameters Significance

Number of controlled variables Mandatory

Number of observable variables Mandatory

Variables references Mandatory

Variables variation ranges Optional

Criticality functions Mandatory

Maximal action Not significant

Minimal size of the validity ranges Not significant

Minimal ∆ for AVTs Not significant

AVTs coefficient Not significant

Table 1: Parameters of ESCHER.

Finally, a few secondary parameters can be tuned,

but do not significantly impact the behavior of ES-

CHER. These are the maximal amplitude of an ac-

tion, the minimal size of a validity range, the minimal

∆ for an AVT, and the coefficient for the self-tuning

of this same ∆. Table 1 summarizes the parameters of

ESCHER.

6 EXPERIMENTS

This section shows results obtained during live ex-

periments on a real engine. The results presented

in this paper have been obtained on a monocylinder

125cc fuel engine.

6.1 Installation

The ECU is accessed through a specific software,

called ControlDesk. ESCHER and ControlDesk run

Figure 4: The experimental setting.

on different computers, and communicate through the

MCD-3 protocol. This allows ESCHER to read and

write any value on the ECU. The mass of injected

fuel, the ingnition advance, and the start of injection,

are all bypassed on the ECU, so ESCHER can directly

control them. Finally, a gaz analyzer is plugged to the

exhaust system and sends its data to ESCHER via its

serial port. Figure 4 shows the communication means

between the different systems.

6.2 Torque Optimization

In this test, the operating point is 5000rpm and

870mbar of pressure in the inlet manifold. The goal

is to maximize the indicated mean effective pressure

(IMEP), while controlling the injected mass of fuel

(IMF) and the ignition advance. Figure 5 shows the

curves of these three variables. The Variable Agent of

the IMEP is therefore associated with an Optimization

Criterion Agent, whose critical level is also shown in

figure 5.

At the beginning of the test, ESCHER does not

know anything about the controlled process (there is

no Context Agent), it will learn from its actions and

observations. At first, ESCHER decreases both of the

controlled inputs. It is a mistake, as it leads to a rise

of the critical level (since the IMEP decreases). ES-

CHER reacts by increasing the IMF at first, and the

ignition advance a moment later, before finally stabi-

lizing the values when the IMEP stops increasing. At

the end of the test, the IMEP has been maximized.

During the 30 lifecycles of the test, ESCHER cre-

ated 19 Context Agents (10 were created by the IMF

Controller Agent and 9 by the Ignition Advance Con-

troller Agent). The test lasted a total of 90 seconds.

6.3 Torque and Fuel Consumption

Optimization with Pollution

Thresholds

In this test, ESCHER controls the IMEP, the ignition

advance, and the start of injection (SOI). The goal is

to maximize the IMEP, while minimizing the specific

Figure 5: Torque Optimization with Injected Mass of Fuel
and Ignition Advance

fuel consumption (SFC) and observing a threshold on

hydrocarbons (HC, below 500ppm) carbon monoxide

(CO, below 3%). The operating point for this test is

2500rpm and 750mbar in the inlet manifold. Figure

6 shows the manipulated parameters and the critical

levels, while figure 7 shows the outputs of the engine.

At the beginning of the test, we see on figure 6 that

the highest critical level is the one associated with the

fuel consumption. Hence, ESCHER tries to reduce

this one in priority. At first, ESCHER increases the

IMF and the ignition advance, and decreases the SOI.

This effectively reduces the SFC (and also increases

the IMEP). But, as a side effect, there is a rise of gas

emissions, as CO eventually crosses its threshold . At

this point (around the lifecycle 20), its criterion be-

comes the most critical. The goal for ESCHER is

then to lower it, without the other critical levels be-

coming higher. After several oscillations, ESCHER

Figure 6: Torque and Fuel Consumption Optimization with
Pollution Thresholds (inputs and critical levels)

Figure 7: Torque and Fuel Consumption Optimization with
Pollution Thresholds (outputs)

finds a value for each of the input parameters (IMF,

ignition advance, and SOI) that maximizes the IMEP,

minimizes the SFC, and keeps the HC and CO under

their threshold.

During this test, ESCHER had to wait 20 seconds

between each cycle for the gaz analyzer. Hence, the

123 cycles took 41 minutes. This is about twice faster

than the classical optimization method.

7 CONCLUSION

In this paper, we presented an Adaptive Multi-

Agent System, called ESCHER, which controls heat

engines without a complete understanding of the

controlled engine and basing its behavior on self-

organizing agents. All the controller needs to know is

how the engine behaves. In other words ESCHER is

of black-box type: it only perceives the process inputs

and outputs, but not its internal mechanisms. This

property should make ESCHER generic enough to be

easily applied to all kind of systems. Systems using

similar types of agents have been applied to the con-

trol of the temperature of a bioprocess (Videau et al.,

2011), and are currently being tested in the contexts

of ambiant systems (Guivarch et al., 2012) and intelli-

gent building energy management (Gatto et al., 2013).

The basic principle of our controller is the follow-

ing: the multi-agent system memorizes the state of the

process inputs/outputs when an action is applied and

observes the reactions of the process. It will use this

information to decide whether this action was good or

not in regard of the user-defined desired engine state.

This means that the quality of the control improves

over time: at the begining the controller knows noth-

ing about the process, but it continually learns from

its actions and manages to control the engine. Since

the learning is parallel to the control, ESCHER con-

tinuously self-adapts to the process.

This learning ability is used in the context of au-

tomatic ECU calibration, as finding the right control

actions on the engine is equivalent to finding the opti-

mal ECU parameters. Our tool allows you to find the

optimal settings in a relatively short period of time

without putting a lot of means in practice and without

detailed knowledge of the system.

Indeed, ESCHER does not need any prerequisite

knowledge other than the intentions of the user (i.e.

some criticality functions). It is also able to satisfy

multi-criteria constraints on multiple inputs and out-

puts. Each time it performs an action, it learns from

it, improving its control and adapting itself to the evo-

lution of the process. Moreover, the independence

between Controller Agents gives ESCHER a certain

modularity. Each Controller Agent (and its related

Context Agents) is a stand-alone MAS that can be

plugged on a process input. Regardless on what is

controlling the other inputs, it will be able to synchro-

nize its actions to perform a correct control without

any knowledge about the rest of the controlling sys-

tem.

The advantage of this approach (not having to per-

form a full scan of the parameters to find an optimum)

can also be a downside, as the tool does not build a

predictive model from an extensive base of acquired

data that could be used later. Hence, our future work

should focus on the extraction of information from the

Context Agents for human users.

ACKNOWLEDGEMENTS

This work is part of the ORIANNE project,

funded by the FUI (french acronym for single inter-

ministerial fund). It is lead by Aboard Engineering,

and involves FH Electronics, IRIT, IRSEEM, CER-

TAM, CEVAA, and Renault.

Figure 8: ORIANNE Logo

REFERENCES

Astrom, K. J. and Hagglund, T. (1995). PID Controllers:
Theory, Design, and Tuning. Instrument Society of
America, Research Triangle Park, NC, second edition.

Colosimo, B. M. and Del Castillo, E., editors (2007).
Bayesian Process Monitoring, Control and Optimiza-
tion. Taylor and Francis, Hoboken, NJ.

Dabo, M., Langlois, N., Respondek, W., and Chafouk, H.
(2008). NCGPC with dynamic extension applied to a
Turbocharged Diesel Engine. In Proceedings of the
International Federation of Automatic Control 17th
World Congress, pages 12065–12070.

Feldbaum, A. A. (1961). Dual control theory, I-IV. Au-
tomation Remote Control, 21-22.

Gatto, F., Gleizes, M.-P., and Elicegui, L. (2013). Saver:
Self-adaptive Energy Saver. In European Workshop
on Multi-Agent Systems (EUMAS), Toulouse, France.

Georgé, J.-P., Gleizes, M.-P., and Camps, V. (2011). Co-
operation. In Di Marzo Serugendo, G., Gleizes,
M.-P., and Karageogos, A., editors, Self-organising
Software, Natural Computing Series, pages 7–32.
Springer Berlin Heidelberg.

Guivarch, V., Camps, V., and Péninou, A. (2012). Context
awareness and adaptation in ambient systems by an
adaptive multi-agent approach. In International Joint
Conference on Ambient Intelligence, Italy.

Hagan, M. T., Demuth, H. B., and De Jesus, O. (2002). An
introduction to the use of neural networks in control
systems. International Journal of Robust and Nonlin-
ear Control, 12(11):959–985.

Jankovic, M. and Kolmanovsky, I. (2000). Constructive lya-
punov control design for turbocharged diesel engines.
IEEE Transactions on Control Systems Technology,
8(2):288 –299.

Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy
logic controller. IEEE Transactions on Systems, Man
and Cybernetics, 20(2):404–418.

Lemouzy, S., Camps, V., and Glize, P. (2011). Principles
and properties of a MAS learning algorithm: A com-
parison with standard learning algorithms applied to
implicit feedback assessment. In 2011 International
Conference on Web Intelligence and Intelligent Agent
Technology, volume 2, pages 228–235.

Malikopoulos, A. A., Assanis, D. N., and Papalambros, P. Y.
(2009). Real-time self-learning optimization of diesel
engine calibration. Journal of Engineering for Gas
Turbines & Power, 131(2):22803.

Nikolaou, M. (2001). Model predictive controllers: A criti-
cal synthesis of theory and industrial needs. Advances
in Chemical Engineering, 26:131–204.

Noël, V. (2012). Component-based Software Architectures
and Multi-Agent Systems: Mutual and Complemen-
tary Contributions for Supporting Software Develop-
ment. Phd thesis, Universit de Toulouse, Toulouse,
France.

Stengel, R. F. (1991). Intelligent failure-tolerant control.
IEEE Control Systems, 11(4):14–23.

Videau, S., Bernon, C., Glize, P., and Uribelarrea, J.-L.
(2011). Controlling Bioprocesses using Cooperative
Self-organizing Agents. In Demazeau, Y., editor,
PAAMS, volume 88 of Advances in Intelligent and Soft
Computing, pages 141–150. Springer-Verlag.

