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In this paper we propose a new methodology for evaluating the relative power of agents in a strategic situation formally represented by a boolean game. The methodology consists in extracting a power ranking from the dependence relation induced by a certain boolean game. Our approach is axiomatic. We provide a number of desirable postulates that a notion of dependence is expected to satisfy and we compare competing notions of dependence, included a notion based on the concept of veto player, with respect to them. Similarly, we provide a set of postulates for power functions (i.e., the family of functions mapping dependence graphs to power rankings) and evaluate some new methods as well as existing ones (e.g., Pagerank) with respect to this set of postulates.

INTRODUCTION

A game-based power evaluation consists in assessing the social power of the agents interacting in a given situation, formally represented by a game. It can be represented mathematically as a function that takes a game as an input and returns a ranking of the agents as output, reflecting the relative power of the agents in the game. Such an evaluation is useful, because the agents typically need to choose the peers to interact with. The agents can also represent potential partners for external users, who then will find this evaluation useful as well. Moreover, information about the relative power of the agents in a society may be useful for policy makers in order to reduce inequalities and to promote fairness. Examples of applications for game-based power evaluations include web services, recommender systems and, more generally, the design and analysis of social procedures (e.g., for resource allocation, task distribution, etc.).

The goal of the present paper is to construct and analyze game-based power evaluations whose notion of power is based on the concept of social dependence. The idea that social power and social dependence are tightly related concepts is not new, as it has been widely explored in social sciences and philosophy [START_REF] Castelfranchi | The micro-macro constitution of power[END_REF][START_REF] Goldman | Toward a theory of social power[END_REF] as well as in the area of multi-agent systems [START_REF] Sichman | A social reasoning mechanism based on dependence networks[END_REF][START_REF] Boella | From social power to social importance[END_REF]. According to [START_REF] Castelfranchi | The micro-macro constitution of power[END_REF] for instance, the power of an agent i over another agent j is based on the fact that j depends on i for the achievement of her goals. For example, Bill (who is the only mechanic in town), has power over Mary because Mary depends on Bill for achieving the goal of having her car repaired.

The input of the game-based power evaluations studied in this paper are boolean games [START_REF] Harrenstein | Boolean games[END_REF], in which each player wants to achieve a certain goal represented by a propositional formula. The interesting aspect of boolean games is that they correspond to the specific subclass of normal-form games in which agents have binary preferences (i.e., payoffs can be either 0 or 1). Since the task of assessing the relative power of the agents in a boolean game is rather complex, the strategy we follow consists in decomposing it into two sub-tasks: construct and analyze dependence functions (that determine dependence relations in a boolean game) first, and then power functions (that evaluate power from dependencies). 1Our approach is axiomatic. We first establish postulates (or axioms) that dependence and power functions may satisfy. Such postulates can be seen as criteria useful to judge and compare different methods. Then, we analyze existing functions (e.g., Pagerank [START_REF] Page | The PageRank Citation Ranking: Bringing Order to the Web[END_REF] and van den Brink & Gilles's power function [START_REF] Van Den | Measuring domination in directed graphs[END_REF]) on the basis of these criteria, and show that they fail to satisfy interesting postulates. So, we build new dependence and power functions and show that they satisfy such postulates. Finally, we show that game-based power evaluations can be obtained by combining dependence and power functions. The crucial point is that such combinations are synergic, in the sense that the combination of our two "local" methods (dependence functions and power functions) produces a "global" method (game-based power evaluation) that satisfies interesting properties.

The paper is organized as follows. Section 2 focuses on the problem of extracting a dependence relation from a boolean game by means of a dependence function. Section 3 is devoted to the axiomatic analysis of power functions. First some existing methods are critically investigated, then four new ones are proposed. Section 4 bridges the gap between the first part and the second part of the paper. By means of the results obtained in Sections 2 and 3, we briefly show how certain structural properties of the boolean game determine specific properties of the power ranking of the agents.

DETERMINING DEPENDENCIES

We start by introducing the concept of boolean game as well as some related notions such as the concept of capability (Section 2.1). Then, we introduce the general concept of dependence function and propose a list of intuitively reasonable postulates that any dependence function is expected to satisfy (Section 2.2). Section 2.3 provides a critical discussion of an existing dependence function proposed by [START_REF] Bonzon | Dependencies between players in boolean games[END_REF]: we show that it violates all postulates given in Section 2.2. In Section 2.4 a new dependence function based on the concept of veto player is proposed. We show that this dependence function satisfies all postulates of Section 2.2. Finally, in Section 2.5 we explore the relationship between this notion of dependence based on veto player and the concept of Nash equilibrium.

Boolean games and related notions

First of all, we shall introduce the concept of boolean game that has been proposed for the first time by [START_REF] Harrenstein | Boolean games[END_REF] and further developed by [START_REF] Dunne | Cooperative boolean games[END_REF]. Definition 1. A boolean game is a quadruple B = A, Φ, {γa}a∈A, {Φa}a∈A , where:

• A is a non-empty finite set of agents (or players);

• Φ is a non-empty finite set of propositional atoms;

• γa is a formula of the language LΦ (i.e., the propositional language constructed on Φ) denoting the goal of agent a;

• Φa ⊆ Φ is the set of all atoms controlled by agent a. As standard [START_REF] Van Der Hoek | On the logic of cooperation and propositional control[END_REF], we assume that for all a, b ∈ A, Φa∩Φ b = ∅ and that a∈A Φa = Φ (i.e., the controlled atoms form a partitition of the set Φ). Moreover, we assume that each γa is a satisfiable formula of LΦ.

The following definition introduces the notion of strategy in a boolean game. Definition 2. Given a boolean game B and a coalition C ⊆ A, a strategy of coalition C is a function sC : a∈C Φa -→ {⊤, ⊥} which consists in setting the truth value of each atom controlled by some agent in C either to ⊤ (true) or ⊥ (false). The set of all strategies of coalition C is denoted by SC .

For notational convenience, strategies of the grand coalition A are denoted by s, s ′ , . . . instead of sA, s ′ A , . . . and strategies for single-agent coalitions are denoted by sa, s b , . . . instead of s {a} , s {b} , . . . Moreover, we write S instead of SA and Sa instead S {a} .

In addition, we write s |= ϕ to mean that the valuation defined by the strategy s satisfies formula ϕ ∈ LΦ. We write |= ϕ to mean that the propositional formula ϕ is valid in propositional logic, i.e., we have s |= ϕ for all valuations s.

Finally, given a strategy sC of the coalition C and a strategy s ′ A\C of the coalition A \ C, we let sC • s ′ A\C denote the strategy in S such that:

• (i) for all p ∈ a∈C Φa, sC • s ′ A\C (p) = sC (p); • (ii) for all p ∈ a∈A\C Φa, sC • s ′ A\C (p) = s ′ A\C (p).
It is worth noting that, since each formula γa is satisfiable in propositional logic, all agents together have the capability of making an agent satisfied. That is, for every goal formula γa, there exists s ∈ S such that s |= γa.

As a last concept for this section, we introduce the wellknown concept of capability that is studied in the context of Coalition Logic (CL) [START_REF] Pauly | A modal logic for coalitional power in games[END_REF] and Coalition Logic of Propositional Control (CL-PC) [START_REF] Van Der Hoek | On the logic of cooperation and propositional control[END_REF]. This is also called α-ability. Definition 3. Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game and let ϕ ∈ LΦ. We say that coalition C has the capability of making formula ϕ true regardless of what the agents outside C do (or, C is an effective coalition for ϕ for short), denoted by CanB(C, ϕ), iff there exists sC ∈ SC such that for all s A\C ∈ S A\C , sC • s A\C |= ϕ.

The following definition introduces the notion of minimal effective coalition for a given outcome ϕ that will be used in next section for our axiomatic analysis of dependence functions.

Definition 4. Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game and let ϕ ∈ LΦ. We say that coalition C is a minimal coalition having the capability of of making formula ϕ true regardless of what the agents outside C do (or, C is a minimal effective coalition for ϕ for short), denoted by MinCanB(C, ϕ), iff CanB(C, ϕ) holds and there is no B ⊂ C such that CanB(B, ϕ) holds.

Postulates for dependence functions

A dependence function is a function that takes a boolean game as an input and transforms it into a dependence relation between the agents in the game. In particular: Intuitively, aRb means that a depends on b, or equivalently that b has power over a.

Here we adopt an axiomatic approach to the analysis of dependence functions. Specifically, we propose four intuitively reasonable postulates for this family of functions. Our first postulate says the following: if agent a can achieve her goal γa regardless of what the other agents do then a does not depend on anybody, except perhaps on herself. More formally: Postulate 1. A dependence function ∆ satisfies sensitivity to agent capability (Cap) iff for every boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A and ∀a, b ∈ A, the following holds: if CanB({a}, γa) and a = b then a, b ∈ ∆(B).

Our second postulate says the following: if b does not belong to any minimal effective coalition that can make a's goal satisfied then a does not depend on b. In order to formally state our third postulate we need to define first the following notion of agent dominance. The idea is that agent a dominates agent b with respect to agent c if and only if, for every minimal effective coalition that can make c's goal satisfied, if b belongs to this coalition then a belongs to it as well. Finally, our last postulate for dependence function says that if agent b's goal implies agent a's goal (i.e., b's goal is achieved only if a's goal is also achieved), then all agents who have power over a also have power over b. As a side note, we observe that transitivity does not seem to be a reasonable postulate for a notion of dependence based on boolean games. This is the reason why we do not consider it here. A counterexample to transitivity for dependence is the following. Suppose Mary depends on Bill, since Bill is the only mechanic in town and Mary has the goal of having her car repaired. Moreover, suppose Bill depends on Alice, since Alice is the only baker in town and Bill wants to buy bread. This does not imply that Mary depends on Alice, as it might be the case that Mary does not want to buy bread.

An existing dependence function

Bonzon et al. [START_REF] Bonzon | Dependencies between players in boolean games[END_REF] have introduced a dependence function based on the concept of relevance. Let us call it relevancebased function and denote it by Rbf. This dependence function is also used by [START_REF] Sauro | Dependency in cooperative boolean games[END_REF]. A propositional atom p is said to be relevant for a boolean formula ϕ if and only if there is no equivalent boolean formula ψ where p does not occur. Given a boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A , let RV B(a) be the set of all variables p ∈ Φ that are relevant for a's goal γa and let RAB(a) be the set of all agents b ∈ A such that b controls at least one variable that is relevant for a (i.e., there is p ∈ Φ b such that p ∈ RV B(a)).

According to Bonzon et al.: Proof (Sketch). We only prove that Rbf violates (Cap) by means of the following counterexample. Consider any boolean game B in which Φ1 = {p}, Φ2 = {q} and γ1 = p ∨ q. Clearly, 2 ∈ RAB(1). Thus, 1, 2 ∈ Rbf(B). But, CanB({1}, γ1).

In the next section we consider a new dependence function, called veto-based dependence function, which is stronger than Bonzon et al.'s relevance-based dependence function and which satisfies the four postulates given in Section 2.2.

A new dependence function

The veto-based dependence function, denoted by Vbf, is based on the concept of veto player as defined by [START_REF] Wooldridge | On the computational complexity of qualitative coalitional games[END_REF] and, more generally, in the context of cooperative game theory [START_REF] Osborne | A course in game theory[END_REF].

According to Vbf, agent a depends on agent b, if the intervention of b is necessary to ensure that a will achieve her goal γa. Specifically, a depends on b if and only if the coalition A \ {b} is not capable of making a's goal The following theorem highlights that the four postulates of Section 2.2 are all sound with respect to Vbf.

Theorem 2. Vbf satisfies (Cap), (AP), (Dom), and (Imp).

Proof (Sketch). We only provide the sketch of proof for (AP) and (Dom) as an example.

Suppose that a, b ∈ Vbf(B). By the definitions of Vbf and of the notion of capability, we have that:

(A) a, b ∈ Vbf(B) iff, for all C ⊆ A, if CanB(C, γa) then b ∈ C.
Furthermore, the following property holds for all a ∈ A: 

(C) if (for all C ⊆ A, if MinCanB(C, γc) then a ∈ C) then (for all C ⊆ A, if CanB(C, γc) then a ∈ C).
Hence, we have that for all C ⊆ A, if CanB(C, γc) then a ∈ C. By the previous item (A), this is equivalent to c, a ∈ Vbf(B). This shows that Vbf satisfies (Dom).

Dependencies and Nash equilibria

In this final section we explore the connection between Vbf and Nash equilibria.

Clearly boolean games correspond to a specific subclass of games in normal form, namely games in normal form with binary utility functions ua : S -→ {0, 1} defined by: (i) ua(s) = 0 if s |= ¬γa, and (ii) ua(s) = 1 if s |= γa. Purestrategy Nash equilibria and strict Nash equilibria are defined exactly as in standard game theory. Definition 9. Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game. Moreover, let sa ∈ Sa, s A\{a} ∈ S A\{a} and s = sa • s A\{a} . Strategy s ∈ S is a Nash equilibrium iff, for all a ∈ A and for all s ′ a ∈ Sa, ua(sa • s A\{a} ) ≥ ua(s ′ a • s A\{a} ). Strategy s ∈ S is a strict Nash equilibrium iff, for all a ∈ A and for all s ′ a ∈ Sa \ {sa}, ua(sa

• s A\{a} ) > ua(s ′ a • s A\{a} ).
The following definition captures the concept of k-resilient Nash equilibrium by Abraham et al. [START_REF] Abraham | Lower bounds on implementing robust and resilient mediators[END_REF]: 2 a strategy profile s is said to be a k-resilient Nash equilibrium if no coalition of size at most k, taking the actions of its complements as given, can cooperatively deviate in a way that benefits some of its members. We also introduce the new concept of strict k-resilient Nash equilibrium. 

′ C ∈ SC , ua(sC • s A\C ) ≥ ua(s ′ C • s A\C ) for all a ∈ C. Strategy s ∈ S is a strict k-resilient Nash equilibrium iff for all C ⊆ A with |C| ≤ k and for all s ′ C ∈ SC \ {sC }, ua(sC • s A\C ) > ua(s ′ C • s A\C ) for all a ∈ C.
Note that strategy s is a 1-resilient Nash equilibrium if and only if it is a Nash equilibrium, and it is a strict 1resilient Nash equilibrium if and only if it is a strict Nash equilibrium. Furthermore, if |A| = k then strategy s ∈ S is a strict k-resilient Nash equilibrium if and only if s is the unique strategy profile that makes all agents happy (i.e., s |= γa for all a ∈ A and, s ′ |= ¬γa for all s ′ = s and for all a ∈ A). This implies that, for every boolean game B with k players, there is at most one strict k-resilient Nash equilibrium.

Our first result concerning the link between Vbf and Nash equilibria is that the dependence relation extracted by means of Vbf from a k-player boolean game with one strict kresilient Nash equilibrium and in which each agent controls at least one propositional atom is complete. More formally: Theorem 3. Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game with k players. If B has one strict k-resilient Nash equilibrium and Φa = ∅ for all a ∈ A, then Vbf(B) = A × A.

Proof (Sketch). As observed above, if |A| = k and s is a strict k-resilient Nash equilibrium then, s is the only strategy profile that makes all agents happy, while all other strategy profiles s ′ make all agents unhappy. Therefore, for all a ∈ A, a can achieve his goal γa only if every agent b in A chooses the component s b in s. Hence, for all a ∈ A, a depends on all other agents. The condition Φa = ∅ for all a ∈ A guarantees that every agent b in A has more than one choice available. Therefore, b can indeed deviate from the strategy profile s by playing something different from s b and making all agents unhappy.

A more interesting result concerns the family of two-player boolean games with more than one strict Nash equilibrium. A typical example of games belonging to this family are pure coordination games [START_REF] Schelling | The strategy of conflict[END_REF] in which the two players in the 2 Abraham et al. uses the term 'strongly k-resilient Nash equilibrium' but, in order simplify exposition, we simply call it 'k-resilient Nash equilibrium'. game achieve their common goal only if they together play one of the many strict Nash equilibria. We can prove that every two-player boolean game with more than one strict Nash equilibrium induces a complete dependence relation. Intuitively, this means that in a two-player game with more than one strict Nash equilibrium (e.g., a two-player pure coordination game) the agents depend on each other. Proof (Sketch). We give the general idea of the proof with the aid of Figure 1. Let B be any boolean game such that A = {a, b}. Moreover, let SN B be the set of strict Nash equilibria in B with |SN B| > 1. The first thing to observe is that two different strict Nash equilibria in SN B necessarily differ in all their components: for all s, s ′ ∈ SN B, if s = s ′ then sa = s ′ a for all a ∈ A. From this fact, one can prove that every row in the boolean game matrix contains at least one 0 for the row player (i.e., player a) and that every column in the boolean game matrix contains at least one 0 for the column player (i.e., player b). This is clearly shown by Figure 1 Note that Theorem 4 cannot be generalized to one-player games. Indeed, as observed above, if a game has k players, then it has at most one strict k-resilient Nash equilibrium. Thus, a one-player game has at most one strict Nash equilibrium.

The following theorem provides a generalization of the preceding Theorem 4 to boolean games with k players that exploits the concept of strict k-resilient Nash equilibrium.

Theorem 5. Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game with k players. If B has more than one strict (k -1)-resilient Nash equilibrium, then Vbf(B) = A × A.

EVALUATING POWER

We turn to the second part of the paper, that is, the construction and analysis of power functions. The input of such a function is a dependence graph. Note that a ≺ b can equivalently be read as a takes precedence over b with respect to power, or a is ranked above b with respect to power. So, it is natural to put the more powerful agent on the left-hand side of the ≺ symbol. Note also that a b may be written as a, b ∈ , if it is more convenient. Similarly, a ≺ b may be written as b, a ∈ .

We are ready to define the main concept of Section 3.

Definition 13. A power function Π transforms any dependence graph D = A, R into a ranking on A.

Note that such functions have been efficiently investigated in particular in [START_REF] Altman | Axiomatic Foundations for Ranking Systems[END_REF], where it is essentially shown that no function can satisfy certain postulates all together.

Postulates for power functions

In the present section, we establish postulates (or axioms) for power functions. The first group of axioms captures the notion of transitivity studied in e.g. [START_REF] Altman | Axiomatic Foundations for Ranking Systems[END_REF]. The principle of transitivity consists of two ideas: more dependents means more power; more powerful dependents means more power as well.

As a preliminary, we need a notation for the dependents of an agent a. Throughout Section 3, when the context is clear, we may omit certain subscripts, e.g., we may write Dep(a) for short.

Next, we need to construct 3 relations between groups of agents from a relation between agents. More precisely, A, B ∈ G1( ) iff the agents of A are at least as numerous and powerful as those of B. The other relations G2 and G3 correspond to the same idea plus an advantage for A in cardinality or quality, respectively. Definition 15. Let be a ranking on a set A. We denote by G1A( ), G2A( ), and G3A( ) the binary relations on the power set of A such that ∀ A, B ⊆ A:

•

A, B ∈ G1( ) iff ∃ f : B inj -→ A (i.e., there exists an injective function f from B to A) s.t. ∀ b ∈ B, f (b) b; • A, B ∈ G2( ) iff |B| < |A| and ∃ f : B inj -→ A s.t. ∀ b ∈ B, f (b) b; • A, B ∈ G3( ) iff ∃ f : B inj -→ A s.t. ∀ b ∈ B, f (b) b and ∃ b ∈ B, f (b) ≺ b.
We are ready to define the axioms of transitivity. We turn to the second group of axioms, which captures the notion of transitivity with dilution studied in e.g. [START_REF] Altman | Axiomatic Foundations for Ranking Systems[END_REF]. By dilution, we mean that the power a gives to certain agents has to be evenly shared between them.

Again, we need preliminaries. First, we need a notation for the agents having power over a: Definition 16. Let D = A, R be a dependence graph and a ∈ A. We denote by PowD(a) the set of all agents having power over a in D, i.e., PowD(a) = {b ∈ A | aRb}.

Next, we need four relations between groups of agents. Intuitively, A, B ∈ GD1( ) iff the agents of A are at least as numerous and powerful as those of B and they do not depend on more agents, i.e., there is no more power dilution. The other relations GD2, GD3, and GD4 capture the same idea plus an advantage for A in cardinality, quality, or dilution, respectively. Definition 17. Let D = A, R be a dependence graph and a ranking on A. We denote by GD1D( ), GD2D( ), GD3D( ), and GD4D( ) the binary relations on the power set of A such that ∀ A, B ⊆ A:

• We can define the axioms of transitivity with dilution. Finally, we introduce a last group of axioms capturing the notion of transitivity with redundancy. Intuitively, there is redundancy in the power of an agent a iff a depends on herself (possibly indirectly) or two direct dependents of a overlap, i.e., at least one depends on the other (possibly indirectly) or they have (possibly indirect) dependents in common. As far as we know, this group of axioms is new.

First, we need to define the extended dependents of a, i.e., the agents depending, directly or indirectly, on a. 

Definition 5 .

 5 A dependence function is a function ∆ transforming every boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A into a binary relation R on A, called a dependence relation.

Postulate 2 .

 2 A dependence function ∆ satisfies Absence of power (AP) iff for every boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A and ∀a, b ∈ A, the following holds: if there is no C ⊆ A such that MinCanB(C, γa) and b ∈ C then a, b ∈ ∆(B).

Definition 6 .

 6 Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game and let a, b, c ∈ A. We say that a dominates b with respect to c in B, denoted by DomB(a, b, c), iff ∀C ⊆ A, if MinCanB(C, γc) and b ∈ C then a ∈ C. Our third postulate says that if agent a dominates agent b with respect to agent c then b has power over c only if b has power over c. Postulate 3. A dependence function ∆ satisfies Agent Dominance (Dom) iff for every boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A and ∀a, b, c ∈ A the following holds: if DomB(a, b, c) and c, b ∈ ∆(B) then c, a ∈ ∆(B).

Postulate 4 .

 4 A dependence function ∆ satisfies Implication (Imp) iff for every boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A and ∀a, b, c ∈ A, the following holds: if |= γ b → γa and a, c ∈ ∆(B) then b, c ∈ ∆(B).

Definition 7 . 2 : 1 .

 721 Agent a has a relevance-based dependence on agent b in the boolean game B, i.e., a, b ∈ Rbf(B), if and only if b ∈ RAB(a).As the following theorem highlights Rbf does not satisfy any postulate given in the previous Section 2.Theorem Rbf violates (Cap), (AP), (Dom) and (Imp).

  true, independent of what agent b chooses. More formally: Definition 8. Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game. We say that agent a has a veto-based dependence on agent b in B, or simply, agent a depends on agent b in B, i.e., a, b ∈ Vbf(B), iff there is no s A\{b} ∈ S A\{b} such that for all s b ∈ S b , s A\{b} • s b |= γa.

(

  B) there exists C ⊆ A such that MinCanB(C, γa). Thus, from the previous items (A) and (B), it follows that there exists C ⊆ A such that MinCanB(C, γa) and b ∈ C. This shows that Vbf satisfies (AP). Let us prove that Vbf satisfies (Dom). Suppose that DomB(a, b, c) and c, b ∈ Vbf(B). As shown above, we have c, b ∈ Vbf(B) iff for all C ⊆ A, if CanB(C, γc) then b ∈ C. Thus, for all C ⊆ A, if CanB(C, γc) then b ∈ C. Thus, since DomB(a, b, c) holds, we have that for all C ⊆ A, if MinCanB(C, γc) then a ∈ C. The following property holds:

Definition 10 .

 10 Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a boolean game. Strategy s ∈ S is a k-resilient Nash equilibrium iff for all C ⊆ A with |C| ≤ k and for all s

Figure 1 :

 1 Figure 1: Boolean game with two strict Nash equilibria. Symbol * means that the value is irrelevant.

Theorem 4 .

 4 Let B = A, Φ, {γa}a∈A, {Φa}a∈A be a twoplayer boolean game. If B has more than one strict Nash equilibrium, then Vbf(B) = A × A.

1 a • s 1 b and s 3 a • s 3 b

 133 in which a boolean game with two strict Nash equilibria s is represented. Hence, it follows that Vbf(B) = {a, b} × {a, b}, since there is no sa ∈ Sa such that for all s b ∈ S b , sa • s b |= γa, and there is no s b ∈ S b such that for all sa ∈ Sa, s b • sa |= γ b .

Definition 11 .

 11 A dependence graph is an ordered pair D = A, R , where A is a finite set of agents and R a binary relation on A, called a dependence relation. The output of a power function is a ranking of the agents. Definition 12. A ranking on a set of agents A is a total and transitive binary relation on A. Intuitively, a b means that a is at least as powerful as b. So, a ≺ b (i.e., b a) means that a is strictly more powerful than b.

Definition 14 .

 14 Let D = A, R be a dependence graph and a ∈ A. We denote by Dep D (a) the set of all dependents of a in D, i.e., Dep D (a) = {b ∈ A | bRa}.

Postulate 5 .

 5 A power function Π satisfies the first, second, or third form of transitivity, denoted by (T1), (T2), or (T3), respectively, iff for every dependence graph D = A, R , ∀ a, b ∈ A: (T1) if Dep(a), Dep(b) ∈ G1[Π(D)], then a, b ∈ Π(D); (T2) if Dep(a), Dep(b) ∈ G2[Π(D)], then b, a ∈ Π(D); (T3) if Dep(a), Dep(b) ∈ G3[Π(D)], then b, a ∈ Π(D).

  A, B ∈ GD1( ) iff ∃ f : B inj -→ A s.t. ∀ b ∈ B, f (b) b and ∀ b ∈ B, |Pow[f (b)]| ≤ |Pow(b)|; • A, B ∈ GD2( ) iff |B| < |A| and ∃ f : B inj -→ A s.t. ∀ b ∈ B, f (b) b and ∀ b ∈ B, |Pow[f (b)]| ≤ |Pow(b)|; • A, B ∈ GD3( ) iff ∃ f : B inj -→ A s.t. ∀ b ∈ B, f (b) b, ∀ b ∈ B, |Pow[f (b)]| ≤ |Pow(b)|, and ∃ b ∈ B, f (b) ≺ b; • A, B ∈ GD4( ) iff ∃ f : B inj -→ A s.t. ∀ b ∈ B, f (b) b, ∀ b ∈ B, |Pow[f (b)]| ≤ |Pow(b)|,and ∃ b ∈ B, |Pow[f (b)]| < |Pow(b)|.

Postulate 6 .

 6 A power function Π satisfies the first, second, third, or fourth form of transitivity with dilution, denoted by (TD1), (TD2), (TD3), or (TD4), respectively, iff for every dependence graph D = A, R , ∀ a, b ∈ A: (TD1) if Dep(a), Dep(b) ∈ GD1[Π(D)], then a, b ∈ Π(D); (TD2) if Dep(a), Dep(b) ∈ GD2[Π(D)], then b, a ∈ Π(D); (TD3) if Dep(a), Dep(b) ∈ GD3[Π(D)], then b, a ∈ Π(D); (TD4) if Dep(a), Dep(b) ∈ GD4[Π(D)], then b, a ∈ Π(D).

Definition 18 .

 18 Let D = A, R be a dependence graph. We denote by ExatD the function on {1, 2, . . .} × A such that ∀ i ∈ {1, 2, . . .}, ∀ a ∈ A, ExatD(i, a) is the set of all extended dependents of a in D at distance i, i.e.,Exat(i, a) = Dep(a) if i = 1; b∈Exat(i-1,a) Dep(b) if 1 < i.We define that ExtD(a) = i∈{1,2,...} ExatD(i, a). Next, we need to formalize the notion of overlapping agents: Definition 19. Let D = A, R be a dependence graph and A ⊆ A. We denote by OvrD(A) the fact that two agents of A overlap in D, i.e., ∃ a, b ∈ A, a = b and (a ∈ Ext(b) or b ∈ Ext(a) or Ext(a) ∩ Ext(b) = ∅).

The issue of extracting a dependence relation from a game has also been investigated by Bonzon et al.[START_REF] Bonzon | Dependencies between players in boolean games[END_REF] for the class of boolean games (see Section

for more on this) and by Grossi & Turrini[START_REF] Grossi | Dependence in games and dependence games[END_REF] for the entire class of normal-form games.

As a last preliminary, we need four relations between groups of agents to represent equivalence or advantage in cardinality, quality, and redundancy. Definition 20. Let D = A, R be a dependence graph and a ranking on A. We denote by GR1D( ), GR2D( ), GR3D( ), and GR4D( ) the binary relations on the power set of A such that ∀ A, B ⊆ A:

• A, B ∈ GR1( ) iff ¬Ovr(A) and ∃ f : We can define the axioms of transitivity with redundancy. We conclude this section with dependencies and incompatibilities between the twelve postulates we have defined. We analyze Sbf through the postulates of Section 3.1.

Three existing power functions

Theorem 8. Sbf satisfies (T1), (T2), (TD1), (TD2), (TR1), (TR2), but violates (T3), (TD3), (TD4), (TR3)-(TR5). Another power function studied in the literature is the van den Brink-Gilles function [START_REF] Van Den | Measuring domination in directed graphs[END_REF], which consists in adding power dilution in Sbf.

Definition 22. The power function BGf transforms any dependence graph

Note that, in Theorem 4.2 of [START_REF] Van Den | Measuring domination in directed graphs[END_REF], it is shown that BGf is equivalent to the well-known Shapley power function, if the "worth" of a coalition is naturally defined as the number of dependents of that coalition. A study of the Shapley function can be found in e.g. [START_REF] Ågotnes | Power in normative systems[END_REF].

We turn to the postulate-based analysis of BGf.

Theorem 9. BGf satisfies (TD1), (TD2), (TD4), but violates (T1)-(T3), (TD3), (TR1)-(TR5).

), (TD3), and (TR3) all imply b, a ∈ BGf(D), impossible. Theorem 7 deals with the remaining postulates.

We turn to Pagerank [START_REF] Page | The PageRank Citation Ranking: Bringing Order to the Web[END_REF], which is an important and more recent power function, as well as one of the main constituents of the Google search engine. In Pagerank, every agent a transfers credit to every agent b. The main idea is the following: if a depends on b, then more credit is transferred. Such an increase is determined by a fixed damping factor δ.

Definition 23. Let D = A, R be a dependence graph, a, b ∈ A, and δ ∈ (0, 1). We denote by Per Dδ (a, b) the percentage of credit transferred from a to b in D with damping δ, i.e.:

Definition 24. Let D = A, R be a dependence graph and let δ ∈ (0, 1). We denote by Cre Dδ the function on

is the quantity of credit a possesses in D in step i with damping δ, i.e.:

Definition 25. Let D = A, R be a dependence graph, a ∈ A, and δ ∈ (0, 1). We denote by Pr Dδ (a) the final quantity of credit a possesses in D with damping δ, i.e.:

Note that a characterisation of the final quantities of credit in Pagerank can be found in e.g. [START_REF] Page | The PageRank Citation Ranking: Bringing Order to the Web[END_REF]. Proof (Sketch). The satisfaction part follows from (Sum) and (Norm). The violation part holds, either because of Theorem 7 or because a disadvantage in dilution can overcome any advantage in cardinality or quality.

To summarize, there are three families of axioms capturing the notions of transitivity, transitivity-with-dilution, and transitivity-with-redundancy, respectively. The function Sbf satisfies an even part of each family, BGf is more oriented to transitivity-with-dilution, and Prf fully satisfies it.

Three new power functions

In the present section, we construct three new power functions fully satisfying transitivity, transitivity-with-dilution, and transitivity-with-redundancy, respectively. Those three families of axioms have been defined in Section 3.1.

Our first power function is based on the three following ideas: the agents have accounts on which points can be added or removed; the more the dependents of a are numerous and have points on their accounts, the more a has points as well; the more rapidly an agent gets a great number of points, the higher she is ranked.

Definition 27. Let D = A, R be a dependence graph. We denote by AcD the function on {0, 1, . . .} × A such that ∀ i ∈ {0, 1, . . .}, ∀ a ∈ A, AcD(i, a) is the account of a in D in the step i, i.e.: We are ready to axiomatically analyze Abf.

Theorem 12. Abf satisfies (T1)-(T3), (TD1)-(TD3), (TR1)-(TR3), but violates (TD4), (TR4), (TR5).

Proof (Sketch). We begin with (T1). Case A: the dependents of b have the same accounts as the corresponding dependents of a, in any step. Then, the account of a is at least as big as that of b, in any step. Case B: on the contrary, there is a difference, in some step. Let i be the smallest step where there is a difference. Then, the account of a is greater than that of b in step i + 1 (and at least as big below i + 1). The axiom (T3) holds, because of the same proof, except that Case A is impossible. Concerning (T2), it follows from the top priority of Step 0. The other axioms are satisfied or violated because of Theorems 6 and 7.

Our second power function consists in introducing the notion of power dilution in Abf.

Definition 29. Let D = A, R be a dependence graph. We denote by DacD the function on {0, 1, . . .} × A such that ∀ i ∈ {0, 1, . . .}, ∀ a ∈ A, DacD(i, a) is the dilution-based account of a in D in the step i, i.e.:

Definition 30. The power function Daf transforms any dependence graph D = A, R into the ranking s.t. ∀ a, b ∈ A, a, b ∈ Daf(D) iff one of the two following cases holds:

We axiomatically analyze Daf. 

COMBINING FUNCTIONS

As emphasized in the introduction, dependence functions and power functions can be combined to produce gamebased power evaluations that satisfy interesting properties.

Definition 32. A game-based power evaluation is a function Γ transforming any boolean game B = A, Φ, {γa}a∈A, {Φa}a∈A into a ranking on A.

A first postulate for game-based power evaluation is the following: if a dominates b with respect to every agent in the game, then a should be at least as powerful as b. More formally: Postulate 8. A game-based power evaluation Γ satisfies Universal Dominance (UDom) iff, for every boolean game

The second postulate says the following: if an agent a does not appear in any minimal effective coalition for the goal of a player in the game, then each agent in the game is at least as powerful as a. More formally: 

CONCLUSION

Let's take stock. The main contributions of the paper are the following:

• a postulate-based analysis of the new dependence function Vbf and of the existing dependence function Rbf, with special emphasis on the advantages of the former compared to the latter;

• a descriptive analysis of the relationship between Vbf and the concepts of Nash equilibrium and k-resilient Nash equilibrium;

• a postulate-based analysis of three existing power functions Sbf, BGf, and Prf and four new power functions Abf, Daf, Cbf, and Dbf, with special emphasis on the fact that most of our new functions satisfy postulates that are violated by the existing ones.

As future work, we plan to characterize our dependence and power functions, that is, to find enough postulates so that only one method satisfies them all together. We also plan to provide an axiomatic analysis of a weaker notion of dependence, which consists in generalizing the concept of veto to coalitions. The idea is that an agent a depends on another agent b if and only if, there exists a coalition of which b is a member such that its intervention is necessary to ensure that a will achieve her goal.