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Motivation: Spontaneous adverse event reports have a high potential for detecting adverse drug reactions. However, due to their dimension, exploring such databases requires statistical methods. In this context, disproportionality measures are used. However, by projecting the data onto contingency tables, these methods become sensitive to the problem of co-prescriptions and masking effects. Recently, logistic regressions have been used with a Lasso type penalty to perform the detection of associations between drugs and adverse events. However, the choice of the penalty value is open to criticism while it strongly influences the results. Results: In this paper, we propose to use a logistic regression whose sparsity is viewed as a model selection challenge. Since the model space is huge, a Metropolis-Hastings algorithm carries out the model selection by maximizing the BIC criterion. Thus, we avoid the calibration of penalty or threshold. During our application on the French pharmacovigilance database, the proposed method is compared to well established approaches on a reference data set, and obtains better rates of positive and negative controls. However, many signals are not detected by the proposed method. So, we conclude that this method should be used in parallel to existing measures in pharmacovigilance. Availability Code implementing the proposed method is available in R on request from the corresponding author.

INTRODUCTION

To obtain approval, drugs go through many premarket safety tests. However, adverse drug reactions may not be detected during these experiments. Many national or international regulatory agencies have thus introduced pharmacovigilance systems collecting spontaneously reported adverse events. Post-approval drug safety surveillance relies on these reported cases that are suspicious drug induced events. They provide huge binary databases that describe each individual by its drug consumption and its adverse events. Although spontaneous reporting systems suffer from many biases [START_REF] Ahmed | PhViD: an R package for PharmacoVigilance signal Detection. R package version 1[END_REF], they allowed early identification of associations between drugs and adverse events (Szarfman et al., * to whom correspondence should be addressed 2002). In order to assist pharmacovigilance experts in managing such databases, statistical methods aiming to put the light on unexpected associations have been proposed.

The most classical methods are based on disproportionality measures and use data projections onto contingency tables. Among them, routinely used ones are: the Proportional Reporting Ratio [START_REF] Evans | Use of proportional reporting ratios (prrs) for signal generation from spontaneous adverse drug reaction reports[END_REF], the Reporting Odds Ratio [START_REF] Van Puijenbroek | A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions[END_REF], the Bayesian Confidence Propagation Neural Network [START_REF] Bate | A bayesian neural network method for adverse drug reaction signal generation[END_REF] and the Gamma Poisson Shrinkage [START_REF] Dumouchel | Bayesian data mining in large frequency tables, with an application to the fda spontaneous reporting system[END_REF]. All of these methods use a specific statistic which requires a threshold for signalling associations between drugs and adverse events. The disproportionality measure is computed for each drug-event pair in the database and compared to the threshold. Moreover, the data projections onto the contingency tables provide good computational performances. However, these projections involve some weakness against the problems of co-prescriptions and masking effects from highly reported associations for some drugs [START_REF] Caster | Large-scale regression-based pattern discovery: the example of screening the who global drug safety database[END_REF]. None of these methods is defined as the reference approach. Due to the shortage of the gold standard sets, their comparison remains a challenging issue.

The shrinkage logistic regression is an interesting alternative to the methods based on data projections onto contingency tables. In this spirit, [START_REF] Caster | Large-scale regression-based pattern discovery: the example of screening the who global drug safety database[END_REF] propose to model the probability of an adverse event conditionally on the drug consumptions by a sparse logistic regression. The sparsity is imposed by a Lasso type penalty [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. In this context, drug j and adverse event h are claimed to be associated when the coefficient related to drug j in the regression of adverse event h is strictly positive. However, the choice of the penalty value is a crucial and very difficult task. Indeed, the penalty value directly influences the signal detection. [START_REF] Caster | Large-scale regression-based pattern discovery: the example of screening the who global drug safety database[END_REF] propose to use the same penalty for all the regressions. They set the penalty value in order to obtain the same number of signals as a disproportionality method. A more rigorous method, but more computationally demanding, could consist in setting the penalty value by cross-validation where the penalty is determined as to minimize the misclassification error. However, we show during our numerical application that this approach obtains poor results notably due to the database sparsity. Recently, [START_REF] Harpaz | Performance of Pharmacovigilance Signal-Detection Algorithms for the FDA Adverse Event Reporting System[END_REF] have used a full logistic regression in a two-step procedure where the first step consists in empirically selecting a subset of candidate drugs.

In this paper, the signal detection is performed by a model selection step which avoids the use of any threshold or the calibration of the penalty. In this context, a model of a logistic regression determines the coefficients which are not zero. In a Bayesian framework, the best model has the highest posterior probability but this amount is not explicit. It is also useful to approximate its logarithm by the Bayesian Information Criterion [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. Therefore, the signal detection consists in selecting the model which maximizes the BIC criterion. The number of competing models is too huge for applying an exhaustive approach which consists of computing the BIC criterion for each competing model. Therefore, the model selection is carried out by a Metropolis-Hastings algorithm [START_REF] Robert | Monte Carlo statistical methods[END_REF] which performs a random walk through the models of interest. More specifically, the mode of its stationary distribution is located at the model maximizing the BIC criterion. Thus, we were able to develop an efficient algorithm by taking advantage of some features of the data.

In this paper, we compare our model-based procedure to four disproportionality methods and to the Lasso logistic regression. We use the database arisen from the French pharmacovigilance which received roughly 20,000 suspected adverse drug reactions per year from 2000 to 2010. Comparison between pharmacovigilance procedures is a difficult task. In this paper, we focus on the four adverse events described in the Observational Medical Outcomes Partnership (OMOP) reference set [START_REF] Ryan | Defining a reference set to support methodological research in drug safety[END_REF] and on their 145 relating drugs. To our knowledge, it is the only reference set recently formed with positive and negative controls to address the issue of methods assessment in pharmacovigilance.

This article is organised as follows. Section 2 presents the parsimonious version of the logistic regression. Section 3 introduces the Metropolis-Hastings algorithm devoted to the model selection. Section 4 compares the proposed method to four disproportionality methods and to the Lasso logistic regression. Section 5 discusses the limitations and scope of the proposed approach.

PARSIMONIOUS LOGISTIC REGRESSION

Spontaneous reporting database

Spontaneous reporting databases describe n individuals by their consumptions of p drugs and by the presence or absence of d adverse events. For the purpose of logistic regression, in this article, we consider one adverse event at a time that we denote by the binary vector y = (y1, . . . , yn) ∈ B n where B = {0, 1}. More specifically, yi = 1 if individual i suffers from this adverse event and yi = 0 otherwise. In the regression context, the explanatory variables indicate the presence or the absence of drug consumptions. This vector of drug consumptions is denoted by x = (x1, . . . , xn) where xi = (xi1, . . . , xip) ∈ B p indicates the drug consumption of individual i since xij = 1 if individual i takes drug j and xij = 0 otherwise. We consider the n spontaneous reports as i.i.d. observations.

Logistic regression

We assume that the probability of the adverse event given the drug consumption follows a logit regression. The model γ = (γ1, . . . , γp) ∈ B p defines which drug influence the appearance of the adverse event, since γj = 1 if the coefficient of the regression related to drug j is free while γj = 0 if this coefficient is zero. Thus, for model γ,

ln P(yi = 1 | xi, γ, β) 1 -P(yi = 1 | xi, γ, β) = β0 + j∈Dγ βjxij, (1) 
with Dγ = {j : γj = 1} and β = β0, β1, . . . , βp ∈ Ωγ is the vector of regression coefficients whose the definition space is determined by γ and constraints many coefficients to be zero since

Ωγ = β ∈ R p+1 : ∀j ∈ D c γ , βj = 0 , (2) 
where D c γ = {j : γj = 0}. Assuming that the n observations are i.i.d., the adverse event loglikelihood related to model γ is

n y | x, γ, β = n i=1 yi β0 + j∈Dγ βjxij -ln 1 + exp β0 + j∈Dγ βjxij . (3)
Obviously, the coordinates of xi impacting the log-likelihood value are those belonging to Dγ . In practice, it is often more numerically efficient to compute the adverse event log-likelihood by using the unique profiles of observations impacting the likelihood. This weighted form of the log-likelihood is described in Appendix A.

From the database, the Maximum Likelihood Estimates (MLE) β γ is defined by

β γ = arg max β∈Ωγ n y | x, γ, β . (4) 
To assess (4), we need to solve the derivative likelihood equations using the classical Newton-Raphson method (see [START_REF] Nocedal | Numerical optimization[END_REF]). However, the MLE (4) is well defined if the overlapping conditions of [START_REF] Silvapulle | On the existence of maximum likelihood estimators for the binomial response models[END_REF] are satisfied. More precisely, fix one drug j such as j ∈ Dγ , the conditions are l0j < u1j and l1j < u0j,

where

l0j = min{xij | yi = 0}, u0j = max{xij | yi = 0}, l1j = min{xij | yi = 1} and u1j = max{xij | yi = 1}
. These conditions are equivalent to have a positive length overlap of the intervals [l0j, u0j] and [l1j, u1j] in the scalar case (see discussion of [START_REF] Owen | The sign of the logistic regression coefficient[END_REF]). In spontaneous reporting database settings, xij ∈ B and then (5) is equivalent to

∀(hy, hx) ∈ B 2 , ∀j ∈ Dγ , ∃i ∈ I hy : xij = hx, (6) 
where I hy = {i : yi = hy}. In a few words, ( 6) is equivalent to have at least one absence and one presence of drug consumption in both sets {xij | yi = 0} and {xij | yi = 1}. To ensure that (4) is well defined, condition (6) suggests us to do not take into account drugs that do not satisfy it.

MODEL SELECTION BY MCMC ALGORITHM

Bayesian model selection

We define the set of the competing models Γ as the set of models γ ∈ B p where (6) is satisfied. So, Γ = {γ ∈ B p such as ( 6) is satisfied for γ}.

In a Bayesian framework, the aim is to obtain the model having the highest posterior distribution p γ | y, x . We assume that uniformity holds for the prior distribution p(γ | x) for γ ∈ Γ. So, we have

p γ | y, x ∝ p(y | x, γ), (8) 
where p(y | x, γ) is the integrated likelihood defined by

p(y | x, γ) = Ωγ p(y | x, γ, β)p(β | x, γ)dβ, (9) 
where p(y | x, γ, β) = exp n(y | x, γ, β) is the likelihood of model γ and where p(β | x, γ) is the prior distribution of β whose the support is included in Ωγ . Since logarithm is monotone,

arg max γ∈Γ p γ | y, x = arg max γ∈Γ ln p(y | x, γ). ( 10 
)
When the integrated likelihood has not a closed form, the Bayesian Information Criterion (BIC) is generally used. It is based on a second degree Laplace approximation of the logarithm of the integrated likelihood [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. It is defined as

BIC(γ) = n y | x, γ, β γ - νγ 2 ln n, (11) 
where νγ = 1 + p j=1 γj. Therefore, we want to achieve the model γ which maximizes the BIC criterion, so

γ = arg max γ∈Γ BIC(γ). (12) 
This criterion selects the model providing the best trade-off between the accuracy related to the data and the complexity.

Obviously, the number of competing models is too huge to compute the BIC criterion for each of them. Thus, we use the Metropolis-Hastings algorithm described in the following section to estimate γ .

Metropolis-Hastings algorithm for achieving γ

Model γ can be achieved through a Metropolis-Hastings algorithm [START_REF] Robert | Monte Carlo statistical methods[END_REF], described in Algorithm 1, which performs a random walk over Γ. The unique invariant distribution of Algorithm 1 is proportional to exp BIC(γ) . Therefore, γ is the mode of its stationary distribution.

At each iteration, the algorithm proposes to move into a neighbourhood of the current model. A neighbouring model is defined as copy of the current model where just a few elements are altered. Thus, at iteration [r], the candidate γ is equal to the current model γ [r] except for α ≥ 1 elements at the maximum. More specifically, γ is uniformly sampled in Vα(γ [r] ) where

Vα(γ [r] ) = γ : p j=1 |γj -γ [r] j | ≤ α (13) 
In the application, we set α = 5. The candidate γ is accepted with a probability equal to

ρ [r] = exp BIC(γ) exp BIC(γ [r] ) . ( 14 
)
Note that we define that BIC(γ) = -∞ for all γ ∈ B p \ Γ. This algorithm performs R iterations and returns the model maximizing the BIC criterion. In practice, there can be almost absorbing states, so our advice is to perform different initialisations of this algorithm to ensure to visit γ .

Algorithm 1 Metropolis-Hasting having a stationary distribution proportional to exp(BIC(γ))

Initialisation γ [0] is uniformly sampled in Γ.

For r = 1, . . . , R.

Candidate step: γ is uniformly sampled in Vα(γ [r] ).

Acceptance/reject step: defined γ [r] with

γ [r] = γ with probability ρ [r] γ [r-1] otherwise . ( 15 
)
End For Return arg max r=1,...,R BIC(γ [r] ).

RESULTS ON REAL DATA SET

After presenting the French pharamcovigilance database, the proposed method is compared to the others by using the OMOP set. Finally, specific comments are given for the proposed method and the Lasso.

Data

To evaluate and compare methods performances, we use the OMOP [START_REF] Ryan | Defining a reference set to support methodological research in drug safety[END_REF] reference set of test cases that contains both positive and negative controls. Four adverse events (i.e. d = 4) were studied in this reference set : acute myocardial infarction (AMI), acute kidney injury (AKI), acute liver injury (ALI), and upper gastro-intestinal bleeding (GIB). There are three-hundred and ninety-nine test cases where 165 positive controls and 234 negative controls were identified across the four adverse events of interest. [START_REF] Ryan | Defining a reference set to support methodological research in drug safety[END_REF] indicate that the majority of positive controls for AKI and GIB were supported by randomized clinical trial evidence, while the majority of positive controls for ALI and AMI were only based on published case reports. Methods are compared on the data extracted from the French pharmacovigilance database where notifications have been collected from 2000 to 2010. The studied database contains n = 219, 340 individuals notifications and the consumption informations concerning p = 145 drugs mentioned on the OMOP reference set. Therefore, 145×4 = 580 drug-event pairs are studied, among them 145 are positive controls (25%), 153 are negative controls (26%) and 282 have an unknown status (49%). The four studied adverse events occur 495 (AMI), 4746 (GIB), 10910 (ALI) and 5234 (AKI) times.

Competing methods

Disproportionality-based methods Four disproportionality-based methods: the Proportional Reporting Ratio (PRR), the Reporting Odds Ratio (ROR), the Reporting Fisher Exact Test (RFET) [START_REF] Ahmed | False discovery rate estimation for frequentist pharmacovigilance signal detection methods[END_REF] and the FDR-based Gamma Poisson Shrinkage (GPS) [START_REF] Ahmed | Bayesian pharmacovigilance signal detection methods revisited in a multiple comparison setting[END_REF] are applied to the whole database. Their results are obtained with the R package PhViD [START_REF] Ahmed | PhViD: an R package for PharmacoVigilance signal Detection. R package version 1[END_REF]. The specific statistics are used with a threshold of 0.05. They are presented in Table 1. All methods are compared on the 580 drug-event pairs mentioned on the OMOP reference set. glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]. The penalty value is selected by cross-validation with ten folds to obtain the most parsimonious model among the models having best misclassification error. This method permits to find few signals since the selected penalty implies that only the intercept is not zero for only one adverse event (AMI). This example shows how difficult it is to calibrate the Lasso-penalty. Indeed, the misclassification error is roughly constant according to the penalty value. This is due to the weak rate of notifications for one adverse event.

Lasso-based logistic regressions

Model-based logistic regressions For each of the four adverse events, 100 random initialisations of Algorithm 1 with α = 5 and R = 5.10 3 iterations have been done. The model maximizing the BIC criterion is returned. The proposed method obtains the best rates of positive controls and negative controls. It detects 71 signals while the Lasso-based method finds only 13 couples. The poor results of the Lasso are explained by the penalty values assessed by the misclassification error rate. Indeed, the resulting penalty values constrain all the coefficients to be zero for three adverse events.

Method comparison

The disproportionality methods obtain similar results. Despite that many signals are detected by these methods (between 73 and 129), their rates of positive and negative controls are worse than them resulting from the proposed method. The computing time has been strongly reduced by using the expression of the log-likelihood defined by (17). For example, by considering the best model resulting of the adverse event AMI where 9 variables have a free coefficient, the database can be reduced as a weighted matrix with mγ = 45 weighted individuals (see Appendix A). Moreover, since many different initialisations allow to find γ , the number of initialisations (set at 100 during the experiment) could be reduced.

Specific comments about the proposed method

The value of α has been empirically set to 5. It provides a better acceptance rate of Algorithm 1 than α = 1 and avoids the appearance of almost absorbing states. Figure 1 illustrates this fact by comparing the evolution of the BIC value of the current model according to the iteration number for 100 initialisations of Algorithm 1 with α = 1 and α = 5 for adverse event ALI.

Finally, the list of the detected signals are presented in Appendix B.

Specific comments about the Lasso

We have seen that the Lasso obtains poor results when the penalty is determined according to the misclassification error. [START_REF] Caster | Large-scale regression-based pattern discovery: the example of screening the who global drug safety database[END_REF] suggest to set the same penalty value for all the adverse events. Moreover, they use a disproportionality measure to evaluate the number of signals and thus to deduce the penalty value.

In order to investigate the Lasso approach features, we build a sequence of penalties to obtain different numbers of signals with the Lasso. The numbers of positive and negative controls resulting for each penalty values are indicated by the black lines of Figure 2. The results related to the model maximizing the BIC criterion are indicated by both red dots. On Figure 2, it is very hard to find a penalty value from where results obtained a better trade off between the positive and the negative controls. If, for the same number of signals ( 71) as obtained by Algorithm 1, the Lasso approach presents slightly better performances, the corresponding penalty value does not result from an optimizing procedure. These figures can not be plotted in reality, since the nature of the signals are unknown.

DISCUSSION

In this paper, we have proposed a method for analysing individual spontaneous reporting databases, which also avoids the drawbacks of the disproportionality-based measures (coprescription and masking effects). The signal detection is lead throughout parsimonious logistic regressions whose the sparsity degree is assessed as a model selection challenge. Therefore, we avoid the use of Lasso-type method that requires the challenging calibration of penalty. Indeed, in pharmacovigilance settings, the cross-validated missclassification error fails to set an efficient penalty value. The combinatorial problem of model selection is bypassed by Metropolis-Hastings binary space sampling.

Despite to the difficulties for evaluating pharmacovigilance methods, the OMOP reference set of [START_REF] Ryan | Defining a reference set to support methodological research in drug safety[END_REF] gives us the opportunity to compare the proposed method to the reference approaches on real data. On these data, it appears to be relevant for the signal detection issue. However, many signals are not detected by our method. So, we conclude that this method should be used in parallel to existing measures in pharmacovigilance.

The proposed approach can manage the whole French pharmacovigilance database which consists of n = 219, 340 individual notifications, p = 2, 114 drugs and d = 4, 257 adverse events. We have shown that the dimension of the model space is defined by the number of drugs verifying (6). Figure 3 presents the evolution of this number according to the headcount of the adverse events. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 0 2000 4000 6000 8000 10000 In our database, 75% of the adverse events can be associated to less than 42 drugs. For the adverse events which have less than 12 drugs verifying (6), we advise to use an exhaustive approach consisting of computing the BIC criterion for each competing models in Γ. The model selection on the whole French pharmacovigilance database is achieved at the cost of several days of computing time. The proposed approach can thus be used to investigate targeted adverse events. Finally, a preliminary drug selection could provide a reducing of computing time.

Appendices

A WEIGHTED FORM OF THE ADVERSE EVENT LOG-LIKELIHOOD

Obviously, the coordinates of xi impacting the log-likelihood value are those belonging to Dγ . For each observation xi, we denote by x γ i ∈ B |γ| , where |γ| = p j=1 γj, the vector containing the elements of xi impacting the log-likelihood (i.e. the vector composed with the elements of xi such as index belongs to Dγ ). Thus, for each j = 1, . . . , |γ|:

x γ ij = xij 0 with j0 = min    j : j j =1 γ j = j    . (16) 
Moreover, many individual profiles (x γ i , yi) occur many times in the database. We denote by mγ the number of different profiles impacting the log-likelihood of model γ. The profile i is denoted by (x γ i , ỹγ i ) and its weight is denoted by w γ i . Thus, (3) is given by

n y | x, γ, β = mγ i=1 w γ i ỹγ i β0 + |γ| j=1 βj xγ ij -wi ln 1 + exp β0 + |γ| j=1 βj xγ ij , (17) 
where β γ j is the j-th element which is not zero in β, so for each j = 1, . . . , |γ|: 

In practice, it is often more numerically efficient to compute the adverse event log-likelihood by using (17) than by using (3).

B SIGNALS DETECTED BY THE PROPOSED METHODS

Table 5 presents the couples between a drug and an adverse events detected by the proposed method. 

Fig. 1 .Fig. 2 .

 12 Fig.1. Evolution of the BIC value of the current model according to the iteration number for 100 initialisations of Algorithm 1 with α = 1 (dashed black curves) and α = 5 (plain red curves) for adverse event ALI.

Fig. 3 .

 3 Fig.3. of the number of drugs verifying (6) according to the headcount of the adserve event.

Table 1 .

 1 The results of the Lasso method applied on logistic regressions are obtained with the R package Specific statistics of the disproportionality methods: statistics (Stat), minimal headcount of the signals (Min.) and reference (Ref.).

	Method	Stat.	Min.	Ref.
	PRR	p-value of rank	3	Evans et al. (2001)
	ROR	p-value of rank	3	Van Puijenbroek et al. (2002)
	RFET	mid-pvalue	1	Ahmed et al. (2010)
	GPS	prob of H0	1	Ahmed et al. (2009)

Table 2 .

 2 Table 2 presents the number of competing models for each adverse event. Number of drugs respecting (6) and number of competing models for each adverse event (|Γ|).

	Adverse Event	AMI GIB ALI AKI
	Number of drugs respecting (6) 66	97	123 107
	|Γ|	2 66	2 97 2 123 2 107

Table 3 .

 3 Table3presents the rates of positive controls, of negative controls and of unknown signals detected by all the competing methods. Main results obtained by the competing methods ordered by their rate of positive controls: number of signals (NS), rate of positive controls (RPC), rate of negative controls (RNC) and rate of unknown signals (RUS).

	Method	NS RPC RNC RUS
	Logistic BIC (Algorithm 1) 71 0.54 0.01 0.45
	RFET	114 0.51 0.06 0.43
	PRR	73 0.51 0.10 0.40
	ROR	120 0.50 0.07 0.43
	GPS	129 0.48 0.07 0.45
	Lasso-CV	13 0.46 0.08 0.46

  Table4indicates the computing time obtained by an Intel(R) Xeon(R) CPU 3.00 GHz and the number of times where the Algorithm 1 finds the best model.

	Adverse Event AMI GIB ALI AKI
	model	100	67	50	56
	nb signals	9	10	27	25
	positive controls	1	5	20	12
	negative controls	1	0	0	0
	time	1	3	3	5
	mγ	45	629 554 1024

Table 4 .

 4 General results of Algorithm 1: number of times where γ has been found (model), number of signals (nb signals), number of positive controls, number of negative controls, computing time in minutes required for one Markov chain realization (time) and number of unique profiles for the best model (m γ ).

Table 5 .

 5 List of the signals detected by the proposed method.

	Adverse event	ATC	Headcount	βj	Omop control
	AMI	L03AB07	7	2.92	unknown
	ALI	J05AE09	36	2.85	positive
	AMI	N02CC03	6	2.6	positive
	ALI	L01BB03	8	2.51	positive
	AKI	M01AE09	46	2.27	unknown
	ALI	C02KX01	65	2.25	positive
	AMI	M01AH01	21	2.05	unknown
	AMI	L01BC05	10	1.85	unknown
	GIB	M01AC01	138	1.84	positive
	AMI	J05AF05	92	1.84	unknown
	GIB	B01AC04	523	1.77	positive
	AKI	J05AF07	144	1.76	unknown
	GIB	B01AC07	31	1.67	unknown
	AKI	C09AA05	353	1.66	unknown
	AKI	C09AA03	165	1.66	positive
	AKI	C09CA08	35	1.65	positive
	ALI	L02BB01	10	1.61	positive
	ALI	J05AG01	297	1.55	positive
	ALI	J02AC03	117	1.54	positive
	AKI	C09AA02	146	1.51	positive
	GIB	M01AE03	276	1.5	positive
	AKI	C09AA10	38	1.49	unknown
	AKI	N05AD08	10	1.48	unknown
	AKI	L04AD01	91	1.38	positive
	GIB	M01AE02	52	1.34	positive
	ALI	J01XE01	52	1.33	positive
	ALI	J04AB02	538	1.31	positive
	AKI	C09CA07	34	1.31	positive
	AKI	M01AE03	250	1.31	positive
	AMI	L04AB02	13	1.29	unknown
	AKI	L01BA01	129	1.28	unknown
	ALI	A03AX13	26	1.25	unknown
	ALI	A07EC01	71	1.24	unknown
	AKI	L01BC05	57	1.18	unknown
	AKI	C09CA06	139	1.16	positive
	GIB	M01AH01	98	1.15	unknown
	ALI	J02AC02	22	1.15	positive
	AMI	B01AC04	24	1.14	unknown
	ALI	J04AC01	359	1.08	positive
	AKI	C09AA06	25	1.06	unknown
	AKI	C09AA01	61	1.02	positive
	ALI	N03AF01	248	0.99	positive
	AKI	M01AE02	43	0.99	positive
	ALI	D01AE15	77	0.98	positive
	AMI	J05AF02	30	0.98	negative
	ALI	L03AB07	27	0.98	positive
	ALI	J02AC01	188	0.97	positive
	ALI	G03CA03	76	0.96	unknown
	AKI	J04AB02	104	0.96	unknown
	GIB	A12BA01	155	0.94	positive
	AKI	J01MA02	147	0.87	unknown
	AMI	J05AF06	44	0.83	unknown
	ALI	L01BA01	186	0.81	positive
	AKI	M04AA01	220	0.77	positive
	AKI	C03AA03	430	0.73	positive
	AKI	M01AH01	72	0.68	unknown
	GIB	C08DB01	81	0.63	unknown
	AKI	A12BA01	154	0.62	unknown
	ALI	A10BF01	36	0.61	unknown
	AKI	M01AC01	47	0.59	positive
	ALI	N03AG01	298	0.56	positive
	ALI	J01MA06	60	0.54	positive
	ALI	N05BA05	147	0.53	unknown
	ALI	J05AF07	177	0.49	positive
	ALI	M04AA01	216	0.45	positive
	AKI	J01MA01	109	0.43	unknown
	GIB	C08CA01	126	0.37	unknown
	ALI	N06AB04	117	0.36	unknown
	GIB	C09AA05	148	0.35	unknown
	ALI	M01AE03	200	0.31	unknown
	ALI	J01MA02	202	0.31	positive
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