Geometric Simplification of a Wooden Building Connector in Dynamic Finite Element Model ACOUSTICS 2012 - Nantes

<u>A. Tribaleau^{†,‡},</u> N. Tahani[†], B. Brouard[†], J.M. Génevaux[†], O. Dazel[†],

[†]LAUM, UMR CNRS 6613, Avenue Olivier Messiaen, 72085 LE MANS [‡]CRITT Bois, 27 rue Philippe Séguin, 88051 EPINAL

27 April 2012

Introduction	Joist	Assembly	Conclusion
Context and aim			

Context in building acoustic :

- PhD thesis on prediction of sound insulation of wooden joist floors
- Unknown dynamic behavior of wooden building connector (≠ static behavior)
- Determinant in flanking transmission of vibration and boundary conditions of floor

Aim :

- Simplified model of the wooden connector (stiffness and damping)
- To be used in a FE method (large structure : floor)

Introduction	Joist	Assembly	Conclusion
000	00000	00000	
Outlines			

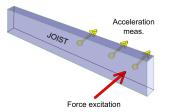
- Context and aim
- Method decription
- 2 Modal analysis of joist
 - Mechanical properties of wooden joists
 - Resonance frequency
 - Damping factor estimation
 - Comparaison with a numerical model
- 8 Modal analysis of the assembly (joist + connector + beam)
 - Case study
 - Simplified model
 - Method for determining connector's stiffness
 - Comparaions between numerical and experimental results
- 4 Conclusion and perspectives

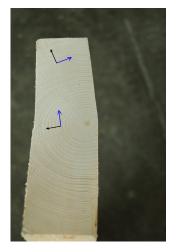
Introduction	Joist	Assembly	Conclusion
000	00000	00000	

Method description

Sketch	EXP.	NUM.
	FRF (A/F)	eta
Coupling with Kx, Ky and Kz complex	FRF (A/F)	→ к, с //

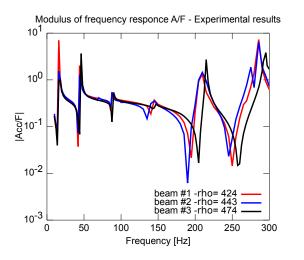
Introduction	Joist	Assembly	Conclusion
000	●0000	00000	
Modal analysis of i	nist		

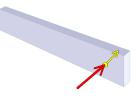

Mechanical properties of wooden joists


Known :

- Wood species : spruce
- Anisotropic material
- Size : $4500 \times 220 \times 60$ [mm]
- $\rho \approx 440 \pm 30$ [kg.m⁻³]
- No machining after drying and sawing

Unknown :

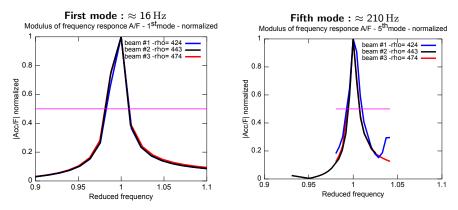

- Axial Young's modulus (E_L) and others
- Damping factor



Introduction	Joist	Assembly	Conclusion
000	○●○○○	00000	
Modal analysis		ation	

Free-free boundary condition

6 first resonance frequency [Hz]			
Mode	#1	# 2	#3
1	16.2	16.6	16.8
2	44.4	44.6	46.1
3	86.5	86.6	88.5
4	140	143	146
5	207	207	215
6	286	286	293

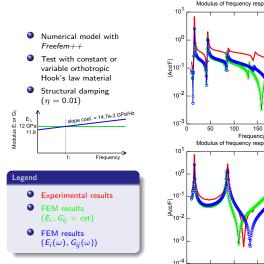

→ Determine the longitudinal Young's

modulus

 Introduction
 Joist
 Assembly
 Conclusion

 000
 00000
 00000
 00000
 00000

 Modal analysis of joist
 Damping factor estimation
 00000
 00000



Damping factor (η)				
Mode	#1	#1 #2 #3		
1	1.4 %			
2	0.8 %			
3	-	-	-	
4	-	-	-	
5	0.7 %	0.9 %	0.6 %	
6	0.8 %	0.7 %	0.8 % <	

э

Introduction	Joist	Assembly	Conclusion
	00000		

Modal analysis of joist Comparaison with numerical model

Modal analys	ic of inict		
000		00000	Conclusion
Introduction	Joist	Assembly	Conclusion

Modal analysis of joist

Sketch	EXP.	NUM.
	FRF (A/F)	
Coupling with Kx, Ky and Kz complex	FRF (A/F)	° ↓ ↓ ↓

Introduction 000

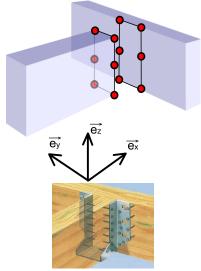
Joist

Assembly

Conclusion

Modal analysis of the assembly $_{\rm First\ case\ study}$

- Force along honrizontal direction (y-axis)
- Free boundary conditions


<ロト < 回 > < 回 > < 回 > < 回 > <

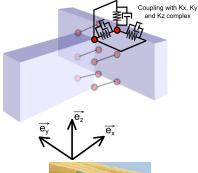
э

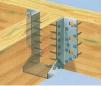
 Introduction
 Joist
 Assembly
 Conclusion

 Modal analysis of the assembly
 Simplified model
 Conclusion

FEM matrix construction with coupling :

- FEM applied on joist and beam
- Choose vertices on the border of section



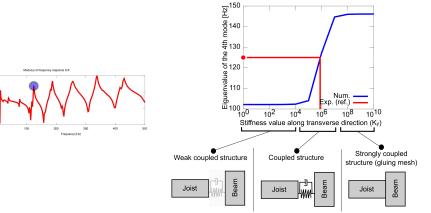

 Introduction
 Joist
 Assembly

 0000
 00000
 00000

 Modal analysis of the assembly
 Simplified model

FEM matrix construction with coupling :

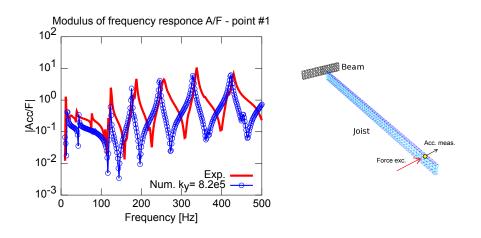
 Additionnal strain and dissipative energy (coupling matrix stiffeness)


・ロト ・日子・ ・ ヨア・

 $\exists \rightarrow$

• Mass of connector is neglected

Introduction	Joist	Assembly	Conclusion
Modal analysis			


Method for determining connector's stiffness

Variation of the eigenvalue - fonction of the stiffness along y-axis

10

Conclusion and	nerspectives		
Introduction	Joist	Assembly	Conclusion

- Simplified model to reduce geometric complexity
- Stiffness value K_{γ} has been determined
- Good agreement on resonant frequency (≠ on anti-resonant freq.)

Further work

- Estimate damping along tested axis (y-axis)
- Behavior along other axis : K_x, K_z value?
- Refine the Hook law model of material

Perspectives

- Assembly wall and floor : flanking transmission quantification
- Understand the influence of stiffness value along each direction on flanking transmission
- Design better connectors for reducing vibration transfer

Introduction	Assembly	Conclusion

Thanks for your attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>