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Abstract

This article presents a model of grain fragmentation to be implemented in discrete element methods: the Split-Cell
Method (SCM). In this method, the particles are of polygonal shape, and they split into polygonal cells once a certain
failure criterion, depending on the forces exerted at the contacts, the size and shape of the grain, and the tensile
strength of the material, is satisfied. The SCM is an improvement compared to other methods currently available in
the literature, given that it does not restrict the shape of the grains or their fragments, mass is conserved throughout the
fragmentation events, and it does not introduce artificial length scales in the system. In order to validate the proposed
method, an experiment using plaster particles was conducted and its results were compared to those of a numerical
simulation of the same system, finding a good match between both the experiment and the simulation.

Keywords: simulation, fragmentation, crushing, discrete element methods

1. Introduction

Grain fragmentation, also known as grain crushing,
can have major effects on the mechanical behavior of
granular media. For example, it has been shown that
grain fragmentation affects the grain size distribution
[1, 2, 3], the solid fraction [4, 5], the shear strength [6],
and the yielding surface [7] of granular materials. In ad-
dition, grain fragmentation is an important mechanism
in various industrial processes and controls the response
of different structures built on, or with, granular materi-
als [8, 9, 10].

Despite the importance of grain fragmentation, this
phenomenon has been studied scarcely using discrete
element methods. In fact, only a few models have been
proposed. These models can be classified into three
main groups.

In the first type of models, the grains that break are
replaced by a set of smaller grains once a rupture crite-
rion is satisfied. Usually, both, grains and fragments, are
discs (see Fig. 1), and the rupture criterion is a function
of the forces exerted at the particle contacts, the particle
size, and the tensile strength of the material (e.g., see
Refs. [2, 11, 12, 9, 6, 10]). The main advantage of this
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Figure 1: Scheme of the fragmentation process in the first type of
models, in which each grain is replaced by a set of smaller grains.

type of models is their simplicity. However, these mod-
els introduce unclear features such as the number and
size distribution of the fragments, and also some mass
is lost as grains break.

In the second type of models, the grains are initially
built as clusters of bonded small grains (usually, these
small grains are discs or spheres). Then, these bonds are
allowed to break during the simulation once a local rup-
ture criterion is satisfied. The de-bonding of the small
grains can eventually lead to the rupture of the cluster
into fragments (see Fig. 2).

For some examples of works carried out using this
technique, see Refs. [13, 14, 15, 16, 17]. The main
advantage of this type of models is their ability to re-
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Figure 2: Scheme of the fragmentation process in the second type of
models, in which each grain is initially built as a cluster of bonded
small grains.

produce, more realistically, the size and shape of the
fragments. However, this implies a significant increase
of computational cost, given that the “large” grains must
be composed of many small bonded grains. Moreover,
the size of the small grains introduces an artificial length
scale in the system.

In the third type of models, the grains are simulated
as deformable objects, by combining a discrete element
method with a method derived from continuum mechan-
ics, which allows for the calculation of stresses and
strains inside the particle (e.g., see Ref. [18]). These
methods are very precise, but this is at the expense of a
large computational cost.

The aim of this work was to design, implement, and
test a new approach of grain fragmentation: the Split-
Cell Method (SCM). This method does not restrict the
shape of the grains or their fragments, mass is conserved
throughout the fragmentation events, and it does not in-
troduce artificial length scales in the system. The parti-
cles are of polygonal shape, and they split into polyg-
onal cells once a certain failure criterion is satisfied.
The proposed model can be seen as an extension of the
model proposed by Tsoungui [11], since it considers
particles of arbitrary shape.

This article is organized as follows. In Sec. 2, the
new model is explained in detail. Sec. 3 presents the
results of an experiment carried out in order to validate
the theoretical model. In Sec. 4, a numerical simulation
of the experiment is analyzed, and, finally, in Sec. 5, a
summary and a brief discussion are presented.

2. Fragmentation model

The fragmentation model is made up of three main
ingredients:

(1) an estimation of the stresses within the grains,
(2) a failure criterion, and
(3) a fragmentation mode.

Figure 3: Through the particle stress tensor, it is possible to represent
the initial set of forces by a pair of equivalent normal forces applied
along the principal directions.

These ingredients are explained in detail in the follow-
ing subsections.

2.1. Stresses estimation
The first step in the model is to estimate the stresses

within the grains. Initially, let us consider a circular
grain under a certain set of loads. The stress tensor σ
of the grain can be calculated as [19]

σij =
1
V

Nc∑
c=1

liFj, (1)

where V is the volume of the grain, Nc is the number of
contacts c, l is the branch vector between the particles
in contact, and F is the contact force. The major princi-
pal stress σmax, the minor principal stress σmin, and the
principal directions are then the eigenvalues and eigen-
vectors of σ.

Then, it is possible to calculate a pair of equivalent
forces that, applied along the principal directions, re-
produce the tensor σ (see Fig. 3). These forces, termed
here Fmax and Fmin, are given by

Fmax =
σmaxπtR

2
, (2)

Fmin =
σminπtR

2
, (3)

where R is the radius of the grain, and t its thickness.
If it is assumed that the grain is made of a brittle ma-

terial that deforms elastically, it can be shown that each
of the equivalent forces, Fmax and Fmin, produces a com-
pression stress along its direction of action and a tensile
stress along the orthogonal direction (see Fig. 4). The
maximum tensile stress occurs at the center of the grain
and is given by

σd
t =

F
πtR

, (4)
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Figure 4: Schematic representation of the stresses at the center of a
circular grain loaded diametrically.

where the superscript d indicates that the calculation
only applies for discs, and F is the diametral load. The
compressive stress at the center of the grain is given by

σd
c =

3F
πtR

. (5)

The net tensile stress σd
tnet

at the center of the grain can
then be calculated as the superposition of the stresses
due to forces Fmax and Fmin:

σd
tnet

=
1
πtR

(Fmax − 3Fmin). (6)

As mentioned in the previous paragraph, Eqs. (4) to
(6) are valid only for circular grains. For different grain
shapes, a correction must be introduced. Since there
is no analytical solution for the stresses within a grain
of arbitrary shape, a series of numerical tests were per-
formed using the finite element software ABAQUS, us-
ing the linear elastic material behaviour, a Young’s mod-
ulus of 21 GPa, and a Poisson’s ratio of 0.3. In these
tests, a set of grains of unit area and different shapes
(i.e., regular and irregular polygons with different as-
pect ratio) were loaded diametrically with a unit vertical
load. Figure 5 shows the tensile stress distribution ob-
tained in some of the conducted tests. For each of these
tests, the location and direction of the maximal tensile
stress was determined, finding that, in most cases, its
location was close to the grains center of mass and its
direction was orthogonal to that of the unit load. The di-
rection of the maximum compressive stress in the same
point was found to be close to that of the unit load.

Figure 6 shows the magnitude of the maximal ten-
sile stress and the orthogonal compressive stress, σt and
σc respectively, in the same location, as functions of
the dimensionless shape parameter l̄/w, where l̄ is the

mean length of the sides intersected by the load direc-
tion and w is the particles’ width (see the inset in Fig.
6(a) for a graphical explanation). It can be seen that σt

decreases with l̄/w, from ∼ 0.6, which corresponds to a
disc (i.e., Eq. (4)), to 0, which corresponds to a square.
The stress σc also decreases with l̄/w, from ∼ 2, which
corresponds to a disc (i.e., Eq. (5)), to 1, which corre-
sponds to a square.

Then, a simple way to estimate σt and σc is to con-
sider a linear function joining the data points corre-
sponding to the disc and the square, which leads to

σt = σd
t

(
1 −

l̄
w

)
, (7)

σc = σd
c

(
1 −

l̄
w

)
+

l̄F
w2t

, (8)

where σd
t and σd

c are given by Eqs. (4) and (5) consider-
ing a disc with the same area as the polygon. Note that,
in some exceptional cases, l̄/w can exceed unity. In our
model, whenever this happens, l̄/w is set to unity.

Finally, after superposing both stresses, the net tensile
stress for the polygon can be written as

σtnet =
Fmax

πtR

(
1 −

l̄max

wmax

)
−

3Fmin

πtR

(
1 −

l̄min

wmin

)
+

l̄minFmin

w2
mint

, (9)

where the subscript “max” refers to the force and di-
mensions of the grain obtained from the major principal
stress value and orientation, and the subscript “min” to
those based on the minor principal stress.

The dispersion of the data points in Fig. 6, with re-
spect to the lines drawn from Eqs. (7) and (8), evidences
that predicting the stresses inside a particle of arbitrary
geometry is a complex problem. Probably, classifying
the particles into subgroups of similar geometry and de-
signing a set of equations for each of these subgroups
could reduce this dispersion. However, for the sake
of simplicity it was decided not to do so, nevertheless
achieving, as it will be shown in the following sections,
a good match between experiments and simulations.

2.2. Failure criterion

The failure criterion determines the stress condition
for which a grain must be fragmented. In this model, it
is assumed that this occurs when the net tensile stress
equals the tensile strength of the material. That is, if

σtnet ≥ σcrit, (10)
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Figure 5: Distribution of tensile stresses in (a) regular, (b) irregular, (c) vertically elongated, and (d) horizontally elongated grains loaded diametri-
cally with a unit vertical load.

then the grain must break. This implies that the model
only considers rupture due to tensile stresses, and ig-
nores other modes of failure such as shear or flection.
This is a choice made for the sake of simplicity, sup-
ported by field observations on shallow deposits of gran-
ular materials on which failure due to tensile stresses
is known to be the dominant fragmentation mechanism
[20, 21]. Finally, note that the tensile strength is the
only parameter this model requires, and this value can
be easily found through the indirect tensile test (a.k.a.,
the Brazilian Test).

2.3. Fragmentation mode

The fragmentation mode determines the way in
which a grain that satisfies the failure criterion must
break. In this Split-Cell Method, this is done by split-
ting the original grain into two fragments separated by

a line that passes through the grain center of mass and
whose orientation is equal to that of the major principal
stress (see Fig. 7).

3. Experiments

In order to validate the proposed fragmentation
model, a set of experiments was conducted. First, a
number of diametral load tests were undertaken in or-
der to find the tensile strength of the material. Then, an
oedometric compression test in plane strain conditions
with several polygonal particles was carried out. The re-
sults of both experiments are described in the following
subsections.

3.1. Tensile strength of the material
The material used in the experiments was plaster

powder that, once blended with water, was placed in
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Figure 6: (a) Maximal tensile stress σt and (b) orthogonal compres-
sive stress σc in the same location, as functions of the dimensionless
shape parameter l̄/w (see the inset for a graphical explanation).

molds and dried out in an oven at 110 ◦C for 24 hours.
A total of twelve circular particles were built and then
brought to failure in diametral compression tests. These
particles had a thickness of 6 mm and a diameter that
varied between 1 and 3 cm. Figure 8 shows a close-
up of the loading device, and the corresponding pho-
tographs of the particles before and after the diametral
compression test. Note that the failure of the particles
occurred, on average, along a principal vertical crack
(i.e., along the load direction), clearly due to horizontal
tensile stresses.

Figure 9 shows the vertical force measured in one of
the diametral compression tests as a function of time.
It can be seen that the force increases until, eventually,
the particle breaks and the force drops abruptly. The
maximal force Fcrit can be related to the tensile strength
of the material as follows

σcrit =
Fcrit

πtR
. (11)

From the diametral compression tests, performed on the

Figure 7: Schematic explanation of the Split-Cell Method.

Figure 8: (a) Picture and close-up of the loading device (i.e., diametral
compression experiment). Pictures of the discs before (b) and after (c)
the experiment.
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Figure 9: Vertical force as a function of time on a diametral compres-
sion experiment.

twelve particles, an average tensile strength of 800 kPa
was determined.

3.2. Oedometric compression test
Using the material described in the previous subsec-

tion, a set of polygonal particles was built. The circum-
diameter of the particles varied between 1 and 3 cm,
and their thickness was 6 mm. Using these particles,
a disordered system with 15 particles was built inside
a Plexiglas box. This system was oedometrically com-
pressed in plane strain conditions at a constant velocity
of 1 mm/min. Figure 10 shows two pictures of the ex-
periment, at the beginning and at the end of the test. It
can be seen that fragmentation occurred in some of the
particles while others remained intact.

It is important to mention that a total of four tests
were performed; however, only one of them is presented
in this paper since similar results were obtained in the
other three.

4. Simulation and model validation

In order to validate the model, a simulation of the oe-
dometric compression experiment described in the pre-
vious section was undertaken. The simulations were
carried out using the contact dynamics method [22, 23,
24, 25, 26], which assumes perfectly rigid particles in-
teracting through mutual exclusion and Coulomb fric-
tion. For specific implementation of the contact dynam-
ics method, see Ref. [26] and the Appendix in Ref. [27]
for polygonal particles1. In order to carry out this sim-
ulation, it was necessary to measure the friction coef-
ficients between the particles and between the particles

1Note that the LMGC90 platform, developed in Montpellier by F.
Dubois and M. Jean, was used.

Figure 10: Pictures of the sample at the beginning (a) and at the end
(b) of the oedometric compression experiment.

and the Plexiglas walls. These coefficients were mea-
sured and set to 0.7 and 0.78, respectively, in the simu-
lation.

Figure 11 shows a comparison between the experi-
ment and the simulation. It can be seen that, even for
such a small system (i.e., with only a few particles),
the match between the experiment and the simulation
is very good in terms of the grains that break, the order
of occurrence of the fragmentation events, and even the
direction of the cracks.

Quantitatively, one method to measure the damage in
the sample, as result of the particles fragmentation, is
through the Hardin’s parameter (Br) [28]. This parame-
ter defines a damage level as function of the integrals of
the granulometric curves before and after a test. Figure
12 shows a scheme of the computation of Br.
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Figure 11: Comparison between the experiment and the simulation.

Figure 13 shows the evolution of the number of frag-
mentation events, the grain size distribution, and the
Hardin’s parameter, as functions of the axial strain ε,
for both the experiment and the simulation.

It should be noted that the comparison started from
the first fragmentation event in both systems. Again, it
can be seen that the match between the experiment and
the simulation is very good, despite the small size of the
system.

5. Summary and discussion

In sum, this paper presents a new model for imple-
menting the phenomenon of grain fragmentation in dis-
crete element methods: the Split Cell Method (SCM).
This model is advantageous, compared to those cur-
rently available in the literature, given that it does not
restrict the shape of the grains or the fragments, mass is
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Figure 12: Computation of the Hardin’s parameter (Br) as function of
integrals (shaded areas Bp and Bt), in the granulometric curves before
and after a test. Note that 0.074 mm is the lower bound in the integrals
as the fragmentation of smaller soil particles is usually negligible [28].

conserved through the fragmentation events, and it does
not introduce artificial length scales in the system. In
the SCM, the particles are of polygonal shape, and they
split into polygonal fragments once a certain failure cri-
terion is satisfied. This failure criterion is a function of
the forces exerted at the contacts, the size and shape of
the grain, and the tensile strength of the material. Then,
when grains break, they split into two fragments sepa-
rated by a line that passes through the grain center of
mass and whose orientation is equal to that of the major
principal stress.

In order to validate the proposed model, an experi-
ment using plaster particles was conducted and its re-
sults were compared to those of a numerical simulation
of the same system. The system was made up of 15
pentagons of varying size. These particles were placed
inside a rectangular box and then compressed in oedo-
metric plane strain conditions.

Firstly, a qualitative comparison was carried out be-
tween the experiment and the simulation. It was found
that the match was a very good one, in terms of the
grains that break, the order of occurrence of the frag-
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Figure 13: Comparison between the experiment and the simulation
of the (a) number of fragmentation events as function of the vertical
strain, (b) grain size distribution, and (c) Hardin’s parameter as func-
tion of the vertical strain.

mentation events, and even the direction of the cracks.
Secondly, a quantitative comparison was made in terms
of the evolution of the number of fragmentation events,
the grain size distribution, and the sample’s damage,
quantified through the Hardin’s parameter Br. Again,
the match between the experiment and the simulation
was very good.

Evidently, grain fragmentation in a real granular ma-

terial is a complex phenomenon that is only partially
captured by a model such as the one proposed in this
article. In addition, it must be noted that some of
the differences identified between the experiment and
the simulation were due to the simulation method (i.e.,
the contact dynamics method), which was chosen be-
cause of its advantages for simulating polygonal parti-
cles. However, the proposed model is not restricted to
this simulation method. In fact, the implementation of
the SCM to other formalisms such as the molecular dy-
namics method with spheropolygons is straightforward
and could be an interesting perspective of this work.

We thank in particular Alfredo Taboada and Farhang
Radjaı̈ for fruitful discussions. We also acknowledge
financial support by the Ecos-Nord program (Grant No.
C12PU01).
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